UMR 5182

logo-ensl
You are here: Home / News / Seminars / Pr. J. NITSCHKE

Pr. J. NITSCHKE

University of Cambridge, UK
When

May 18, 2016 à 10:30 AM

Where

Grande salle cbp LR6

Contact

Dr. Laure Guy

Transformative Cages and Luminous Chains: Functional Systems that Self-assemble from Subcomponents


The materials that we depend on rely upon ever-increasing structural complexity for their function. The use of chemical self-assembly as a synthetic technique can simplify materials preparation by shifting intellectual effort away from designing molecules, and towards the design of chemical systems that are capable of self-assembling in such a way as to express desired materials properties and functions. Below are shown the subcomponent precursors and crystal structures of three of products that can form functional constituents of these systems (Figure 1).

Figure 1. FeII8 cubic cage 1,1 FeII4 tetrahedral cage 2,2 and electroluminescent CuIn double-helical polymer 33

 

Current challenges involve inducing multiple structures to form in parallel,4 such that they may act in concert to achieve a catalytic goal,5 our techniques allow entry into the emerging field of systems chemistry.6 Functional systems that we have recently developed include a fuel-controlled self-assembly process (Figure 2)7 and a triphasic sorting system, wherein three guests are selectively encapsulated within three cages, each in turn soluble in only one of three mutually-immiscible phases (water and two different ionic liquids).8

Figure 2. A system wherein the duration of release of a guest (C60) can be programmed by the amount of fuel (PPh3) present

 

(1)           Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.; Nitschke, J. R. Angew. Chem. Int. Ed. 2011, 50, 3479.

(2)           Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697.

(3)           de Hatten, X.; Asil, D.; Friend, R. H.; Nitschke, J. R. J. Am. Chem. Soc. 2012, 134, 19170.

(4)           Jiménez, A.; Bilbeisi, R. A.; Ronson, T. K.; Zarra, S.; Woodhead, C.; Nitschke, J. R. Angew. Chem. Int. Ed. 2014, 53, 4556.

(5)           Salles, A. G.; Zarra, S.; Turner, R. M.; Nitschke, J. R. J. Am. Chem. Soc. 2013, 135, 17052.

(6)           Nitschke, J. R. Nature 2009, 462, 736.

(7)           Wood, C. S.; Browne, C.; Wood, D. M.; Nitschke, J. R. ACS Cent. Sci. 2015, 1, 504.

(8)           Grommet, A. B.; Bolliger, J. L.; Browne, C.; Nitschke, J. R. Angew. Chem. Int. Ed. 2015, 54, 15100.