

1

Micro-solvation model and its applications

GU Qingyi

Group meeting

07/09/2018

Solvent effect describes the interaction between solvent and solute.

① "Long range interaction": electronic effect between polarized solute and solvent.

② "Short range interaction": direct intermolecular interaction, especially molecules with H bonds.

Implicit solvent

Explicit solvent

Free energy of solvation directly describes the **solvent effect.** $\Delta G_{sol} = G_{sol} \text{-} G_{gas}$

Solvent model --- continuum model

General idea: The solvent is taken as a homogeneous polarized continuum model.

 $\Delta G_{sol} = G_{cav} + G_{dis} + G_{rep} + G_{ele} + G_{tm}$

- G_{cav} : cavity formation energy (system energy \uparrow)
- G_{dis}: dispersion energy
- G_{rep}: repulsion energy
- G_{ele} : electrostatic energy (system energy \downarrow)
- G_{tm} : thermal fluctuation (system energy \downarrow)
- Advantages: cheap (fewer atoms)
- Drawbacks: no "short range interaction" included

Mostly used methods: COSMO \rightarrow PCM \rightarrow SMD

Neerav Kharche, Workshop on "Theory and Computation for Interface Science and Catalysis: Fundamentals, Research and Hands on Engagement using VASP" Nov. 3 – 7, 2014 J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093

Implicit solvent model

"Long range interaction"

3

Solvent model --- micro-solvation model

explicit solvent model

General idea: Using specific solvent molecules to interact with solutes.

Advantages: closest to the reality Drawbacks: time consuming, difficult to deal with bond breaking situation.

"Short range interaction"

Mostly used in: MD, MM, MC methods.

4

Neerav Kharche , Workshop on "Theory and Computation for Interface Science and Catalysis: Fundamentals, Research and Hands on Engagement using VASP" Nov. 3 – 7, 2014

How to use micro-solvation model

- The relatively strict way of adding solvent shell:
- 1. Surround solutes with solvent molecules, running molecular dynamics;
- 2. Pick some frames evenly time interval;
- 3. Select the range where solvent molecules around the solute, and make sure the solute has no exposed surface;
- 4. Optimize the cluster we select using DFT.

We can obtain the solute surrounded by a shell of solvent molecules, according to different time interval, we can have different structures of the solvent shell.

How to use micro-solvation model

The relatively simple way of adding solvent shell:

- 1. Using Packmol to generate water shell;
- 2. Using UFF to optimize the structure roughly and quickly;
- 3. Choose proper water shell (VMD);
- 4. Using empirical method (such as PM6) to optimized .
- 5. Delete some unimportant waters.
- 5. Optimize the whole system under DFT level.

Application of micro-solvation --- solvation free energy

V. S. Bryantsev, M. S. Diallo, W. A. Goddard III, J. Phys. Chem. B 2008, 112, 9709–9719

Application of micro-solvation --- pK_a calculation

How to use micro-solvation model in DFT

Room temperature	ΔG _{DFT} (PCM)/eV	$\Delta \mathbf{G}_{DFT}/eV$	$\Delta \mathbf{G}_{Exp}$ /eV (pka=3.69)
$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$	-1.33	-0.69	-0.653

- 1. Including entropy correction: S_{aq} = 0.54 \times S_{gas} + 2.86 \times 10^{-4} (eV·K^{-1})
- 2. We took experimental data 69.95 J/(mol·K) of water entropy considering water acts both as the role of solvent and product.

Building as many H bonds as possible in the functional group where the reaction occurs.

M. Namazian, S. Halvani, J. Chem. Thermodynamics, 2006, 38, 1495-1502 D. H. Wertz, J. Am. Chem. Soc. 1980, 102, 5316–5322

How to use micro-solvation model in DFT

Room temperature	ΔG _{DFT} (PCM)/eV	$\Delta \mathbf{G}_{DFT}/eV$	$\Delta \mathbf{G}_{Exp}/eV$ (pka=3.69)
$AECOOH + OH^{-} \rightarrow AECOO^{-} + H_2O$	-1.52	-0.55	-0.72
Room temperature	ΔG _{DFT} (PCM)/eV	$\Delta \mathbf{G}_{DFT}/eV$	ΔG_{Exp} /eV (pka=3.69)
BuCOOH + OH ⁻ → BuCOO ⁻ + H ₂ O	-1.28	-0.47	-0.649

M. Namazian, S. Halvani, J. Chem. Thermodynamics, 2006, 38, 1495-1502

- 1. Time and resources permitted, a strict micro-sovlation can be done with the help of MD;
- 2. In the calculation of solvation free energy, more solvent molecules give more accurate result;
- 3. In the pKa calculation, only the reactive functional group is needed to be surrounded by solvent molecules;
- 4. The combination of explicit and implicit method is needed in thermodynamic calculation.

Thanks for your attention!