Introduction to machine learning & Chemistry, or how I learned to be trendy

Clabaut Paul, Jiang Tao, Staub Ruben

ENS de Lyon

November 29,2019

Université Claude Bernard () Lyon 1

Overview

Theory & Generalities

- General principle of machine learning
- Classification of machine learning

2 Application

- Usages in chemistry
- Limitations

CINIS

Theory & Generalities

Theory & Generalities

Université Claude Bernard () Lyon 1

CINIS

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

-Tom M. Mitchell

Université Claude Bernard (()) Lyon 1

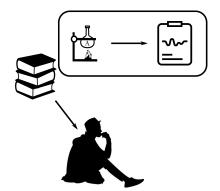
CINIS

"Machine learning is glorified statistics"

"Machine learning is for Computer Science majors who couldn't pass a Statistics course."

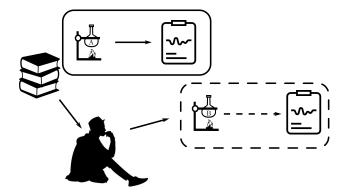
"Machine learning is Statistics minus any checking of models and assumptions."

CNIS



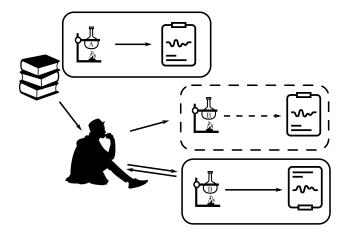
Université Claude Bernard (()) Lyon 1

Chrs



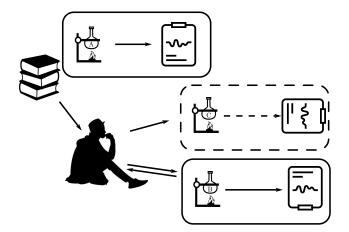
Université Claude Bernard () Lyon 1

CINIS



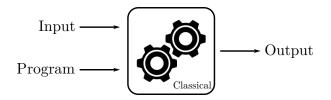
Université Claude Bernard () Lyon 1

CINIS



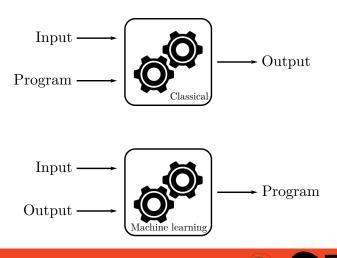
Université Claude Bernard () Lyon 1

CINS



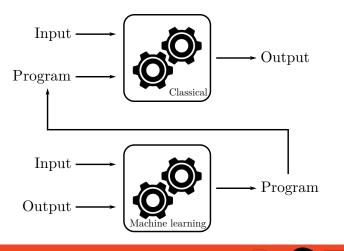
Université Claude Bernard () Lyon 1

cnrs



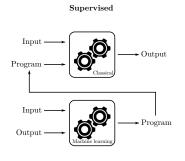
Université Claude Bernard (()) Lyon 1

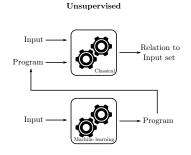
cnrs



Supervised VS. Unsupervised

CNI

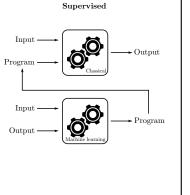


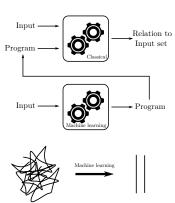


Université Claude Bernard () Lyon 1

Supervised VS. Unsupervised

CIII





Unsupervised

Université Claude Bernard (()) Lyon 1

Families of Supervised learning

Aim: finding a function (program) mapping features (input) to a target (output)

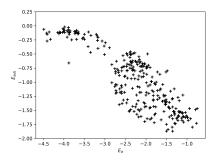
Linguistic distinction based on target type:

Continuous target \Rightarrow **Regression** (e.g. E_{ads}) Categorical target \Rightarrow **Classification** (e.g. active or not, cat or dog?)

Choose type of mapping function

We all have done it a little before

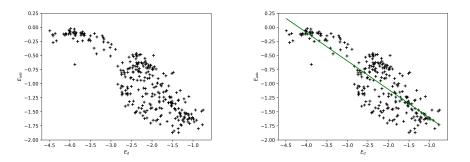
CINIS



Université Claude Bernard () Lyon 1

We all have done it a little before

ENS DE LYON



Linear model (regression)

Input: *m* features, 1 target

Features Target $(x_1 \ x_2 \ \cdots \ x_m) \ \rightarrow \ y$ $(x_{11} \ x_{12} \ \cdots \ x_{1m}) \ \rightarrow \ y_1$ Training $(x_{21} \ x_{22} \ \cdots \ x_{2m}) \ \rightarrow \ y_2$ set \vdots $(x_{n1} \ x_{n2} \ \cdots \ x_{nm}) \ \rightarrow \ y_n$

Model: *m* parameters w_1, w_2, \ldots, w_m

$$\sum_{i}^{m} w_{i} x_{i} \approx y$$

Pros: easily to understand Cons: restricted to linear relations

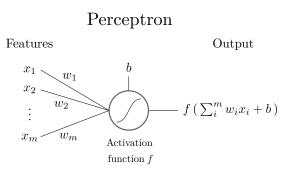
Université Claude Bernard () Lyon 1

NIVERSITÉ

Neural network (regression)

CINIS

Simplest neural network

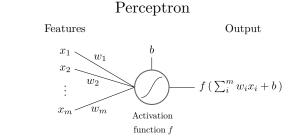


Parameters: w_1, w_2, \ldots, w_m, b

Equivalent to linear model if we use $f : x \mapsto x$

Neural network (regression)

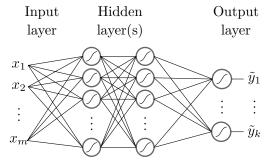
Simplest neural network



Common activation functions:

Neural network (regression)

Input: m features, k targets

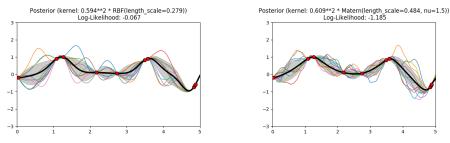


Parameters: weights + bias of each neuron Pros: fast to train, fast to predict, good fitting properties, trendy Cons: black box, design tuning

Université Claude Bernard (())Lyon

Gaussian process regression (regression)

Assume fitted target is a Gaussian process with given smoothness, use Bayesian inference to estimate probability distribution for prediction



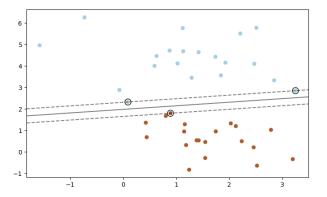
Intuition: consider all possible fitted targets and extract probability distribution

Pros: native prediction confidence estimator

Cons: kernel-dependant, computationally costly training

Support Vector Machine (classification)

Input: *m* features, 1 categorical target

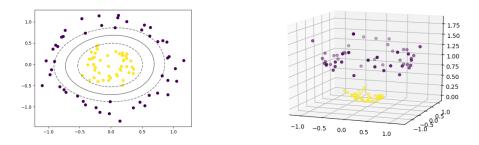


Intuition: Find best splitting hyperplane

Université Claude Bernard (Ca) Lyon

Support Vector Machine (classification)

Change the metric through a non-linear kernel \rightarrow embedding into higher-dimensional space where separation could be possible.

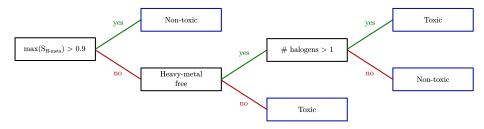


Pros: adapted for high-dimensionality Cons: kernel-dependant, computationally costly training

Decision tree (classification)

Chrs

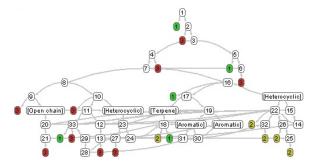
Input: *m* features, 1 categorical/continuous target



Intuition: Find best (feature+threshold) splitting on each node Pros: easy interpretation (relevant features, ...), very fast prediction Cons: requires balanced classes, optimal solution is NP-hard

Decision tree (classification)

Input: *m* features, 1 categorical/continuous target



Intuition: Find best (feature+threshold) splitting on each node Pros: easy interpretation (relevant features, ...), very fast prediction Cons: requires balanced classes, optimal solution is NP-hard

Families of Unsupervised learning

Aim: Without consulting the target/output (sometimes absent), finding the structure in the input data itself.

Useful in certain cases:

* No prior knowledge of how many/what classes is the data divided into.

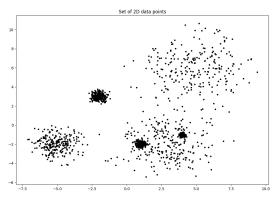
* Find out the most important features of the input data before feeding it to a machine.

Typical methods:

Clustering: k-means clustering, hierarchical clustering **Dimensionality reduction**: PCA, Autoencoder

Clustering illustration

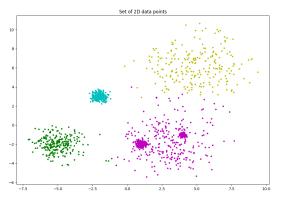
Clustering is partitioning into groups of close points Non trivial task: How many clusters do you identify?



Université Claude Bernard () Lyon 1

Clustering illustration

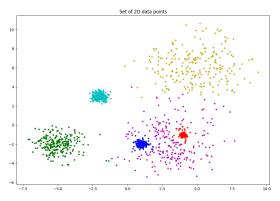
Clustering is partitioning into groups of close points Non trivial task: How many clusters do you identify?



Université Claude Bernard (()) Lyon 1

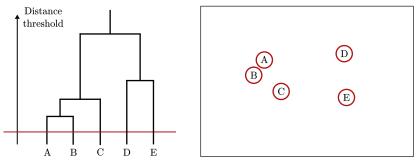
Clustering illustration

Clustering is partitioning into groups of close points Non trivial task: How many clusters do you identify?



Université Claude Bernard (()) Lyon 1

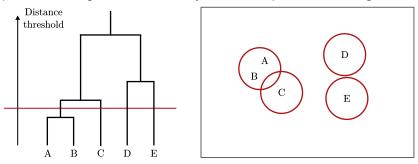
Input: metric between clusters, data points Explore clusters generated for every threshold, produce dendrogram



Pros: easy to interpret, good overview

Cons: need user-defined metric between clusters, threshold selection

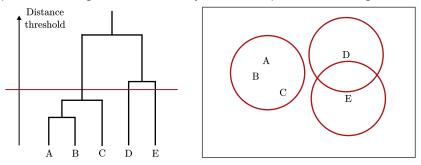
Input: metric between clusters, data points Explore clusters generated for every threshold, produce dendrogram



Pros: easy to interpret, good overview

Cons: need user-defined metric between clusters, threshold selection

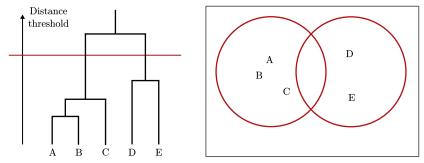
Input: metric between clusters, data points Explore clusters generated for every threshold, produce dendrogram



Pros: easy to interpret, good overview

Cons: need user-defined metric between clusters, threshold selection

Input: metric between clusters, data points Explore clusters generated for every threshold, produce dendrogram



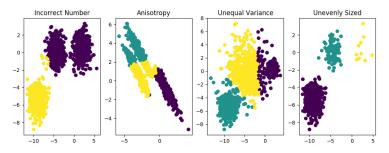
Pros: easy to interpret, good overview

Cons: need user-defined metric between clusters, threshold selection

LABORATOIRE DE CHIMIE ENS DE LYON

K-means clustering (clustering)

Input: number of clusters, distance between data points Find centroids that minimize the within-cluster sum-of-squares

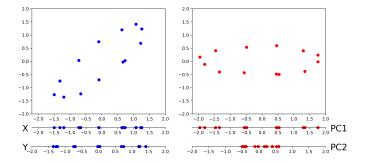


Pros: easy to understand Cons: stochastic, assume convex and isotropic, poor high-dimensionality support

Université Claude Bernard ((()))Lyon

PCA (dimensionality reduction)

CIII



Emphasize variation and bring out strong patterns in a dataset. Useful for finding important features in high dimensional dataset.

PCA (Wine chemistry)

Chrs

Feature No.	Composition		
1	Alcohol		
2	Malic acid		
3	Ash		
4	Alcalinity of ash		
5	Magnesium	Class Number of wines	
6	Total phenols		Number of wines
7	Flavanoids 1 59 Nonavanoid phenols 2 71 Proanthocyanins 2 71		
8			
9			
10	Color intensity	3 48	48
11	Hue		
12	OD280/OD315		
13	Proline		

https://archive.ics.uci.edu/ml/datasets/Wine, Accessed: 2019-11-29

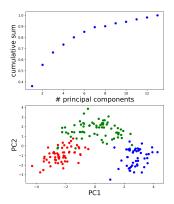
29

Université Claude Bernard () Lyon 1

PCA (Wine chemistry)

CNrs

Feature No.	Composition
1	Alcohol
2	Malic acid
3	Ash
4	Alcalinity of ash
5	Magnesium
6	Total phenols
7	Flavanoids
8	Nonavanoid phenols
9	Proanthocyanins
10	Color intensity
11	Hue
12	OD280/OD315
13	Proline



Université Claude Bernard (

Manifold (dimensionality reduction)

Non-linear dimensionality reduction:

Kernel PCA (use kernel instead of covariance) MDS (preserve distances) Isomap (preserve geodesic graph-based distances) Self-organizing maps (preserve topology)

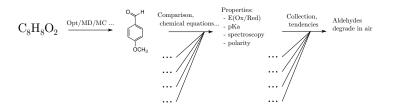
Université Claude Bernard (())Lyon 1

Application

Université Claude Bernard () Lyon 1

Categories of applications in chemistry

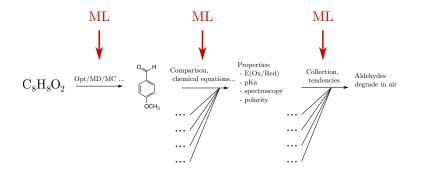
Substitute to computation algorithm, Direct property prediction, Data analysis



CINIS

Categories of applications in chemistry

Substitute to computation algorithm, Direct property prediction, Data analysis



Chrs

Application: Water/Platinum potential: Goal

DFT

500 ps of 20Å thick water layer on 3*3*4 Pt (111) slab \rightarrow 8 yrs on 100 processors

$\mathsf{M}\mathsf{M}$

$$E = E_{slab} + \sum_{wat} (E_{wat} + E_{slab/wat}) + \sum_{wat} \sum_{wat} (E_{wat/wat} + E_{slab/wat/wat}) + \sum_{wat} \sum_{wat} \sum_{wat} (...) + ...$$

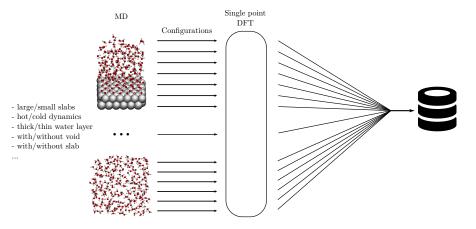
Neural Network

$$E = \sum_{atoms} E_{NN}(environement)
ightarrow Might just work 1$$

cnrs

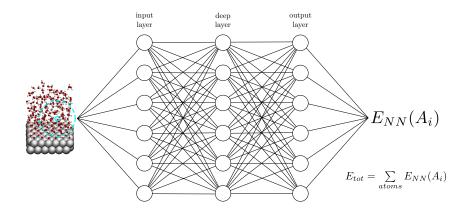
Step 1 Gathering data

CINIS



Université Claude Bernard () Lyon 1

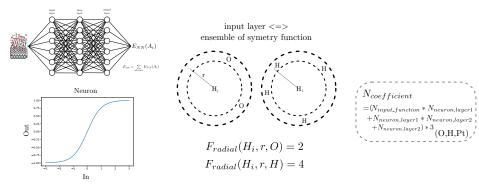
Step 2 Input and Training the Neural Network



Université Claude Bernard () Lyon 1

CINIS

Step 2 Input and Training the Neural Network



Artrith, N.; Behler, J. *Physical Review B* **2012**, *85*, DOI: 10.1103/PhysRevB.85.045439

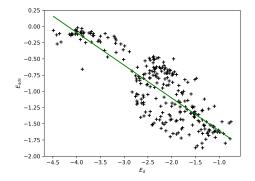
Université Claude Bernard (()) Lyon *

IVERSITÉ

The adsorption energy example

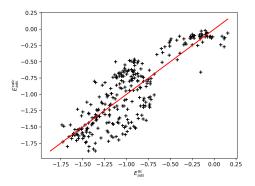
cnrs

ENS DE LYON



Usages in chemistry

Linear fit vs calculation



Only one descriptor (E_d) is not good enough! Even if it is based on a physical model (tight binding model)

/FRSITÉ

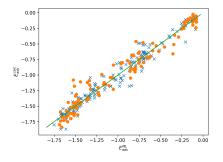
What if we consider more descriptors?

- f : Filling of a d-band
- E_d : Center of a d-band
- W_d : Width of a d-band
 - γ_1 : Skewness of a d-band
 - γ_2 : Kurtosis of a d-band
 - W : Work function
 - r₀ : Atomic radius
 - r_d : Spatial extent of d-orbitals
 - IE : Ionization potential
- EA : Electron affinity
- χ_0 : Pauling electronegativity
 - χ : Local Pauling electronegativity
- V_{ad}^2 : Interatomic d coupling matrix element

Université Claude Bernard ((Up))Lyon

Usages in chemistry

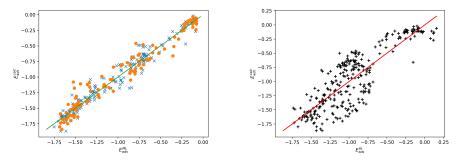
ML vs calculation



Ma, X. et al. *The Journal of Physical Chemistry Letters* **2015**, *6*, 3528–3533

Université Claude Bernard (()) Lyon 1

Usages in chemistry



ML significantly improves the fit by utilizing many descriptors. ML needs input with chemistry insight in it.

ML is a tool, not magic.

Ma, X. et al. *The Journal of Physical Chemistry Letters* **2015**, *6*, 3528–3533

Limitations

Domain of applicability

Models must be treated with care

Beware of **overfitting**:

Especially with high-dimensionality

Quality estimator: cross-validation is a good starting point

Learned models are meant for interpolation, not extrapolation:

Would require physico-chemical justification

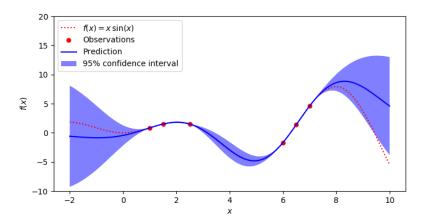
Training set should cover your subsequent usage

Limitations

Extrapolation illustration

CINS

ENS DE LYON



Université Claude Bernard () Lyon 1

41

Limitations

Checking assumptions

Theorem (No free lunch)

Any two optimization algorithms are equivalent when their performance is averaged across all possible problems

 \Rightarrow There cannot exist a machine learning algorithm that outperforms all other algorithms on every problem

 \Rightarrow A machine learning algorithm can be better than an other **only** under specific assumptions

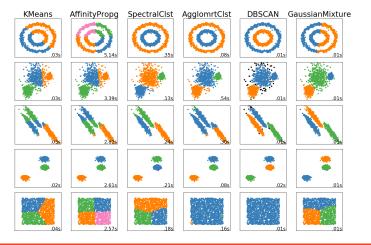
The moral being: compare and select the algorithm that fits the best your problem

Limitations

Clustering comparison

CINS

ENS DE LYON

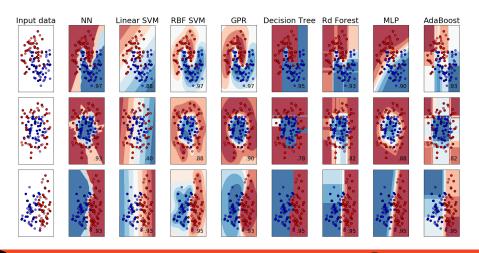


Université Claude Bernard () Lyon 1

Limitations

Classifiers comparison

CINIS



Université Claude Bernard () Lyon 1

44

Limitations

Another paradigm?

Third basic paradigm of machine learning: **reinforcement learning** Aim: apply best policy to minimize regrets, without initial expertise (learn policies on the fly)

Trade-off between exploration and exploitation

Applications: decision making, global minimization, ...

Algorithms: MCTS, genetic algorithms, ...

Grandmaster level in StarCraft II using multi-agent reinforcement learning.png

nature > articles > article

MENU ~ **nature**

Article Published: 30 October 2019

Grandmaster level in StarCraft II using multi-agent reinforcement learning

Oriol Vinyals ⊠, Igor Babuschkin, [...] David Silver ⊠

Nature **575**, 350–354(2019) Cite this article

36k Accesses | 1 Citations | 916 Altmetric | Metrics

Université Claude Bernard (() Lyon '

The Singularity is Near

