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Theory & Generalities General principle of machine learning

What is machine learning ?

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.”

-Tom M. Mitchell
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Theory & Generalities General principle of machine learning

What is machine learning ?

“Machine learning is glorified statistics”

“Machine learning is for Computer Science majors who couldn’t pass a
Statistics course.”

“Machine learning is Statistics minus any checking of models and
assumptions.”
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Theory & Generalities Classification of machine learning
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Theory & Generalities Classification of machine learning

Families of Supervised learning

Aim: finding a function (program) mapping features (input) to a
target (output)

Linguistic distinction based on target type:

Continuous target ⇒ Regression (e.g. Eads)
Categorical target ⇒ Classification (e.g. active or not, cat or
dog?)

Choose type of mapping function
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Theory & Generalities Classification of machine learning

We all have done it a little before
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Theory & Generalities Classification of machine learning

Linear model (regression)

Input: m features, 1 target
Features Target

Training
set

Model: m parameters w1,w2, . . . ,wm

m∑
i

wixi ≈ y

Pros: easily to understand
Cons: restricted to linear relations
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Theory & Generalities Classification of machine learning

Neural network (regression)

Simplest neural network

Output
Perceptron

Features

Activation
function f

Parameters: w1,w2, . . . ,wm, b

Equivalent to linear model if we use f : x 7→ x
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Theory & Generalities Classification of machine learning

Neural network (regression)

Simplest neural network

Output
Perceptron

Features

Activation
function f

Common activation functions:
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Theory & Generalities Classification of machine learning

Neural network (regression)

Input: m features, k targets

Output
layer

Input
layer

Hidden
layer(s)

Parameters: weights + bias of each neuron
Pros: fast to train, fast to predict, good fitting properties, trendy
Cons: black box, design tuning
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Theory & Generalities Classification of machine learning

Gaussian process regression (regression)

Assume fitted target is a Gaussian process with given smoothness, use
Bayesian inference to estimate probability distribution for prediction

Intuition: consider all possible fitted targets and extract probability
distribution
Pros: native prediction confidence estimator
Cons: kernel-dependant, computationally costly training
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Theory & Generalities Classification of machine learning

Support Vector Machine (classification)

Input: m features, 1 categorical target

Intuition: Find best splitting hyperplane
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Theory & Generalities Classification of machine learning

Support Vector Machine (classification)

Change the metric through a non-linear kernel → embedding into
higher-dimensional space where separation could be possible.

Pros: adapted for high-dimensionality
Cons: kernel-dependant, computationally costly training
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Theory & Generalities Classification of machine learning

Decision tree (classification)

Input: m features, 1 categorical/continuous target

Intuition: Find best (feature+threshold) splitting on each node
Pros: easy interpretation (relevant features, ...), very fast prediction
Cons: requires balanced classes, optimal solution is NP-hard
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Theory & Generalities Classification of machine learning

Families of Unsupervised learning

Aim: Without consulting the target/output (sometimes absent), finding
the structure in the input data itself.

Useful in certain cases:

* No prior knowledge of how many/what classes is the data divided
into.

* Find out the most important features of the input data before
feeding it to a machine.

Typical methods:

Clustering: k-means clustering, hierarchical clustering

Dimensionality reduction: PCA, Autoencoder
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Theory & Generalities Classification of machine learning

Clustering illustration

Clustering is partitioning into groups of close points
Non trivial task: How many clusters do you identify?
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Theory & Generalities Classification of machine learning

Hierarchical clustering (clustering)

Input: metric between clusters, data points
Explore clusters generated for every threshold, produce dendrogram

Pros: easy to interpret, good overview
Cons: need user-defined metric between clusters, threshold selection
required
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Theory & Generalities Classification of machine learning
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Theory & Generalities Classification of machine learning

K-means clustering (clustering)

Input: number of clusters, distance between data points
Find centroids that minimize the within-cluster sum-of-squares

Pros: easy to understand
Cons: stochastic, assume convex and isotropic, poor
high-dimensionality support
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Theory & Generalities Classification of machine learning

PCA (dimensionality reduction)

Emphasize variation and bring out strong patterns in a dataset.

Useful for finding important features in high dimensional dataset.
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Theory & Generalities Classification of machine learning

PCA (Wine chemistry)

Feature No. Composition
1 Alcohol
2 Malic acid
3 Ash
4 Alcalinity of ash
5 Magnesium
6 Total phenols
7 Flavanoids
8 Nonavanoid phenols
9 Proanthocyanins
10 Color intensity
11 Hue
12 OD280/OD315
13 Proline

Class Number of wines
1 59
2 71
3 48

https://archive.ics.uci.edu/ml/datasets/Wine, Accessed: 2019-11-29
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Theory & Generalities Classification of machine learning

PCA (Wine chemistry)
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Theory & Generalities Classification of machine learning

Manifold (dimensionality reduction)

Non-linear dimensionality reduction:

Kernel PCA (use kernel instead of covariance)
MDS (preserve distances)
Isomap (preserve geodesic graph-based distances)
Self-organizing maps (preserve topology)
. . .
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Application

Application
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Application Usages in chemistry

Categories of applications in chemistry

Substitute to computation algorithm, Direct property prediction, Data
analysis

C H O8 28
Opt/MD/MC ...

Properties:
 - E(Ox/Red)
 - pKa
 - spectroscopy
 - polarity

Comparison,
 chemical equations...

...

...

...

...

...

...

...

...

Aldehydes
degrade in air

Collection, 
 tendencies
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Application Usages in chemistry

Application: Water/Platinum potential: Goal

DFT

500 ps of 20Å thick water layer on 3*3*4 Pt (111) slab
→ 8 yrs on 100 processors

MM

E = Eslab +
∑
wat

(Ewat + Eslab/wat) +
∑
wat

∑
wat

(Ewat/wat + Eslab/wat/wat) +∑
wat

∑
wat

∑
wat

(...) + ...

Neural Network

E =
∑

atoms
ENN(environement) → Might just work !
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Application Usages in chemistry

Step 1 Gathering data

MD

...

Configurations

Single point
DFT

- large/small slabs
- hot/cold dynamics
- thick/thin water layer
- with/without void
- with/without slab
...
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Application Usages in chemistry

Step 2 Input and Training the Neural Network

output
layer

deep
layer

input
layer
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Application Usages in chemistry

Step 2 Input and Training the Neural Network

output
layer

deep
layer

input
layer

Neuron

input layer <=>
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Artrith, N.; Behler, J. Physical Review B 2012, 85, DOI:
10.1103/PhysRevB.85.045439
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Application Usages in chemistry

The adsorption energy example
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Application Usages in chemistry

Linear fit vs calculation

Only one descriptor (Ed) is not good enough!
Even if it is based on a physical model (tight binding model)
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Application Usages in chemistry

What if we consider more descriptors?

f : Filling of a d-band
Ed : Center of a d-band
Wd : Width of a d-band
γ1 : Skewness of a d-band
γ2 : Kurtosis of a d-band
W : Work function
r0 : Atomic radius
rd : Spatial extent of d-orbitals
IE : Ionization potential

EA : Electron affinity
χ0 : Pauling electronegativity
χ : Local Pauling electronegativity

V 2
ad : Interatomic d coupling matrix element
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Application Usages in chemistry

ML vs calculation

Ma, X. et al. The Journal of Physical Chemistry Letters 2015, 6,
3528–3533
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Application Usages in chemistry

ML vs calculation

ML significantly improves the fit by utilizing many descriptors.

ML needs input with chemistry insight in it.

ML is a tool, not magic.

Ma, X. et al. The Journal of Physical Chemistry Letters 2015, 6,
3528–3533
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Application Limitations

Domain of applicability

Models must be treated with care

Beware of overfitting:

Especially with high-dimensionality
Quality estimator: cross-validation is a good starting point

Learned models are meant for interpolation, not extrapolation:

Would require physico-chemical justification
Training set should cover your subsequent usage
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Application Limitations

Extrapolation illustration
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Application Limitations

Checking assumptions

Theorem (No free lunch)

Any two optimization algorithms are equivalent when their performance is
averaged across all possible problems

⇒ There cannot exist a machine learning algorithm that outperforms
all other algorithms on every problem

⇒ A machine learning algorithm can be better than an other only
under specific assumptions

The moral being: compare and select the algorithm that fits the best
your problem
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Application Limitations

Clustering comparison
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Application Limitations

Classifiers comparison
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Application Limitations

Another paradigm?

Third basic paradigm of machine learning: reinforcement learning

Aim: apply best policy to minimize regrets, without initial expertise
(learn policies on the fly)

Trade-off between exploration and exploitation

Applications: decision making, global minimization, ...

Algorithms: MCTS, genetic algorithms, ...
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Application Limitations

Grandmaster level in StarCraft II using multi-agent reinforcement
learning.png
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Application Limitations

The Singularity is Near
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