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1. Introduction 

The subject matter of evolutionary game theory is the analysis of conflict and 
cooperation in animals and plants. Originally garne theory was developed as a 
theory of human strategic behavior based on an idealized picture of rational 
decision making. Evolutionary garne theory does not rely on rationality assumptions 
but on the idea that the Darwinian process of natural selection drives organisms 
towards the optimization of reproductive success. 

A seminal paper by Maynard Smith and Price (1973) is the starting point of 
evolutionary garne theory but there are some forerunners. Fisher (1930, 1958) 
already used a game-theoretic argument in his sex ratio theory. Hamilton (1967) 
in a related special context conceived the notion of an unbeatable strategy. An un- 
beatable strategy can be described as a symmetric equilibrium strategy of a 
symmetric game. Trivers (1971) referred to supergame theory when he introduced 
the concept of reciprocal altruism. However, the efforts of the forerunners remained 
isolated whereas the conceptual innovation by Maynard Smith and Price immediately 
generated a flow of successful elaborations and applications. The book of Maynard 
Smith (1982a) summarizes the results of the initial development of the field. In the 
beginning there was little interaction between biologists and game theorists but 
nowadays the concept of an evolutionarily stable strategy and its mathematical 
exploration has been integrated into the broader field of non-cooperative garne 
theory. An excellent overview concerning mathematical results is given by van 
Damme (1987) in Chapter 9 of his book on stability and perfection of Nash 
equilibria. Another overview paper with a similar orientation is due to Bomze 
(1986). However, it must be emphasized that the reader who is interested in 
substantial development, biological application, and conceptual discussion must 
turn to the biological literature which will be reviewed in Section 8. 

The interpretation of garne models in biology on the one hand and in economics 
and the social sciences on the other hand is fundamentally different. Therefore, it 
is necessary to clarify the conceptual background of evolutionary game theory. 
This will be done in the next section. We then proceed to introduce the mathematical 
definition of evolutionary stability for bimatrix garnes in Section 3; important 
properties of evolutionarily stable strategies will be discussed there. In Section 4 
we shall consider situations in which the members of a population are not involved 
in pairwise conflicts but in a global competition among all members of the 
population. Such situations are often described by the words "playing the field". 
The mathematical definition o evolutionary stability for models of this kind will 
be introduced and its properties will be discussed. Section 5 deals with the dynamic 
foundations of evolutionary stability; most of the results covered concern a simple 
system of asexual reproduction called replicator dynamics; some remarks will be 
made about dynamic population genetics models of sexual reproduction. Section 
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6 presents two-sided asymmetric conflicts. It is first shown how asymmetric conflicts 
can be imbedded in symmetric games. A class of game models with incomplete 
information will be examined in which animals can find themselves in different 
roles such as owner and intruder in a territorial conflict. If the roles on both sides 
are always different, then an evolutionarily stable strategy must be pure. Section 
7 is devoted to evolutionary stability in extensive games, problems arise with the 
usual normal form definition of an evolutionarily stable strategy. A concept which 
is better adapted to the extensive form will be defined and its properties will be 
discussed. In the last section some remarks will be made on applications and their 
impact on current biologicäl throught. 

2. Conceptual background 

In biology strategies are considered to be inherited programs which control the 
individual's behavior. Typically one looks at a population of members of the same 
species who interact generation after generation in game situations of the same 
type. Again and again the joint action of mutation and selection replaces strategies 
by others with a higher reproductive success. This dynamic process may or may 
not reach a stable equilibrium. Most of evolutionary garne theory focuses attention 
on those cases where stable equilibrium is reached. However, the dynamics of 
evolutionary processes in disequilibrium is also an active area of research (see 
Section 5). 

2.1. Evolutionary stability 

In their seminal paper John Maynard Smith and George R. Price (1973) introduced 
the notion of an evolutionarily stable strategy which has become the central 
equilibrium concept of evolutionary garne theory. Consider a population in which 
all members play the same strategy. Assume that in this population a mutant 
arises who plays a different strategy. Suppose that initially only a very small 
fraction of the population plays the mutant strategy. The strategy played by the 
vast majority of the population is stable against the mutant strategy if in this 
situation the mutant strategy has the lower reproductive success. This has the 
consequence that the mutant strategy is selected against and eventually vanishes 
from the population. A strategy is called evolutionarily stable if it is stable, in the 
sense just explained, against any mutant which may arise. 

A population state is monomorphic if every member uses the same strategy and 
polymorphic if more than one strategy is present. A mixed strategy has a monomor- 
phic and a polymorphic interpretation. On the one hand we may think of a 
monomorphic population state in which every individual plays this mixed strategy. 
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On the other hand a mixed strategy can also be interpreted as a description of a 
polymorphic population state in which only pure strategies occur; in this picture 
the probabilities of the mixed strategy describe the relative frequencies of the pure 
strategies. 

The explanation of evolutionary stability given above is monomorphic in the 
sense that it refers to the dynamic stability of a monomorphic population state 
against the invasion of mutants. A similar idea can be applied to a polymorphic 
population state described by a mixed strategy. In this polymorphic interpretation 
a potential mutant strategy is a pure strategy not represented in the population 
state. Stability of a polymorphic state requires not only stability against the invasion 
of mutants but also against small perturbations of the relative frequencies already 
present in the population. 

Biologists are reluctant to relinquish the intuitive concept of evolutionary 
stability to a general mathematical definition since they feel that the great variety 
of naturally occurring selection regimes require an openness with respect to 
formalization. Therefore they do not always use the term evolutionarily stable 
strategy in the exact sense of the definition prevailing in the formal literature 
[Maynard Smith and Price (1973), Maynard Smith (1982)]. This definition and its 
connections to the intuitive notion of evolutionary stability will be introduced in 
Sections 3 and 4. 

2.2. The Darwinian view of natural selection 

Darwin's theory of natural selection is the basis of evolutionary game theory. A 
common misunderstanding of the Darwinian view is that natural selection optimizes 
the welfare of the species. In the past even eminent biologists explained phenomena 
of animal interaction by vaguely defined benefits to the species. It is not clear what 
the welfare of the species should be. Is it the number of individuals, the total 
biomass, or the expected survival of the species in the long run? Even if a reasonable 
measure of this type could be defined it is not clear how the interaction among 
species should result in its optimization. 

The dynamics of selection among individuals within the same species is much 
quicker than the process which creates new species and eliminates others. This is 
due to the fact that the life span of an individual is negligibly short in comparison 
to that of the species. An adiabatic approximation seems to be justified. For the 
purpose of the investigation of species interaction equilibrium within the species 
can be assumed to prevail. This shows that the process of individual selection 
within the species is the more basic one which must be fully understood before 
the effects of species interaction can be explored. Today most biologists agree that 
explanations on the basis of individual selection among members of the same 
species are much more fruitful than arguments relying on species benefits [Maynard 
Smith (1976)]. 
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In the 1960s a theory of group selection was proposed [(Wynne-Edwards (1962)] 
which maintains that evolution may favor the development of traits like restraint 
in reproduction which are favorable for a local group within a structured 
population even if they diminish the reproductive success of the individual. It must 
be emphasized that theoretical explanations of group selection can be constructed 
on the basis of individual selection. Inasfar as such explanations are offered the 
idea of group selection is not in contradiction to the usual Darwinian view. 
However, the debate on group selection has shown that extreme parameter 
constellations are needed in theoretical models in order to produce the phenomenon 
[Levins (1970), Boorman and Levitt (1972, 1973), Maynard Smith (1976), see also 
Grafen (1984) for recent discussions on the term group selection]. 

Only very few empirical cases of group selection are documented in the literature, 
e.g. the case of myxomatosis (a disease of rabbits in Australia). A quicker growth 
rate within the infected rabbit is advantageous for the individual parasite but bad 
for the group of parasites in the same animal since a shorter life span of the rabbit 
decreases the opportunities for infection of other rabbits [Maynard Smith (1989)]. 

The species and the group are too high levels of aggregation for the study of 
eonflict in animals and plants. It is more fruitful to look at the individual as the 
unit of natural selection. Often an even more reductionist view is proposed in the 
literature; the gene rather than the individual is looked upon as the basic unit of 
natural selection [e.g. Williams (1966), Dawkins (1976, 1982)]. It must be admitted 
that some phenomena require an explanation in terms of genes which pursue their 
own interest to the disadvantage of the individual. For  example, a gene may find 
a way to influence the process of meiosis in its favor; this process determines which 
of two genes of a pair of chromosomes in a patent is contributed to an egg or 
sperm. However, in the absence of strong hints in this direction one usually does 
not look for such effects in the explanation of morphological and behavioral traits 
in animals or plants. The researeh experience shows that the individual as the level 
of aggregation is a reasonable simplification. The significance of morphological 
and behavioral traits for the survival of the individual exerts strong pressure against 
disfunctional results of gene competition within the individual. 

2.3. Payoffs 

Payoffs in biological garnes are in terms of fitness, a measure of reproductive 
success. In many cases the fitness of  an individual can be describd as the expected 
number of offspring. However, it is sometimes necessary to use a more refined 
definition of fitness. For  example, in models for the determination of the sex ratio 
among offspring it is necessary to look more than one generation ahead and to 
count grandchildren instead of children [Fisher (1958), Maynard Smith (1982a)]. 
In models involving decisions on whether offspring should be born earlier or later 
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in the lifetime of the mother it may be necessary to weigh earlier offspring more 
heavily than later ones. Under conditions of externe variations of the environment 
which affect all individuals with the same strategy in the same wäy the expected 
logarithm of the number of offspring may be a better definition of fitness than the 
usual one [Gillespie (1977)]. 

The significance of the fitness concept lies in its ability to connect short run 
reproductive success with long run equilibrium properties. Darwinian theory is 
not tautological. It does not say that those survive who survive. Instead of this it 
derives the structure of long-run equilibrium from the way in which short-term 
reproductive success measured by fitness depends on the environment and the 
population state. However, as it has been explained above, different types of 
processes of natural selection may require different ways of making the intuitive 
concept of reproductive success more precise. 

2.4. Garne theory and population 9enetics 

Biologists speak of frequency-dependent selection if the fitness of a type depends 
on the frequency distribution over types in the population. This does not necessarily 
mean that several types must be present at equilibrium. Frequency-dependent 
selection has been discussed in the biological literature long before the rise of 
evolutionary garne theory. Game-theoretic problems in biology can be looked 
upon as topics of frequency-dependent selection and therefore some biologists feel 
that garne theory does not add anything new to population genetics. However, it 
must be emphasized that the typical population genetics treatment of frequency- 
dependent selection focuses on the genetic mechanism of inheritance and avoids 
the description of complex strategic interaction. Contrary to this the models of 
evolutionary garne theory ignore the intricacies of genetic mechanisms and focus 
on the structure of strategic interaction. 

The empirical investigator who wants to model strategic phenomena in nature 
usually has little information on the exact way in which the relevant traits are 
inherited. Therefore game models are better adapted to the needs of empirical 
research in sociobiology and behavioral ecology than dynamic models in population 
genetics theory. Of course the treatment of problems in the foundation of 
evolutionary garne theory may require a basis in population genetics. However, 
in applications it is orten preferable to ignore foundational problems even if they 
are not yet completely solved. 

In biology the word genotype refers to a description of the exact genetic 
structure of an individual whereas the term phenotype is used for the system of 
morphological and behavioral traits of an individual. Many genotypes may result in 
the same phenotype. The models of evolutionary game theory are called phenotypical 
since they focus on phenotypes rather than genotypes. 
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2.5. Players 

The biological interpretation of game situations emphasizes strategies rather than 
players. If one looks at strategic interactions within a population it is important 
to know the relative frequencies of actions, it is less interesting to know which 
member plays which strategy. Therefore, the question who are the players is rarely 
discussed in the biological literature. 

It seems to be adequate to think of a "player" as a randomly selected animal. 
There are two ways of elaborating this idea. Suppose that there are N animals in 
the population. We imagine that the game is played by N players who are randomly 
assigned to the N animals. Each player has equal chances to become each one of 
the N animals. We call this the "many-player interpretation". 

Another interpretation is based on the idea that there are only a small number 
of players, for example 2, which are assigned to the two roles (e.g. owner and 
intruder) in a conflict at random. Both have the same chance to be in each of both 
roles. Moreover, there may be a universe of possible conflicts from which one is 
chosen with the appropriate probability. There may be incomplete information in 
the sense that the players do not know exactly which conflict has been selected 
when they have to make their decision. We call this the "few-player interpreta- 
tion". 

The few-player interpretation can be extended to conflicts involving more than 
two animals. The number of animals in the conflict may even vary between certain 
limits. In such cases the number n of players is the maximal number of animals 
involved in a conflict and in any particular conflict involving m animals m players 
are chosen at random and randomly assigned to the animals. 

2.6. Symmetry 

In principle evolutionary game theory deals only with fully symmetric games. 
Asymmetric conflicts are imbedded in symmetric games where each player has the 
same chance to be on each side of the conflict. Strategies are programs for any 
conceivable situation. Therefore one does not have to distinguish between different 
types of players. One might think that it is necessary to distinguish, for example, 
between male and female strategies. But apart from the exceptional case of 
sex-linked inheritance, one can say that males carry the genetic information for 
female behavior and vice versa. 

The mathematical definition of evolutionary stability refers to symmetric garnes 
only. Since asymmetric conflicts can be imbedded in symmetric garnes, this is no 
obstacle for the treatment of asymmetric conflicts. In the biological literature we 
often find a direct treatment of asymmetric conflicts without any reference to the sym- 
metrization which is implicitly used in the application of the notion of evolutionary 
stability to such situations. 
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3. Symmetric two-person garnes 

3.1. Definitions and notation 

A symmetric two-person game G = (S, E) consists of a finite nonempty pure strategy 
set S and a payofffunction E which assigns a real number E(s, t) to every pair (s, t) 
of pure strategies in S. The number E(s, t) is interpreted as the payoff obtained by 
a player who plays s against an opponent who plays t. 

A mixed strategy q is a probability distribution over S. The probability assigned 
to a pure strategy s is denoted by q(s). The set of all mixed strategies is denoted 
by Q. The payoff function E is extended in the usual way to pairs of mixed strategies 

(P, q). 
A best reply to q is a strategy r which maximizes E(., q) over Q. An equilibrium 

point is a pair (p, q) with the property that p and q are best replies to each other. 
A symmetrie equilibrium point is an equilibrium point of the form (p, p). 

A strategy r is a striet best reply to a strategy q if it is the only best reply to q. 
A strict best reply must be a pure strategy. An equilibium point (p, q) is ¢alled 
strict if p and q are strict best replies to each other. 

3.2. The Hawk-Dove garne 

Figure 1 represents a version of the famous Hawk-Dove  game [Maynard Smith 
and Price (1973)]. The words Hawk and Dove refer to the character of the two 
strategies H and D and have political rather than biological connotations. The 
garne describes a conflict between two animals of the same species who are 

H D 

½(v-w) v 

½ (v -w)  

1 o gv 

v 
t äv  

Figure 1. The Hawk-Dove game 
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competing for a resource, for example a piece of food. Strategy H has the meaning 
of serious aggression, whereas D indicates peaceful behavior. If both choose H, 
the animals fight until one of them is seriously injured. Both contestants have the 
same probability to win the fight. The damage W caused by a serious wound is 
assumed to be higher than the value V of the resource. If only one of the animals 
plays the aggressive strategy H, this animal will win the resource and the other 
will flee. If both choose D, then some kind of unspecified random mechanism, for 
example a ritual fight, decides who gains the resource. Again, both players have 
the same chance to win. The numbers V and Ware  measured as changes in fitness. 
This is the usual interpretation of payoffs in biological games. 
The game has two strict equilibrium points, namely (H, D) and (D, H), and one 
equilibrium point in mixed strategies, namely (r, r) with r(H)= V/W. 

Only the symmetric equilibrium point is biologically meaningful, since the 
animals do not have labels 1 and 2. They cannot choose strategies dependent on 
the player number. Of course, one could think of correlated equilibria [Aumann 
(1974)], and something similar is actually done in the biological literature [Maynard 
Smith and Parker (1976), Hammerstein (1981)]. Random events like "being there 
first" which have no influence on payoffs may be used to coordinate the actions 
of two opponents. However, in a biological garne the correlating random event 
should be modelled explicitly, since it is an important part of the description of 
the phenomenon. 

3.3. Evolutionary stability 

Consider a large population in which a symmetric two-person game G = (S, E) is 
played by randomly matched pairs of animals generation after generation. Let p 
be the strategy played by the vast majority of the population, and let r be the 
strategy of a mutant present in a small frequency. Both p and r can be pure or 
mixed. For the sake of simplicity we assume non-overlapping generations in the 
sense that animals live only for one reproductive season. This permits us to model 
the selection process as a difference equation. 

Let x, be the relative frequency of the mutant in season e. The mean strategy qt 
of the population at time t is given by 

qt = (1 - x,)p + x,r. 

Total fitness is determined as the sum of a basic fitness F and the payoff in the 
game. The mutant r has the total fitness F + E(r, qt) and the majority strategy p 
has the total fitness F + E(p, qt). The biological meaning of fitness is expressed by 
the mathematical assumption that the growth factors xt+ x/Xt and (1 - xt+ x)/(1 - x~) 
of the mutant subpopulation and the majority are proportional with the same 
proportionality factor to total fitness of r and p, respectively. This yields the 
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following difference equation: 

F + E(r, qt) 
X t +  1 - -  Xt, for t = 0, 1, 2 , . . .  (1) 

F + E(qt, qt) 

This proeess of inher i tance  describes an asexual popula t ion  with r andomly  matched  
eonfliets. We want  to examine under  what  condit ions x t converges to 0 for t--* oo. 
Fo r  this purpose,  we look at the difference x t - x t +  1: 

E(qt, qt) -- E(r, qt) 
X t - - X t + l  -- Xt" 

F + E(q t, qt) 

Obvious ly  xt+ 1 is smaller than  x t if and only if the n u m e r a t o r  of  the fract ion on 
the r ight -hand side is positive. We have 

E(qt, qt) = (1 -- xt)E(p, q,) + xtE(r,  q,) 

and therefore 

E(qt, qt) - E(r, qt) = (1 - x t ) [E(p  , qt) -- E(r, qt)]. 

This shows that  xt+ 1 < x t holds if and only if the expression in square brackets  
on the r ight -hand side is positive, or equivalently if and only if the following 
inequali ty holds: 

(1 - xt) lE(p, p) - E(r, p)] + xt[E(p,  r) -- E(r, r)] > 0. (2) 

It  can also be seen tha t  xt+ 1 > xt holds i f and  only i f the opposi te  inequali ty is true. 
Assume E(p, p ) <  E(r, p). Then  the process (1) does not  converge to zero, since 

for sufficiently small x t the expression on the left-hand side of inequali ty (2) is 
negative. 

Now,  assume E(p, p) > E(r, p). Then  for sufficiently small x t the left-hand side of 
(2) is positive. This shows that  an ~ > 0 exists such that  for Xo < e the process (1) 
converges to zero. 

Now,  consider the case E ( p , p ) =  E(r,p). In this case the process (1) converges to 
zero if and only if E(p, r) > E(r, r). 

We say that  p is stable against  r i f for  all sufficiently small positive x o the process 
(1) converges to zero. W h a t  are the propert ies  o f a  strategy p which is stable against  
every other  strategy r? O u t  case distinction shows that  p is stable against  every 
other  s trategy r if and only if it is an evolut ionari ly stable strategy in the sense of 
the following definition: 

Definition 1. An evolut ionari ly  stable s t ra tegy  p of a symmetr ie  two-person  garne 
G = (S, E) is a (pure or  mixed) strategy for G which satisfies the following two 
condit ions (a) and (b): 

(a) Equil ibrium condition: (p, p) is an equil ibrium point. 
(b) Stabi l i ty  condition: Every best reply r to p which is different f rom p satisfies 
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the following inequality: 

E(p, r) > E(r, r) (3) 

The abbreviation ESS is commonly used for the term evolutionarily stable 
strategy. 

A best reply to p which is different from p is called an alternative best reply to 
p. Since the stability condition only concerns alternative best replies, p is always 
evolutionarily stable if (p, p) is a striet equilibrium point. 

Vickers and Cannings (1987) have shown that for every evolutionarily stable 
strategy p an e exists such that inequality (2) holds for 0 < x~ < e and every r ~ p. 
Such a bound e is called a uniform invasion barrier. 

Result 1. For  all r different from p the process (1) converges to zero for all 
sufficiently small Xo if and only if p is an evolutionarily stable strategy. Moreover, 
for every evolutionarily stable strategy a uniform invasion barr iere can be found 
with the property that process (1) converges to zero fo all 0 < Xo < e for all r 
different from p. 

The uniformity result of Vickers and Cannings (1987) holds for finite symmetric 
two-person garnes only. They present a counterexample with a countable infinity 
of strategies. 

Comment. Result 1 shows that at least one plausible selection process justifies 
Definition 1 as an asymptotically stable dynamie equilibrium. However, it must 
be emphasized that this process is only one of many possible selection models, 
some of which will be discussed in Section 5. 

Process (1) relates to the monomorphic interpretation of evolutionary stability 
which looks at an equilibrium state where all members of the population use the 
same strategy. This monomorphic picture seems to be adequate for a wide range 
of biological applications. In Section 5 we shall also discuss a polymorphic 
justification of Definition 1. 

3.4. Properties of evolutionarily stable strate9ies 

An evolutionarily stable strategy may not exist for symmetric two-person games 
with more than two pure strategies. The standard example is the Rock-Scissors-  
Paper garne [Maynard Smith (1982a)]. This lack of universal existence is no 
weakness of the concept in view of its interpretation as a stable equilibrium of a 
dynamic pocess. Dynamic systems do not always have stable equilibria. 

A symmetrie two-person game may have more than orte evolutionarily stable 
strategy. This potential multiplicity of equilibria is no drawback of the concept, 
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again in view of its dynamic interpretation. The history of the dynamic system 
decides which stable equilibrium is eached, if any equilibrium is reached at all. 

The carrier of a mixed strategy p is the set of pure strategies s with p(s) > 0. The 
extended carrier of p contains in addition to this all pure best replies to p. The 
following two results are essentially due to Haigh (1975). 

Result 2. Let p be an ESS of G = (S, E). Then G has no ESS r whose carrier is 
contained in the extended carrier ofp. [See Lemma 9.2.4. in van Damme (1987).] 

Result 3. A symmetrlc two-person game G = (S, E) has at most finitely many 
evolutionarily stable strategies. 

It can be seen easily that Result 2 is due to the fact that r would violate the 
stability condition (3) for p. Result 3 is an immediate consequence of Result 2, 
since a finite garne has only finitely many carriers. 

An ESS p is called regular if p(s)> 0 holds for every pure best reply s to p. In 
other words, p is regular if its extended carrier coincides with its carrier. One meets 
irregular ESSs only exceptionally. Therefore, the special properties of regular ESSs 
are of considerable interest. 

Regularity is connected to another property called essentiality. Roughly speaking, 
an ESS p of G = (S,E) is essential if for every payoff function E+ close to E the 
game G+ = (S,E+) has an ESS p+ near to p. In order to make this explanation 
more precise we define a distance of E and E+ as the maximum of ]E(s, t) -- E+(s, t)] 
over all s and t in S. Similarly, we define a distance of p and p+ as the maximum 
of ]p(s)-p+(s)l over all s in S. 

An ESS p of G = (S,E) is essential if the following condition is satisfied. For  
every e > 0 we can find a 6 > 0 such that every symmetrie two-person game 
G + = (S, E +) with the property that the distance between E and E + is smaller than 
Õ has an ESS p+ whose distance from p is smaller than e. The ESS p is strongly 
essential i fnot  only an ESS but a regular ESS p+ of this kind can be found for G+. 

The definition of essentiality is analogous to the definition of essentiality for 
equilibrium points introduced by Wu Wen-tsün and Jian Jia-he (1962). 

Result 4. If p is a regular ESS of G = (S, E) then p is a strongly essential ESS of 
G. [-See Selten (1983), Lemma 9.] 

An irregular ESS need not be essential. Examples can be found in the literature 
[Selten (1983), van Damme (1987)-]. 

A symmetrie equilibrium strategy is a strategy p with the property that (p,p) is 
an equilibrium point. Haigh (1975) has derived a useful criterion which permits 
to decide whether a symmetrie equilibrium strategy is a regular ESS. In order to 
express this criterion we need some further notation. Consider a symmetrie 
equilibrium strategy p and let sl . . . . .  sù be the pure strategies in the carrier of p. 
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Define 

a¢j = E(sl, s j) (4) 

for i,j = 1 . . . . .  n. The payoffs alj form an n x n matrix: 

A = (a,j). (5) 

We call this matrix the carier matrix of p even if it does not only depend on p 
but also on the numbering of the pure strategies in the carrier. The definition must 
be understood relative to a fixed numbering. 

Ler D = (dij) be the following n x (n - 1) matrix with 

f 1, f o r i = j < n ,  
d~j= - 1 ,  f o r i = n ,  

0, else. 

We say that Haigh's criterion is satisfied for p if the matrix D r A D  is negative 
quasi-definite. The upper index T indicates transposition. Whether Haigh's criterion 
is satisfied or not does not depend on the numbering of the pure strategies in the 
carrier. 

Result 5. Ler p be a symmetric equilibrium strategy of G = (S, E) whose carrier 
coincides with its extended carrier. Then p is a regular ESS if and only if it satisfies 
Haigh's criterion. 

The notion of an ESS can be connected to various refinement properties for 
equilibrium points. Discussions of these connections can be found in Bomze (1986) 
and van Damme (1987). Here, we mention only the following result: 

Result 6. Let p be a regular ESS p of G = (S, E). Then (p, p) is a proper and strictly 
perfect equilibrium point of G. [Bomze (1986)]. 

4. Playing the field 

In biological applications one orten meets situations in which the members of a 
population are not involved in pairwise conflicts but in a global competition among 
all members of the population. Such situations are orten described as "playing the 
field". Hamilton and May (1977) modelled a population of plants which had to 
decide on the fraction of seeds dropped nearby. The other seeds are equipped with 
an umbrella-like organ called pappus and are blown away by the wind. Fitness 
is the expected number of seeds which succeed to grow up to a plant. The mortality 
of seeds blown away with the wind is higher than that of seeds dropped nearby, 
but in view of the increased competition among the plant's own offspring, it is 
disadvantageous to drop too many seeds in the immediate neighborhood. In this 
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example every plant competes with all other plants in the population. It is not 
possible to isolate pairwise interactions. 

In the following we shall explain the structure of playing-the-field models. 
Consider a population whose members have to select a strategy p out of a strategy 
set P. Typically P is a convex subset of an Euclidean space. In special cases P 
may be the set of mixed strategies in a finite symmetric game. In many applications, 
like the one mentioned above, P is a biological parameter to be chosen by the 
members of the population. 

For  the purpose of investigating monomorphic stability of a strategy p we have 
to look at bimorphic population states in which a mutant q is represented with 
a small relative frequency e whereas strategy p is represented with the frequency 
1 -  e. Formally a bimorphic population state z can be described as a triple 
z = (p, q, e) with the interpretation that in the population p is used with probability 
1 - e  and q is used with probability e. In order to describe the structure of a 
playing-the-field model we introduce the notion of a population garne. 

Definition 2. A population garne G = (P, E) consists of a strategy set P and a payoff 
function E with the following properties: 

(i) P is a nonempty compact convex subset of a Euclidean space. 
(ii) The payoff function E(r;p,q,e) is defined for all r~P and all bimorphic 

population states (p,q,e) with p,q~P and 0 ~< e ~< 1. 
(iii) The payoff function E has the property that E(r; p, q, O) does not depend on q. 

It is convenient to use the notation E(r, p) for E(r; p, q, 0). We call E( ' , ' )  the short 
payofffunction of the population garne G = (P, E). 

Regardless of q all triples (p, q, 0) describe the same bimorphic population state 
where the whole population plays p. Therefore, condition (iii) must be imposed on E. 

A strategy r is a best reply to p if it maximizes E(.,p) over P; if r is the only 
strategy in P with this property, r is called a strict best reply to p. A strategy p is 
a (strict) symmetric equilibrium strategy of G = (P, E) if it is a (strict) best reply to 
itself. 

The book by Maynard Smith (1982a) offers the following definition of evolutio- 
nary stability suggested by Hammerstein. 

Definition 3. A strategy p for G = (P, E) is evolutionarily stable if the following 
two conditions are satisfied: 

(a) Equilibrium condition: p is a best reply to p. 
(b) Stability condition: For every best reply q to p which is different from p an 

e« > 0 exists such that the inequality 

E(p; p, q, e) > E(q; p, q, e) (6) 

holds for 0 < e < eq. 
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In this definition the invasion barrier e« depends on q. This permits the possibility 
that eq becomes arbitrarily small as q approaches the ESS p. One may argue that 
therefore the definition of evolutionary stability given above is too weak. The 
following definition requires a stronger stability property. 

Definition 4. An ESS p of G = (P, E) is called an ESS with uniform invasion barrier 
if an eo > 0 exists such that (6) holds for all q e P  with q ~ p for 0 < e < Co. 

It can be seen immediately that a strict symmetric equilibrium strategy is 
evolutionarily stable, if E is continuous in e everywhere. Unfortunately, it is not 
necessarily true that a strict symmetric equilibrium strategy is an ESS with uniform 
invasion barrier even if E has strong differentiability properties [Crawford (1990a, b)]. 

Population garnes may have special properties present in some but not all 
applications. One such property which we call state substitutability can be expressed 
as follows: 

E(r; p, q, ~) -~ E(r, (1 - e)p + eq), (7) 

for r ,p ,q~P and 0~<e~< 1. 
Under the condition of state substitutability the population garne is adequately 

described by the strategy space P and the short payoff function E(., .). However, 
stare substitutability cannot be expected if strategies are vectors of biological 
parameters like times spent in mate searching, foraging, or hiding. Stare substituta- 
bility may be present in examples where P is the set of all mixed strategies arising 
from a finite set of pure strategies. In such cases it is natural to assume that E(r, q) 
is a linear function of the first component r, hut even then it is not necessarily 
true that E is linear in the second component q. Animal conflicts involving many 
participants may easily lead to payoff functions which are high-order polynomials 
in the probabilities for pure strategies. Therefore, the following result obtained by 
Crawford (1990a, b) is of importance. 

Result 7. Let G = (P, E) be a population game with the following properties: 

(i) P is the convex hull of finitely many points (the pure strategies). 
(ii) State substitutability holds for E. 

(iii) E is linear in the first component. 

Then an ESS p is an ESS with uniform invasion barrier if a neighborhood U of 
p exists such that for every r e P  the payoff function E(r, q) is continuous in q within 
U. Moreover, under the same conditions a strict symmetric equilibrium strategy 
is an ESS of G. 

A result similar to the first part of Result 7 is implied by Corollary 39 in Bomze 
and Pötscher (1989). Many other useful mathematical findings concerning playing- 
the-field models can be found in this book. 
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We now turn our attention to population games without state substitutability 
and without linearity assumptions on the payoff function. We are interested in 
the question under which condition a strict symmetric equilibrium strategy is an 
ESS with uniform invasion barrier. As far as we know, this important question 
has not been investigated in the literature. Unfortunately, our attempt to fill this 
gap will require some technical detail. 

Let p be a strict symmetric equilibrium strategy of G = (P, E). In order to facilitate 
the statement of continuity and differentiability conditions to be imposed on E, 
we define a deviation payoff function F(tx ,  t2, r, e): 

F(t l ,  t2, r, e) = E((1 - t 1)p + t lr; p, (1 -- t2)P + t2r, e), (8) 

for 0~<t~~< 1 ( i= 1,2) and 0~<e~< 1. 
The deviation payoff function is a convenient tool for the examination of the 

question what happens if the mutant strategy r is shifted along the line (1 - t)p + tr 
in the direction of p. Consider a mutant present in the relative frequency e whose 
strategy is (1 - t ) p  + tr. Its payoff in this situation is F(t, t, r, e). The payoff for the 
strategy p is F(0, t, r, ~). Define 

D(t, r, ~) = F(O, t, r, e) - F(t, t, r, ~). (9) 

The intuitive significance of (9) lies in the fact that the mutant is selected against 
if and only if the payoff difference D(t, r, ~) is positive. 

We shall use the symbols Fi and Fij with i, j = 1, 2 in order to denote the first 
and second derivatives with respect to t~ and t2. The indices 1 and 2 indicate 
differentiation with respect to ta and t2, respectively. 

Result 8. Let G = (P, E) be a population garne and let p be a strict symmetric 
equilibrium strategy for G. Assume that the following conditions (i) and (ii) are 
satisfied for the deviation payoff function F defined by (8): 

(i) The deviation payoff function F is twice differentiable with respect to tl and 
t2. Moreover, F and its first and second derivatives with respect to tx and t 2 are 
jointly continuous in tl, t2, r, e. 

(il) A closed subset R of the border of the strategy set P exists (possibly the 
whole border) with the following properties (a) and (b): 

(a) Every q ~ P  permits a representation of the form 

q = ( l - - t ) p + t r ,  wi threR.  

(b) The set R has two closed subsets Ro and R 1 whose union is R, such that 
conditions (10) and (11) are satisfied: 

d2E((1 -dt 2t)p + tr, p) t=o < 0 for r ~ R  o, (10) 
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dE((1 - t)p + tr, p) 
< - a  for r e R  i,  (11) 

dt  t=o 

where Œ > is a constant  which does not  depend on r. 

Under  these assumpt ions  p is an ESS with uniform invasion barrier. 

Proof.  Consider  the first and second derivatives D'(t,  r, e) and D"(t,  r, e) respectively 
of D(t, r, e) with respect to t: 

D'(t, r, e) = F2(0, t, r, e) - E l ( t ,  t, r, e) - F2( t  , t, r, e), (12) 

D"(t,  r, e) = F 2 2 ( 0  , t, r, e) - Faa(t ,  t, r, e) - F t 2(t,  t, r, e) (13) 

-- F21(t, t, r, e) - F22(t, t, r, e). 

In view of (iii) in Definit ion 2 we have 

F(t i ,  0, r, e) = E((1 -- t l )  p + t ir;  p, p, e) -- E((1 - t l )  p + t l  r, p). (14) 

Since p is a strict symmetr ic  equil ibrium strategy, this shows that  we must  have 
Fi(0,  0, r, e)~< 0. Consequently,  in view of (12) we can conclude 

D'(O,r,e)>~O for 0 ~ e ~ <  1. (15) 

Equa t ion  (13) yields 

D"(O, r,e) = - Fl1(0, 0, r, e) - 2Fi2(O,O,r , e  ). 

In view of (8) we have F2(ti ,  t2, r, 0) = 0. This yields F 12(0, 0, r, 0) = 0. With  the help 
of (iii) in the definition of a popula t ion  game we can conclude 

D"(0, r, 0) d2E((1 - t)p + tr, p) 
= > 0, for r e R  o. (16) 

Similarly, (11) together  with (12) yields 

D'(0, r, 0) = dE((1 - t)p + tr, p) 
dt  ,=0 > a '  for r e R  1. (17) 

Define 

f ( # ) =  

g (# )=  

h(~)= 

min D"(t, r, e), 

O~<e~<t~ 
reRo 

min D'(t,  r, O, 

O~e~<~ 
reR1 

min D(t, r, O. 

r e r  
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The functions f(/t), g(/t), and h(/t) are continuous; this follows from the fact that 
the set of all triples (t, r, 5) over which the minimization is extended is compact, 
and that the function to be minimized is continuous by assumption in all three 
cases. We have f(0) > 0 in view of (16), and g(0) > 0 in view of (17). Moreover, we 
have 

D(t, r, O) = E(p, p) - E((1 - t)p + tr, p) 

and therefore h(#)> 0 for sufficiently small / t  > 0, since p is a strict equilibrium 
point. Since f ,  g, and h a r e  continuous, a number/ to > 0 can be found such that 
for 0 ~< t ~</to and 0 ~< e ~</to we have 

D"(t,r,e)>O, for r~Ro, 

D'(t,r,~)>O, for r~R1, 

and for/to ~< t ~< 1 and 0 ~< e <,% #o the following inequality holds: 

D(t, r, e) > 0 

Together with (15) the last three inequalities show that / to is a uniform invasion 
barrier. [] 

Remarks. Suppose that the strategy set P is one-dimensional. Then P has only 
two border points r a and r z. Consider the case that E(q, p) is differentiable with 
respect to q at (p, p). Then (10) is nothing else than the usual sufficient second-order 
condition for a maximum of E(q, p) at q = p. It sometimes happens in applications 
[Selten and Shmida (1991)] that E(q,p) has positive left derivative and negative 
right derivative with respect to q at q = p. In this case condition (11) is satisfied 
for r I and r 2. Result 8 is applicable here even if E(q,p) is not differentiable with 
respect to q at q = p. It can be seen that (ii) in result 8 imposes only a mild 
restriction on the short payoff function E. The inequalities (10) and (11) with 
< replaced by ~< are necessarily satisfied ifp is a symmetric equilibrium strategy. 

Eshel (1983) has defined the concept of a continuously stable ESS for the case 
of a one-dimensional strategy set [see also Taylor (1989)]. Roughly speaking, 
continuous stability means the following. A population which plays a strategy r 
slightly different from the ESS p is unstable in the sense that every strategy q 
sufficiently close to r can successfully invade if and only if q is between r and p. 
One may say that continuous stability enables the ESS to track small exogenous 
changes of the payofffunction E. As Eshel has shown, continuous stability requires 

E11(q,p ) + E12(q,p ) <~ O, 

if E is twice continuously differentiable with respect to q and p. Here, the indices 
1 and 2 indicate differentiation with respect to the first and second argument, 
respectively. Obviously, this condition need not be satisfied for an ESS p for which 
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the assumptions of Result 8 hold. Therefore, in the one-dimensional case an ESS 
with uniform invasion barrier need not be continuously stable. 

Result 8 can be applied to models which specify only the short payoff function. 
It is reasonable to suppose that such models can be extended in a biologically 
meaningful way which satisfies condition (i) in Result 8. Condition (ii) concerns 
only the short payoff function. 

Continuity and differentiability assumptions are natural for large populations. 
It is conceivable that the fitness function has a discontinuity at e = 0; the situation 
of one mutant alone may be fundamentally different from that of a mutant in a 
small fraction of the population. However, in such cases the payoff for e = 0 should 
be defined as the limit of the fitness for e ~ 0, since one is not really interested in 
the fitncss of an isolated mutant. 

It is doubtful whether the population game framework can be meaningfully 
applied to small finite populations. Mathematical definitions of evolutionary 
stability for such populations have been proposed in the literature [Scharfer (1988) ]. 
However, these definitions do not adequately deal with the fact that in small finite 
populations [or, for that matter, in large popula t ions-  see Foster and Young 
(1990) and Young and Foster (1991) ] the stochastic nature of the genetic mechanism 
cannot be neglected. 

5. Dynamic foundations 

Evolutionarily stable strategies are interpreted as stable results of processes of 
natural selection. Therefore, it is necessary to ask the question which dynamic 
models justify this interpretation. In Section 3.3 we have already discussed a very 
simple model of monomorphic stability. In the following we shall first discuss the 
replicator dynamics which is a model with continuous reproduction and exact 
asexual inheritance. Later we shall make some remarks on processes of natural 
selection in sexually reproducing populations without being exact in the description 
of all results. 

We think that a distinction can be made between evolutionary garne theory 
and its dynamic foundations. Therefore, our emphasis is not on the subject matter 
of this section. An important recent book by Hofbauer and Sigmund (1988) treats 
problems in evolutionary game theory and many other related subjects from the 
dynamic point of view. We recommend this book to the interested reader. 

5.1. Replicator dynamics 

The replicator dynamics has been introduced by Taylor and Jonker (1978). It 
describes the evolution of a polymorphic population state in a population whose 
members are involved in a conflict describd by a symmetric two-person garne 
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G = (S, E). Formally, the population state is represented by a mixed strategy q for 
G. The replicator dynamics is the following dynamic system: 

dl(S) = q(s)[E(s ,q)-  E(q,q)], for all s~S. (18) 

As usually dl(s) denotes the derivative of q(s) with respect to time. 
The replicator dynamics can be intuitively justified as follows. By a similar 

reasoning as in Section 3.3 concerning the process (1), in a discrete time model of 
non overlapping generations we obtain 

F + E(s, qt) , 
q'+ i ( s ) -  ~ + E~t,  qt) qAs)" 

This yields 

E(s, qt) -- E(qt, q,) 
q,+ i(s) -- q,(s) = q,(s). 

F + E(q,, qO 

If the changes from generation to generation are small, this difference equation 
can be approximated by the following differential equation: 

dl(s) = E(s, q) -- E(q, q) q(s). 
F + E(q, q) 

The denominator on the right-hand side is the same for all s and therefore does 
not influence the orbits. Therefore, this differential equation is equivalent to (18) 
as far as orbits are concerned. 

A strategy q with dl(s) = 0 for all s in S is called a dynamic equilibrium. A dynamic 
equilibrium q is called stable if for any neighborhood U of q there exists a 
neighborhood V of q contained in U such that any trajectory which starts in V 
remains in U. A dynamic equilibrium q is called asymptotically stable if it is 
stable and if in addition to this there exists a neighborhood U of q such that any 
trajectory of (18) that starts in U converges to q. 

It can be seen immediately that every pure strategy is a dynamic equilibrium 
of (18). Obviously, the property of being a dynamic equilibrium without any 
additional stability properties is of little significance. 

A very important stability result has been obtained by Taylor and Jonker (1978) 
for the case of a regular ESS. Later the restriction of regularity has been removed 
by Hofbauer et al. (1979) and Zeeman (1981). This result is the following one: 

Result 9. A strategy p for a symmetric two-person garne G = (S, E) is asymptotically 
stable with respect to the replicator dynamics if it is an ESS of G. 

A strategy q can be asymptotically stable without being an ESS. Examples can 
be found in the literature [e.g. van Damme (1987), Weissing (1991)]. The question 
arises whether in view of such examples the ESS concept is a satisfactory static 
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substitute for an explicit dynamic analysis. In order to examine this problem it is 
necessary to broaden the framework. We have to look at the possibility that not 
only pure but also mixed strategies can be represented as types in the popula- 
tion. 

A nonempty finite subset R = {ra,. . . ,  rù} of the set of all mixed strategies Q will 
be called a repertoire. The pure or mixed strategies r i are interpreted as the types 
which are present in the population. For i =  1 , . . , n  the relative frequency of r i 
will be denoted by xi. For a population with repertoire R a population state is a 
vector x = (xl . . . . .  xù). The symbol qx will be used for the mean strategy of the 
population at state x. The replicator dynamics for a population with repertoire R 
can now be described as follows: 

Yci = xi[E(rl, qx) -- E(qx, qx)] for i = 1 . . . . .  n, (19) 

with 

qx = ~ xiri. (20) 
i = 1  

Two population states x and x' which agree with respect to their mean strategy 
are phenotypically indistinguishable in the sense that in both population states 
the pure strategies are used with the same probability by a randomly selected 
individual. Therefore we call the set of all states x connected to the same mean 
strategy q the phenotypical equivalence class for q. 

Consider a repertoire R = {r 1 . . . . .  rù} for a symmetric two-person game G = (S, E). 
Ler x j be the population state whose jth component  is 1; this is the population 
stare corresponding to r i. We say that r is phenotypically attractive in R if r belongs 
to the convex hull of R and a neighborhood U of r exists such that every trajectory 
of (19) starting in U converges to the phenotypical equivalence class of r. This 
definition is due to Franz Weissing in his unpublished diploma thesis. 

Result 10. A (pure or mixed) strategy p for a symmetric two-person game G -- (S, E) 
is stable and phenotypically attractive in every repertoire R whose convex hull 
contains p if and only if it is an ESS of G. 

In a paper in preparation this result will be published by Weissing (1990). 
Cressman (1990) came independently to the same conclusion. He coined the notion 
of"s t rong stability" in order to give an elegant formulation of this result [see also 
Cressman and Dash (1991)]. 

Weissing proves in addition to Result 10 that a trajectory which starts near to 
the phenotypical equivalence class of the ESS ends in the phenotypical equivalence 
class at a point which, in a well defind sense, is nearer to the ESS than the starting 
point. This tendency towards monomorphism has already been observed in special 
examples in the literature [Hofbauer and Sigmund (1988)]. Weissing also shows 
that an asymptotically stable dynamit  equilibrium p with respect to (18) is not 
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stable with respect to (19) in a repertoire which contains p and an appropriately 
chosen mixed strategy q. This shows that an asymptotically stable dynamic 
equilibrium with respect to (18) which fails to be an ESS can be destabilized by 
mutations, whereas the same is not true for an ESS. All these results together 
provide a strong justification for the view that at least as far as the replicator 
dynamics is concerned, the ESS concept is a satisfactory static substitute for an 
explicit dynamic analysis. However, it must be kept in mind that this view is based 
on the originally intended interpretation of an ESS as a strategy which is stable 
against the invasion of mutations and not as a polymorphic equilibrium in a 
temporarily existing repertoire. 

5.2. Disequilibrium resuhs 

We now turn our attention to disequilibrium properties of the replicator dynamics. 
Schuster et al. (1981) have derived a very interesting result which shows that under 
certain conditions a completely mixed symmetric equilibium strategy can be 
interpreted as a time average. An equilibrium strategy is called completely mixed 
if it assigns positive probabilities to all pure strategies s. The omega-limit of an 
orbit qt is the set of all its accumulation points. With the help of these definitions 
we are now able to state the result of Schuster et al. [see also Hofbauer and 
Sigmund (1988) p. 136]. 

Result 11. Let G = (S, E) be a symmetric two-person garne with one and only one 
completely mixed equilibrium strategy p, and let qt be an orbit starting in t = 0 
whose omega-limit is in the interior of the set, of mixed strategies Q. Then the 
following is true: 

lim 1 f T  q~(s)dt = p(s), for all s in S. (21) 
T->o9 T o 

Schuster et al. (1979) have introduced a very important concept which permits 
statements for certain types of disequilibrium behavior of dynamical systems. For  
the special case of the replicator dynamics (18) this concept of permanence is 
defined as follows. The system (18) is permanent if there exists a compact set K in 
the interior of the set Q of mixed strategies such that all orbits starting in the 
interior of Q end up in K. 

Permanence means that none of the pure strategies in S will vanish in the 
population if initially all of them are represented with positive probabilities. The 
following result [Theorem 1 in Chapter 19.5 in Hofbauer and Sigmund (1988)] 
connects permanence to the existence of a completely mixed symmetric equilibrium 
strategy. 
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Result 12. If the system (18) is permanent then the game G = (S, E) has one and 
only one completely mixed symmetric equilibrium strategy. Moreover, if (18) is 
permanent, equation (21) holds for every orbit qt in the interior of Q. 

In order to express the next result, we introduce some definitions. Consider a 
symmetric two-person garne G = (S, E). For  every nonempty proper subset S' of 
S we define a restricted garne G' = (S', E'). The payoff function E' as a function of 
pairs of pure strategies for G' is nothing else than the restriction of E to the set 
of these pairs. We call an equilibrium point of a restricted garne G ' =  (S', E') a 
border pre-equilibrium of G. The word border emphasizes the explicit exclusion of 
the oase S = S' in the definition of a restricted garne. A border pre-equilibrium 
may or may ot be an equilibrium point of G. Note that the border pre-equilibria 
are the dynamic equilibria of (18) on the boundary of the mixed strategy set. The 
pure strategies are special border pre-equilibria. The following intriguing result is 
due to Jansen (1986) [see also Theorem 1 in Hofbauer and Sigmund (1988) p. 174]. 

Result 13. The replicator system (18) is permanent for a game G = (S, E) if there 
exists a completely mixed strategy p for G such that 

E(p, q) > E(q, q) (22) 

holds for all border pre-equilibria q of G. 

Superficially inequality (22) looks like the stability condition (3) in the definition 
of an ESS. However, in (22) p is not necessarily a symmetric equilibrium strategy, 
and q is not necessarily an alternative best reply to p. A better interpretation of 
(22) focuses on the fact that all border pre-equilibria q are destabilized by the same 
completely mixed strategy p. We may say that Result 13 requires the existence of 
a completely mixed universal destabilizer of all border pre-equilibria. 

Suppose that p is a completely mixed ESS. Then (22) holds for all border 
pre-equilibria in view of (3), since they are alternative best replies. The proof of 
Result 9 shows that a completely mixed ESS is globally stable. This is a special 
case of permanence. The significance of (22) lies in the fact that it also covers cases 
where the replicator dynamics (18) does not converge to an equilibrium. In 
particular, Result 13 is applicable to symmetric two-person games for which no 
ESS exists. 

5.3. A look at population genetics 

The replicator dynamics describes an asexual population, or more precisely a 
population in which, apart from mutations, genetically each individual is an exact 
copy ofits parent. The question arises whether results about the replicator dynamics 
can be transferred to more complex patterns of inheritance. The investigation of 
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such processes is the subject matter  of population genetics. An introduction to 
population genetic models is beyond our scope. We shall only explain some game- 
theoretically interesting results in this area. 

Hines and Bishop (1983,1984a, b) have investigated the case of strategies 
controlled by one gene locus in a sexually reproducing diploid population. A gene 
locus is a place on the chromosome at which one of several different alleles of a 
gene can be located. The word diploid indicates that an individual carries each 
chromosome twice but with possibly different alleles at the same locus. 

It has been shown by Hines and Bishop that an ESS has strong stability 
properties in their one-locus continuous selection model. However, they also point 
out that the set of all population mean strategies possible in the model is not 
necessarily convex. Therefore, the population mean strategy can be "trapped" in 
a pocket even if an ESS is feasible as a population mean strategy. The introduction 
of new mutant  alleles, however, can change the shape of the set of feasible mean 
strategies. Here we shall not describe the results for one-locus models in detail. 
Instead of this we shall look at a discrete time two-locus model which contains a 
one-locus model as a special case. 

We shall now describe a standard two-locus model for viability selection in a 
sexually reproducing diploid population with random mating. We first look at the 
case without game interaction in which fitnesses of genotypes are exogenous and 
constant. Viability essentially is the probability of survival of the carrier of a 
genotype. Viability selection means that effects of selection on fertility or mating 
success are not considered. 

Let A 1 . . . . .  Aù be the possible alleles for a locus A, and BI .. . .  , B m be the alleles 
for a locus B. For  the sake of conveying a clear image we shall assume that both 
loci are linked which means that both are on the same chromosome. The case 
without linkage is nevertheless covered by the model as a special case. An individual 
carries pairs of chromosomes, therefore, a genotype can be expressed as a string 
of symbols of the form A~BJAkB~. Here, A i and B~ are the alleles for loci A and 
B on one chromosome, and A k and Bt are the alleles on both loci on the other 
chromosome. Since chromosomes in the same pair are distinguished only by the 
alleles carried at their loci, A~Bj/AkB l and A«Bz/AiB j are not really different 
genotypes, even if they are formally different. Moreover, it is assumed that the 
effects of genotypes are position-independent in the sense that AiB~/AkB j has the 
same fitness as A«Bj/AkBz. The fitness of a genotype A~Bj/AkB ~ is denoted by 
w~»~. For  the reasons explained above we have 

Wijk I ~ Wilk j z Wkji I ~ Wklij. 

An offspring has one chromosome of each of its parents in a pair of chromosomes. 
A chromosome received from a parent can be a result of recombination which 
means that the chromosomes of the parent have broken apart  and patched together 
such that the chromosome transmitted to the offspring is composed of parts of 
both chromosomes of the parent. In this way genotype AiBj/AkB t may transmit 
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a chromosome A~B~ to an offspring. This happens with probability r ~< ½ called 
the recombination rate. The relative frequency of chromosomes with the same allele 
combination at time t is denoted by xlj(t). The model describes a population with 
nonoverlapping generations by a system of difference equations. 

Xi j ( t - } -  1)= ~ ( r  ~ W i t k j X i l ( t ) X k j ( t ) + ( 1 - - r ) ~  Wi jk iXi j ( t )Xk l ( t ) ]  , 
W(t) \ u «~ 

for i =  1 . . . . .  n and j = 1 . . . . .  m. (23) 

Here, W(t) is the mean fitness in the population: 

W(t) = ~ WijklXij(t)Xkl(t ). 
ijkl 

1 In The case that the two loci are on different chromosomes is covered by r = 3. 
model (23) the fitness wij u of a genotype is constant. The selection described by 
the model is frequency-independent in the sense that fitnesses of genotypes do not 
depend on the frequencies x~j(t). 

Moran (1964) has shown that in this model natural selection does not guarantee 
that the mean fitness of the population increases in time. It may even happen that 
the mean fitness of the population decreases until a minimum is reached. The same 
is true for the multilocus generalization of (23) and in many other population 
genetics models [Ewens (1968), Karlin (1975)]. Generally it cannot be expected 
even in a constant environment that the adaptation of genotype frequencies without 
any mutation converges to a population strategy which optimizes fitness. 

The situation becomes even more difficult if game interaction is introduced into 
the picture. One cannot expect that the adaptation of genotype frequencies alone 
without any mutations moves results in convergence to an ESS unless strong 
assumptions are made. Suppose that the fitnesses W~jk~ depend on the strategic 
interaction in a symmetric two-person game G = (S, E). Assume that a genotype 
AiBj/AkB t plays a mixed strategy Uijkt in Q. In accordance with the analogous 
condition for the fitnesses W~jk~ assume 

Uijkl ~ Uilkj ~ Ukjil ~ Uklij. 

Define 

wiju(t) = F + E(Uijk» q,), (24) 

with 

qt(s) = ~ Xi2(t)Xkz(t)uij«l(S), for all s in S. (25) 
ijkl 

Here, qt is the mean strategy of the population. If in (23) and in the definition of 
W(t) the W~jkt are replaced by Wijkl(t ) w e  obtain a new system to which we shall 
refer as the system (23) with frequency-dependent selection. 

This system has been investigated by Ilan Eshel and Marcus Feldman (1984). 
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It is very difficult to obtain any detailed information about its dynamic equilibria. 
Eshel and Feldman avoid this problem. They assume that originally only the al- 
leles A 1 . . . . .  Aù_ 1 are present at locus A. They look at a situation where a 
genotype frequency equilibrium has been reached and examine the effects of the 
introduction of a new mutant allele Aù at the locus A. Initially Aù appears in a low 
frequency at a population state near the equilibrium. 

The ingenious idea to look at the effects of a mutant at a genotype frequency 
equilibrium is an important conceptual innovation. Eshel (1991) emphasizes that 
it is important to distinguish between the dynamics of genotype frequencies without 
mutation and the much slower process of gene substitution by mutation. The 
dynamics of genotype frequencies without mutation cannot be expected to converge 
towards a garne equilibrium unless special conditions are satisfied. Evolutionary 
garne theory is more concerned about equilibria which are not only stable with 
respect to the dynamics of genotype frequencies without mutation, but also with 
respect to gene substitution by mutation. This stability against mutations is often 
referred to as external stability [Liberman (1983)]. Surprisingly, the conceptual 
innovation by Eshel and Feldman (1984) also helps to overcome the analytical 
intractability of multilocus models, since their questions permit answers without 
the calculation of genotype frequencies at equilibrium. 

A population stare of model (23) is a vector x = (x~ 1 . . . .  ,Xùm ) whose components 
xij are the relative frequencies of the allele frequencies AiBj .  The population mean 
strategy q(x) is defined analogously to (25). For  the purpose of examining qustions 
of external stability we shall consider the entrance of a mutant allele on locus A. 
We assume that originally only the alleles A ~ . . . . .  Aù_ 1 are present. Later a mutant 
allele Aù enters the system. We assume that before the entrance of Aù the system 
has reached a dynamic equilibrium y with a population mean strategy p. 

A particular specification of the frequency-dependent system (23) is described 
by a symmetric two-person garne G = (S, E) and a system of genotype strategies 
U~jk» It will be convenient to describe this system by two arrays, the inside 9enotype 
strategy array 

U = (Uijk l ) ,  i, k = 1 , . . ,  n -- 1, j, 1 = 1 , . . ,  rn 

and the outside 9enotype strategy array 

Uù=(uùju), k =  l . . . . .  n, j , l =  l , . . . , m .  

The outside array contains all strategies of genotypes carrying the mutant allele 
(position independence requires Uùjkt = Ukjù~ ). The inside array contains all strategies 
for genotypes without the mutant allele. A specific frequency-dependent system 
can now be described by a triple (G, U, Uù). We look at the numbers m, n and r 
as arbitrarily fixed with n ~> 2 and m >~ 1 and r in the closed interval between 0 and ½. 

We say that a sequence qo, qa, . . ,  of population mean strategies is 9enerated by 
x(0) in (G, U, Uù) if for t = 0, 1 , . .  that strategy qt is the population mean strategy 
of x(t) in the sequence x(0), x(1) . . . .  satisfying (23) for this specification. For  any 
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two strategies p and q for G the symbol IP - q] denotes the maximum of all absolute 
differences Ip(s) - q(s)p over seS. Similarly, for any population states x and y the 
symbol I x - Y l denotes the maximum of all absolute differences I xij - Yijl. An inside 
population state is a population state x = (x~ ~ . . . . .  xù,ù) with 

x ù j = 0  f o r j = l , . . . , m .  

With these notations and ways of speaking we are now ready to introduce our 
definition of external stability. This definition is similar to that of Liberman (1988) 
but with an important  difference. Liberman looks at the stability of population 
states and requires convergence to the original inside population state y after the 
entrance of Aù in a population state near y. We think that Libermans definition 
is too restrictive. Therefore we require phenotypic attractiveness in the sense of 
Weissing (see Section 5.1) instead of convergence. The stability of the distribution 
of genotypes is less important  than the stability of the population mean strategy. 

Definition 5. Let y = (y~~ . . . . .  Yù- ~.m, 0 , . . ,  0) be an inside population state. We 
say that y is phenotypically externally stable with respect to the game G = (S, E) 
and the inside genotype strategy array U iffor every Uù the specification (G, U, Uù) 
of (23) has the following property: For  every e > 0 a ö > 0 can be found such that 
for every population state x(0) with I x(0) - Y l < 6 the sequence of population mean 
strategies qo, q~ . . . .  generated by x(0) satisfies two conditions (i) and (ii) with respect 
to the population mean strategy p of y: 

(i) For t = 0, 1 . . . .  we have [ q , -  P l < e. 
(ii) lim q~ = p. 

t ~ o o  

Eshel and Feldman (1984) have developed useful methods for the analysis of 
the linearized model (23). However, as far as we can see their results do not imply 
necessary or sufficient conditions for external stability. Here we shall state a 
necessary condition for arbitrary inside population states and a necessary and 
sufficient condition for the case of a monomorphic  population. The word mono- 
morphic means that all genotypes not carrying the mutant  allele play the same 
strategy. We shall not make use of the linearization technique of Eshel and Feldman 
(1984) and Liberman (1988). 

Result 14. If an inside population state y is externally stable with respect to a 
garne G = (S,E) and an inside genotype strategy array U, then the population 
mean strategy p of y is a symmetric equilibrium strategy of G. 

Proof. Assume that p fails to be a symmetric equilibrium strategy of G. Let s be 
a pure best reply to p. Consider a specification (G, U, Uù) of (23) with 

Unjkl=S , forj ,  l = l , . . . , m ,  k = l  . . . .  ,n. 
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Equa t ions  (24) yields 

wùju(t) = F + E(s, q,), for j , l  = 1 , . . , m ,  k = 1 , . . ,  n. 

F o r  i = n Eq. (23) assumes the fol lowing form: 

xùj(t + 1) - F + E(s,q,) [rxùt(t)Xkj(t) + (1 -- r)xùj(t)Xkl(t) ], 
F + E(qt, qt) kl 

Define 

n - 1  m 

a(t)= ~ ~ xij(t), 
i = 1  j = l  

b(t) = ~ xùj(t). 
j = l  

We call  a(t) the inside part of x(t) and  b(t) the outside part 

k = l  / = 1  k = l  

957 

for j =  1 . . . . .  m. 

(26) 

(27) 

(28) 

of x(t). In view of 

and  

B ~ Xùj(t)Xk,(t)----Xnj(t) 
k = l  l = l  

the s u m m a t i o n  over  the Eqs. (26) for j = 1 , . . ,  m yields 

F + E(s, qt) 
b(t + 1) - b(t). (29) 

F + E(qt, q,) 

Since s is a best  reply to p and p is not  a best  reply to p, we have 

E(s, p) > E(p, p). 

Therefore,  we can find an e > 0 such tha t  E(s, q)> E(p, q) holds  for all q with 
[p - q[ < ~. Cons ider  a popu l a t i on  state x(0) with b(0) > 0 in the e - n e i g h b o r h o o d  
of p. W e  examine  the process  (23) s tar t ing at  x(0). In  view of  the con t inu i ty  of 
E ( . , )  we can find a cons tan t  g > 0 such tha t  

F + E(s, qt) 
ù ~ l + g  

F + E(qt, qt) 

holds  for ]qt - p] < ~. Therefore  eventual ly  qt mus t  leave the e - n e i g h b o r h o o d  of 
p. This shows that  for the e under  cons idera t ion  no 6 can be found which satisfies 
the requ i rement  of  Def in i t ion  5. [ ]  
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The inside genotype strategy array U = (Uijkl) with 

Uijkt=p, fori ,  k = l  . . . . .  n - l ,  j , l = l  . . . . .  m 

is called the strategic monomorphism or shortly the monomorphism of p. A 
monomorphism U of a strategy p for G = (S, E) is called externally stable if every 
inside population state y is externally stable with respect to G and U. 

If only one allele is present on each locus one speaks offixation. A monomorphism 
in our sense permits many alMes at each locus. The distinction is important  since 
in the case of a monomorphism the entrance of a mutant  may create a multitude 
of new genotypes with different strategies and not just two as in the case of fixation. 
Maynard Smith (1989) has pointed out that in the case of fixation the ESS-property 
is necessary and sufficient for external stability against mutants which are either 
recessive or dominant. The entrance ofa  mutant  at fixation is in essence a one-locus 
problem. Contrary to this the entrance of a mutant  at a monomorphism in a 
two-locus model cannot be reduced to a one-locus problem. 

Resuit 15. Let p be a pure or mixed strategy of G = (S, E). The monomorphism 
of p is externally stable if and only if p is an ESS of G. 

Proofi Consider a specification (G, U, Uù) of (23), where U is the monomorphism 
of p. Let x(0), x(1) . . . .  be a sequence satisfying (23) for this specification. Ler the 
inside part a(t) and the outside part  b(t) be defined as in (27) and (28). A genotype 
AiBJAkB t is called monomorphic if we have i <  n and k < n. The joint relative 
frequency of all monomorphic  genotypes at time t is a2(t). A genotype AIBjAkB z 
is called a mutant heterozygote if we have i =  n and k <  n or i <  n and k =  n. A 
genotype AiBj/AkB ~ is called a mutant homozygote if i = k = n holds. 

At time t the three classes of monomorphic  genotypes, mutant  heterozygotes, 
and mutant  homozygotes have the relative frequencies a2(t), 2a(t)b(t), and b2(t), 
respectively. It is useful to look at the average strategies of the three classes. The 
average strategy of the monomorphic  genotype is p. The average strategies ut of 
the mutant  heterozygotes and vt of the mutant  homozygotes are as follows: 

1 m n - 1  m 

u , -  a(t)b(t) j~l k~l ,~=1 Xnj(t)Xk,(t )unju, (30) 

1 m 

V'-b2(t) j~=l ,=1 ~ Xnj(t)xnt(t)Unjnl" (31) 

The alleles A 1 . . . . .  A n_l are called monomorphic. We now look at the average 
strategy «, of all monomorphic  alleles and the average strategy/~t of the mutant  
allele A n at time t. 

~, = a(t)p + b(t)u,, (32) 

fl, = a(t)u, + b(t)v r (33) 
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A monomorphic allele has the relative frequency a(t) of being in a monomorphic 
genotype and the relative frequency b(t) of being in a mutant heterozygote. 
Similarly, the mutant is in a mutant heterozygote with relative frequency a(t) and 
in a mutant homozygote with frequency b(t). The mean strategy qt of the population 
satisfies the following equations: 

qt = a(t)Œt + b(t)flt, (34) 

qt = a2(t)P + 2a(t)b(t)ut + b2(t)vt. (35) 

We now look at the relationship between a(t) and a(t + 1). Equation (23) yields: 

n--1 
=--~__F + E(p,q,)"~' ~ 2 ~ [rxi,(t)Xkj(t)+(l--r)xiy(t)Xk,(t)] a(t -~- I ) - / «  +/~(q,,q,) i~, j=, k=, , : ,  

I "Z' ~ ~ r [«  + E(ui,ùi,qt)]xi,(t)xùj(t ) 
+F + E(q~,qO i=I y=1 I=I 

I "~' ~ ~ (1_r)[F+E(uijù,,q,)]xij(t)xù,(t)" 
+ F+ E(q~,q~)i=I y=1 I=i 

It can be seen without difficulty that this is equivalent to the following equation: 

1 
a(t + 1) - F + E(qt, q,) {a2(t)[F + E(p, qt)] + a(t)b(t)[F + E(ut, q,)] }. 

In view of the definition of Œt this yields 

a(t + 1) - F + E(«t, qt)a(t). 
F + E(q t, qt) 

It follows by (34) that we have 

F + E(«t, qt) _ 1 + E(«t' qt) -- E(qt, qt) 
F + E(qt, qt) F + E(q,, q,) 

= 1 ~ b(t)E(~t' qt) - b(t)E(flt, qt) 
F + E(qt, q,) 

This yields (36). With the help ofa(t) + b(t) = 1 we obtain a similar equation for b(t). 

a(t + 1)= ( l  + b(t) E(Œ~ qt) - E(flt'qt) ~a(t), (36) 
1« + E(qt, qt) ./ 

b(t + 1 ) = ( 1  + a(t) E ( f l ; q t ) -  E(~t 'qt))b(t) .  (37) 
+ E(qt, qt) 

Obviously, the difference E(«t, q t ) -  E(flt, qt) is decisive for the movement of a(t) 
and b(t). We now shall investigate this difference. For the sake of simplicity we 
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drop t in u ,  vr, « ,  fit, qt, a(t) and b(t). It can be easily verified that the following is true: 

E(Œ, q) - E(fl, q) = a a [E(p, p) - E(u, p)] 

+ a z b{2[E(p, u) - E(u, u)] + E(u, p) - E(v, p)} 

+ ab2{2[E(u, u) - E(v, u)] + E(p, v) - E(u, v)} 

+ b3[E(u, v) - E(v, v)]. (38) 

We now prove the following assertion: If p is an ESS of  G and u ¢ p or v # p 
holds, then E ( « , q ) -  E(fl, q) is positive for all sufficiently small b > 0 . -  It is 
convenient to distinguish four cases: 

(i) u is not  a best reply to p. Then the first term in (38) is positive. 
(ii) u is a best reply to p with u ¢ p. Then the first term in (38) is zero and the 

second one is positive. 
(iii) u = p  and v is not  a best reply to p. Hefe, too the first term in (38) is zero 

and the second one is positive. 
(iv) u = p  and v is a best reply to p. We must  have v v~ p. The first three terms 

vanish and the fourth one is positive. 

The discussion has shown that in all four cases E(«, q ) -  E(fl, q) is positive for 
sufficiently small b > 0. 

In the case u = v = p we have Œ =/3. In this oase the difference E(«, q ) -  E(fl, q) 
vanishes. Consider  a sequence x(0),x(1) . . . .  generated by the dynamic system. 
Assume that  p is an ESS. If b(0) is sufficiently small, then b(t) is nonincreasing. 
The sequence of popula t ion mean strategies qo, ql . . . .  generated by x(0) remains 
in an e-neighborhood of p with e > b(0). The sequence qo, q l , . . ,  must  have an 
accumulat ion point  q. Assume that  q is different from p. In view of  the continuity 
of (23) this is impossible, since for qt sufficiently near to q the inside part  b(t) would 
have to decrease beyond the inside part  b of q. Therefore, the sequence qo, q l , . . .  
converges to p. We have shown that  every inside populat ion state is externally 
stable if p is an ESS. 

It remains to show that  p is not  externally stable if it is not  an ESS. In view of 
Result 14 we can assume that p is a symmetric equilibrium strategy, but not  an 
ESS. Let v be a best reply to p with 

E(p, v) <~ E(v, v). 

Since p is a symmetric equilibrium strategy, but not  an ESS, such a strategy can 
be found. We look at the specification (G, U, Uù) with the following outside array: 

uùj«t = P, for j, l = 1 . . . .  , m and k = 1 , . . ,  n - 1, 

uùjùz = v, for j, 1 = 1 , . . ,  m. 

Consider  a sequence x(0),x(1) . . . .  generated by the dynamic  system. The mean 
strategies ut and vt do not  depend on t. We always have ut = p and v, = v. Assume 
E(p, v )<  E(v, v). In this case (38) shows that  E(«t, q~ ) -  E(fl t, qt) is always negative. 
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In view of the continuity of (23) the sequence of the b(t) always converges to 1 for 
b(0) > 0. In the case E(p, v) = E(v, v) the difference E(Œ~, 6 )  - E(fl,, q,) always vanishes 
and we have 

qt = [1 - b2(O)]p + b2(O)v, for t = O, 1 . . . . .  

In both cases the sequence qo, q l , . . ,  of the population mean strategies does not 
converge to p, whenever b(0) > 0 holds. Therefore, p is not externally stable. []  [] 

The proof  of 14 reveals additional stability properties of a monomorphism whose 
phenotype is an ESS p. Consider a specification (G, U, Uù) of (23) and let U be the 
monomorphism of genotype p. We say that a population state c is nearer to the 
monomorphism U than a population stare x' or that x' is farther from U than x 
if the outside part  b of x is smaller than the outside part  b' of x'. We say that a 
population state x is shifted towards the monomorphism if for every sequence 
x(0), x(1) . . . .  generated by (23) starting with x(0) = x every x(t) with t = 1, 2 . . . .  is 
nearer to the monomorphism than x; if for x(0) = x every x(t) with t = 1, 2 . . . .  is 
not farther away from the monomorphism than x we say that x is not shifted away 
from the monomorphism.  An ~-neighborhood NE of an inside state y is called drift 
resistant if all population states x~N~ with a population mean strategy different 
from p are shifted towards the monomorphism and no population state x~N~ is 
shifted away from the monomorphism.  An inside state y is called drift resistant if 
for some ~ > 0 the e-neighborhood N~ of y is drift resistant. The monomorphism 
U is drift resistant iffor every Uù every inside state y is drift resistant in (G, U, Uù). 

Result 16. Let p be an ESS of G. Then the monomorphism U of phenotype p is 
drift resistant. 

Proof. As we have seen in the proof of Result 15 the dynamics of (23) leads to 
Eq. (37) which together with (38) has the consequence that a population state x 
with a sufficiently small outside part  b is not shifted farther away from the 
monomorphism and is shifted towards the monomorphism if its population mean 
strategy is different from p. [] 

Water resistant watches are not water proof. Similarly drift resistance does not 
offer an absolute protection against drift. A sequence of perturbances away from 
the monomorphism may lead to a population state outside the drift resistant 
e-neighborhood. However, if perturbances are small relative to e, this is improbable 
and it is highly probable that repeated perturbances will drive the mutant  allele 
towards extinction. Of course, this is not true for the special case in which all 
genotypes carrying the mutant  allele play the monomorphic  ESS p. In this case 
the entrance of the mutant  creates a new monomorphism,  with one additional 
allele, which again will be drift resistant. 
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6. Asymmetric conflicts 

Many conflicts modelled by biologists are asymmetric. For  example, one may 
think of territorial conflicts where one of two animals is identified as the territory 
owner and the other one as the intruder (see Section 8.2). Other examples arise if 
the opponents differ in strength, sex, or age. Since a strategy is thought of as a 
program for all situations which may arise in the life of a random animal, it 
determines behavior for both sides of an asymmetric conflict. Therefore, in 
evolutionary game theory asymmetric conflicts are imbedded in symmetric games. 

In the following we shall describe a class of models for asymmetric conflicts. 
Essentially the same class has first been examined by Selten (1980). In the models 
of this class the animals may have incomplete information about the conflict 
situation. We assume that an animal can find itself in a finite number of states of  
information. The set of all states of information is denoted by U. We also refer to 
the elements of U as roles. This use of the word role is based on applications in 
the biological literature on animal contests. As an example we may think of a 
strong intruder who faces a territory owner who may be strong or weak. On the 
one hand, the situation of the animal may be described as the role of a strong 
intruder and, on the other hand, it may be looked upon as the state of information 
in this role. 

In each role u an animal has a nonempty, finite set Cu of choices. A conflict 
situation is a pair (u, v) of roles with the interpretation that one animal is in the 
role u, and the other in the role v. The game starts with a random move which 
selects a conflict situation (u, v) with probability wuo. Then the players make their 
choices from the choice sets Cu and Co respectively. Finally they receive a payoff 
which depends on the choices and the conflict situation. Consider a conflict 
situation (u, v) and let cu and co be the choices of two opponents in the roles u and 
v respectively; under these conditions huo(c u, co) denotes the payoffs obtained by 
the player in the role u; for reasons of symmetry, the payoff of the player in the 
role of v is hou(co, c~). 

We define an asymmetric conflict as a quadruple 

M = (U, C, w, h). (39) 

Here, U, the set of  information states or roles, is a nonempty finite set; C, the choice 
set function, assigns a nonempty finite choice set C~ to every information state u 
in U; the basic distribution, w, assigns a probability w~o to every conflict situation 
(u, v); finally, h, the payoff function,  assigns a payoff h~o(c~, co) to every conflict 
situation (u, v) with w~v > 0 together with two choices c~ in Cu and c o in Co. The 
probabilities w~o sum up to 1 and have the symmetry property 

Wu v :~Wv u. 

Formally the description of a model of type (39) is now complete. However, we 
would like to add that one may think of the payoffs of both opponents in a conflict 
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situation (u, v) as a bimatrix game. Formally, it is not necessary to make this picture 
explicit, since the payoff for the role v in the conflict situation (u, v) is determined 
by hvu. 

A pure strategy s for a model of the type (39) is a function which assigns a choice 
cu in Cu to every u in U. Let S be the set of all pure strategies. 

From here we could directly proceed to the definition of a symmetrie two-person 
game (S, E) based on the model. However, this approach meets serious difficulties. 
In order to explain these difficulties we look at an example. 

1 Example. We consider a model with only two roles u and v, and Wùu = wvv = 3  
and Cu = Cv = {H, D}. The payofffunctions huu and h~v are payoffs for Hawk-Dove  
games (see Figure 1) with different parameters I4". We may think of (u, u) and (v, v) 
as different environmental conditions like rain and sunshine which influence the 
parameter W. The pure strategies for the game G = (S, E) are HH, HD, DH, and 
DD, where the first symbol stands for the choice in u and the second symbol for 
the choice in v. Let Pl be the ESS for the Hawk-Dove  game played at (u,u) and 
P2 be the ESS of the Hawk-Dove  game played at (v, v). We assume that Pl and 
P2 are genuinely mixed. The obvious candidate for an ESS in this model is to play 
pl at u and P2 at v. This behavior is realized by all mixed strategies q for G which 
satisfy the following equations: 

q(HH) + q(HD) = px(H), 

q(HH) + q(DH) = p2(H). 

It can be seen immediately that infinitely many mixed strategies q satisfy these 
equations. Therefore, no q of this kind can be an ESS of G, since all other strategies 
satisfying the two equations are alternative best replies which violate the stability 
condition (b) in the Definition 1 of evolutionary stability. Contrary to common 
sense the garne G has no ESS. 

The example shows that the description of behavior by mixed strategies 
introduces a spurious multiplicity of strategies. It is necessary to avoid this 
multiplicity. The concept of a behavior strategy achieves this purpose. 

A behavior strategy b for a model of the type (39) assigns a probability distribution 
over the choice set Cu of u to every role u in U. A probability distribution over 
Cu is called a local strategy at u. The probability assigned b to a choice c in Cu is 
denoted by b(c). The symbol B is used for the set of all behavior strategies b. 

We now define an expected payoff E(b, b') for every pair (b, b') of behavior 
strategies: 

E(b,b')= ~ wuv ~ ~ b(c)b'(c')huo(c,c'). (40) 
(u,v) ceCu c' eC~ 

The first summation is extended over all pairs (u, v) with Wuv > 0. The payoff E(b, b') 
has the interpretation of the expected payoff of an individual who plays b in a 
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population playing b'. We call 

GM = (B, E) 

the population garne associated with M = (U, C, w, h). 
E(b, b') is a bilinear function of the probabilities b(c) and b'(c') assigned by the 

behavior strategies b and b' to choices. Therefore, the definition of evolutionary 
stability by two conditions analogous to. those of Definition 1 is adequate. In the 
case of a bilinear payoff function E Definitions 1 and 3 are equivalent. A behavior 
strategy b is a best reply to a behavior strategy b' if it maximizes E(., b') over B. 
A behavior strategy b* for G M is evolutionarily stable if the following conditions 
(a) and (b) are satisfied: 

(it) Equilibrium condition: b* is a best reply to b*. 
(b) Stability condition: Every best reply b to b* which is different from b* satisfies 

the following inequality: 

E(b*, b) > E(b, b) (41) 

An evolutionarily stable strategy b* is called strict if b* is the only best reply to 
b*. It is clear that in this case b* must be a pure strategy. 

In many applications it never happens that two animals in the same role meet 
in a conflict situation. For  example, in a territorial conflict between an intruder 
and a territory owner the roles of both opponents are always different, regardless 
of what other characteristics may enter the definition of a role. We say that 
M(U, C, w, h) satisfies the condition of role asymmetry [information asymmetry in 
Selten (1980)] if the following is true: 

wuu--0, for all u in U. (42) 

The following consequence of role asymmetry has been shown by Selten (1980). 

Result 17. Let M be a model of the type (39) with role asymmetry and let 
G M = (B, E) be the associated population game. If b* is an evolutionarily stable 
strategy for GM, then b* is a pure strategy and a strict ESS. 

Sketch of the proof. If an alternative best reply is available, then one can find an 
alternative best reply b which deviates from b* only in one role ul. For this best 
reply b we have E(b, b*) = E(b*, b*). This is due to the fact that in a conflict situation 
(u~, v) we have u~ ~ v in view of the role asymmetry assumption. Therefore, it never 
matters for a player of b whether an opponent plays b or b*. The equality of 
E(b, b*) and E(b*, b*) violates the stability condition (41). Therefore, the existence 
of an alternative best reply to b* is excluded. 

If the role asymmetry condition is not satisfied, an ESS can be genuinely mixed. 
This happens in the example given above. There the obvious candidate for an ESS 
corresponds to an ESS in GM. This ESS is the behavior strategy which assigns 
the local strategies p: and P2 to u and v, respectively. 
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A special case of the class of models of the type (39) has been examined by 
Hammerstein (1981). He considered a set U of the form 

U = ( u  1 . . . . .  Un, Vl . . . . .  Vn) 

and a basic distribution w with w(u, v) > 0 for u = u i and v = v i (i = 1 , . . ,  n) and 
w(u, v)= 0 for u = ui and v = vj with i~ j .  In this case an evolutionarily stable 
strategy induces strict pure equilibrium points on the n bimatrix games played in 
the conflict situations (u~, v~). In view of this fact it is justified to speak of a strict 
pure equilibrium point of an asymmetric bimatrix game as an evolutionarily stable 
strategy. One often finds this language used in the biological literature. The simplest 
example is the Hawk-Dove  game of Figure 1 with the two roles "owner" and 
ù intruder". 

7. Extensive two-person games 

Many animal conflicts have a sequential structure. For  example, a contest may 
be structured as a sequence of a number of bouts. In order to describe complex 
sequential interactions one needs extensive games. It is not possible to replace the 
extensive game by its normal form in the search for evolutionarily stable strategies. 
As in the asymmetric animal conflicts in Section 6, the normal form usually has 
no genuinely mixed ESS, since infinitely many strategies correspond to the same 
behavior strategy. It may be possible to work with something akin to the agent 
normal form, but the extensive form has the advantage of easily identifiable 
substructures, such as subgames and truncations, which permit decompositions in 
the analysis of the game. 

7.1. Extensive games 

In this section we shall assume that the reader is familiar with basic definitions 
concerning garnes in extensive form. The results presented here have been derived 
by Selten (1983, 1988). Unfortunately, the first paper by Selten (1983) contains a 
serious mistake which invalidates several results concerning sufficient conditions 
for evolutionary stability in extensive two-person garnes. New sufficient conditions 
have been derived in Selten (1968). 

Notation. The word extensive garne will always refer to a finite two-person game 
with perfect recall. Moreover, it will be assumed that there are at least two choices 
at every information set. A garne of this kind is described by a septuple 

F=(K ,P ,  U,C,p,h,h'). 

K is the garne tree. The set of all endpoints of K is denoted by Z. 
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P = (Po, P1, P2) is the player partition which partitions the set of all decision 
points into a random decision set Po and decision sets Px and P2 for players 1 and 2. 

U is the information partition, a refinement of the player partition. 
C is the choice partition, a partition of the set of alternatives (edges of the tree) 

into choices at information sets u in U. The set of all random choices is denoted 
by C o. For  i = 1, 2 the set of all choices for player i is denoted by C~. The choice 
set at an information set u is denoted by Cu. The set of all choices on a play to 
an endpoint set is denoted by C(z). 

p is the probability assignment which assigns probabilities to random choices. 
h and h' are the payofffunctions of players 1 and 2, respectively which assign 

payoffs h(z) and h'(z) to endpoints z. 
For every pair of behavior strategies (b, b') the associated payoffs for players 1 

and 2 are denoted by E(b, b') and E'(b, b'), respectively. 
No other strategies than behavior strategies are admissible. Terms such as best 

reply, equilibrium point, etc. must be understood in this way. The probability 
assigned to a choice c by a behavior strategy b is denoted by b(c). 

We say that an information set u of player 1 is blocked by a behavior strategy 
b' of player 2 if u cannot be reached if b' is played. In games with perfect recall 
the probability distribution over vertices in an information set u of player 1 if u 
is reached depends only on the strategy b' of player 2. On this basis a local payoff 
Eu(r u, b, b') for a local strategy ru at u if b and b' are played can be defined for 
every information set u of player 1 which is not blocked by b'. The local payoff 
is computed starting with the probability distribution over the vertices of u 
determined by b' under the assumption that at u the local strategy ru is used and 
later b and b' are played. 

A local best reply bu at an information set u of player 1 to a pair of behavior 
strategies (b, b') such that u is not blocked by b' is a local strategy at u which 
maximizes player l's local payoff Eu(r~, b, b'). We say that b~ is a strict local best 
reply if bù is the only best reply to (b, b') at u. In this case b~ must be a pure local 
strategy, or in other words a choice c at u. 

7.2. Symmetric extensive garnes 

Due to structural properties of game trees, extensive games with an inherent 
symmetry cannot be represented symmetrically by an extensive form. Thus two 
simultaneous choices have to be represented sequentially. One has to define what 
is meant by a symmetric two-person game. 

Definition 6. A symmetry f of an extensive game F =  (K, P, U, C, p, h, h') is a 
mapping from the choice set C onto itself with the following properties (a)-(f): 
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(a) If c e C o ,  then f ( c ) e C  0 and  p( f (c ) )  = p(c). 
(b) If ¢~.C 1 then f ( c ) e C 2 .  
(c) f ( f ( c ) )  = c for every c e C .  
(d) For  every u e U  there is a u ' e U  such that  for every choice c at u, the image 

f ( c )  is a choice at u'. The no ta t ion  f ( u )  is used for this in format ion  set u'. 
(e) For  every endpoin t  z e Z  there is a z ' e Z  with f ( C ( z ) )  = C(z'), where f ( C ( z ) )  

is the set of all images of choices in C(z). The no ta t ion  f ( z )  is used for this endpoin t  z'. 
(f) h( f ( z ) )  = h'(z) and  h ' ( f ( z ) )  = h(z). 

A symmetry f induces a one- to-one mapp ing  from the behavior  strategies of 
player 1 on to  the behavior  strategies of player 2 and  vice versa: 

b' = f (b) ,  if b ' ( f (c ) )  = b(c), for every c e C x ,  

b = f (b ' ) ,  if b' = f (b) .  

An extensive game may have more than  one symmetry. In  order to see this, consider 

a game £ with a symmetry f.  Let F t and  F 2 be two copies of F, and let f l  and  
f= be the symmetries corresponding to f in F1 and £ z ,  respectively. Let F 3 be the 
garne which begins with a r a n d o m  move which chooses one of both garnes F~ 

and  /-'2 both  with probabi l i ty  a One  symmetry of /"3 is composed of f l  and  f2, 
and  a second one maps a choice ca in F1 on a choice c2 in F2 which corresponds 
to the same choice c in F as c~ does. 

In  biological aplications there is always a na tura l  symmetry inherent  in the 
description of the situation. "Attack" corresponds to "attack", and "flee" corresponds 

0 4. 4. 0 z 

K . . . . . . . . .  ~ K . . . . . . . . .  

tl- " ~ l x  ul ~ 2 ~ _  _ - ]u3 
.5 .5 ' 5 ~ u  0 

Figure 2. Example of a game with two symmetries. This game starts with a random move after which 
players 1 and 2 find themselves in a Hawk-Dove contest. Their left choices mean to play Hawk, right 
choices mean to play Dove. The initial random move can be distinguishin9 or neutral in the following 
sense. Suppose that the left random choice determines player 1 as the original owner of a disputed 
territory and the right random choice determines player 2 as the original owner. In this case the 
random move distinguishes the players so that they can make their behavior dependent on the roles 
"owner" and "intruder". On the other hand, suppose that the random move determines whether there 
is sunshine (left) or an overcast sky (right). This is the neutral oase where nothing distinguishes player 
1 and player 2. The two possible symmetries of this garne specify whether the random move is 
distinguishing or neutral. If the symmetry maps the information set ul to u3, it is distinguishing. If it 
maps u 1 to u2, it is neutral [Selten (1983)]. 
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to "flee" even if a formal symmetry may be possible which maps "attack" to "flee". 
Therefore, the description of the'natural symmetry must be added to the extensive 
form in the evolutionary context (see Figure 2). 

Definition 7. A symmetric extensive garne is a pair (F,f),  where F is an extensive 
garne and f is a symmetry of F. 

7.3. Evolutionary stability 

A definition of evolutionary stability suggests itself which is the analogue of 
Definition 1. As we shall see later, this definition is much too restrictive and will 
have to be refined. Since it is the direct analogue of the usual ESS definition we 
call it a direct ESS. 

Definition 8. Let (F, f )  be a symmetric extensive game. A direct ESS for (F, f )  
is a behavior strategy b* for player 1 in F with the following two properties (a) 
and (b): 

(a) Equilibrium condition: (b*,f(b*)) is an equilibrium point of F. 
(b) Stability condition: If b is a best reply to f(b*) which is different from b*, 

then we have 

E(b*,f(b)) > E(b, f(b)). 

A behavior strategy b* which satisfies (a) but not necessarily (b) is called a 
symmetric equilibrium strategy. An equilibrium point of the form (b*,f(b*)) is called 
a symmetric equilibrium point. 

The definition of a direct ESS b* is very restrictive, since it implies that every 
information set u of Fmus t  be reached with positive probability by the equilibrium 
path generated by (b*, f(b*)) [-Selten (1983) Lemma 2 and Theorem 2, p. 309]. 
This means that most biological extensive form models can be expected to have 
no direct ESS. Nevertheless, the concept of evolutionary stability can be defined 
in a reasonable way for extensive two-person games. 

Since every information set is reached with positive probability by (b*, f(b*)), 
no information set u of player 1 is blocked by f(b*). Therefore, a local payoff 
Eu(ru, b*, f(b*)) is defined at all information sets u of player 1 if b* is a direct ESS 
of (F, f) .  We say that a direct ESS b* is regular if at every information set u of 
player 1 the local strategy b* assigned by b* to u chooses every pure local best 
reply at u with positive probability. 

The definition of perfeetness [-Selten (1975)] was based on the idea of mistakes 
which occur with small probabilities in the execution of a strategy. In the biological 
context it is very natural to expect such mistakes, rationality is not assumed and 
genetic programs are bound to fail occasionally for physiological reasons if no 
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others. Therefore, it is justified to transfer the trembling hand approach to the 
definition of evolutionary stability in extensive garnes. However, in contrast to the 
definition of perfectness, it is here not required that every choide taust be taken 
with a small positive probability in a perturbed garne. The definition of a perturbed 
garne used here permits zero probabilities for some or all choices. Therefore, the 
garne itself is one of its perturbed games. 

A perturbance « for (F, f )  is a function which assigns a minimum probability 
«« ~> 0 to every choice c of player 1 and 2 in F such that (a) the choices at an 
information set u sum to less than 1 and (b) the equation «« = a a always holds for 
d = f(c). A perturbed garne of (F, f )  is a triple F ' =  (F, f ,  «) in which e is a 
perturbance for (F, f) .  In the perturbed garne F '  only those behavior strategies 
are admissible which respect the minimum probabilities of « in the sense b(c) >1 ot«. 
Best replies in F' are maximizers of E(', b') or E(b, ") within these constraints. The 
definition of a direct ESS for F '  is analogous to Definition 6. A regular direct ESS 
of a perturbed garne is also defined analogously to a regular direct ESS of the 
unperturbed garne. 

The maximum of all minimum probabilities assigned to choices by a perturbance 
« is denoted by [«1. If b and b* are two behavior strategies, then Ib -  b*l denotes 
the maximum of the absolute difference between the probabilities assigned by b 
and b* to the same choice. With the help of these auxiliary definitions we can now 
give the definition of a (regular) limit ESS. 

Definition 9. A behavior strategy b* of player 1 for a symmetric extensive 
two-person garne (F, f )  is a (regular) limit ESS of (F, f )  if for every e > 0 at least 
one perturbed garne F ' =  (F, f ,  «) with Icl < ~ has a (regular) direct ESS b with 
] b - b * l < e .  

Loosely speaking, a limit ESS b* is a strategy which can be arbitrarily closely 
approximated by a direct ESS of a perturbed garne. For  a biological garne model 
this means that in a slightly changed garne model with small mistake probabilities 
for some choices a direct ESS elose to b* can be found. 

Since the special case of a perturbance «« = 0 for all choices c of players 1 and 
2 is not excluded by the definition of a perturbed garne, a direct ESS is always a 
limit ESS. 

7.4. Image confrontation and detachment 

In the following we shall state a result which can be looked upon as the analogue 
of Result 17 for symmetric extensive games. Let (F, f )  be a symmetric extensive 
game. We say that an information set u in F is image confronted if at least one 
play in F intersects both u and f(u); otherwise u is called image detached. The 
following result can be found in Selten (1983): 
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Result 18. Let b* be a limit ESS for a symmetric extensive garne (F, f) .  Then the 
following is true: 

(a) The pair (b*, f(b*)) is an equilibrium point of (F, f) .  
(b) If u is an image detached information set in (F, f) ,  then the local strategy 

b* is pure, or in other words b(c)= 1 holds for one choice c at u. u 

Result 18 narrows down the search for ESS candidates. In many models most 
information sets are image detached, since the opponents in a sequential conflict 
who are initially indistinguishable may quickly become distinguishable by the 
history of the garne. Thus one of both animals may be identifiable as that one 
which attacked first; thereby all later information sets become image detached. 

7.5. Decomposition 

In the determination of subgame perfect equilibrium points one can replace a 
subgame by the payoff vector for one of its equilibrium points and then determine 
an equilibrium point of the truncation formed in this way. The equilibrium points 
of the subgame and the truncation together form an equilibrium point of the whole 
game. Unfortunately, a direct ESS or a limit ESS does not have the same 
decomposition properties as a subgame perfect equilibrium point. A direct ESS 
or a limit ESS cannot be characterized by purely local conditions. Counterexamples 
can be found in the literature (van Damme 1987, Selten 1988). Nevertheless, a 
limit ESS does have some decomposition properties which are useful in the analysis 
of extensive game models. In order to describe these decomposition properties we 
now introduce the definitions of an "upper layer" and an "abridgement". 

We say that an information set v preceeds an information set u if at least one 
play intersects both information sets and if on every play which intersects both 
information sets the vertex in v comes before the vertex in u. An upper layer of a 
symmetric extensive two-person garne (F, f )  is a nonempty subset V of the set of 
all information sets U in F which satisfies the following conditions (i) and (ii): 

(i) If v~V then f(v)~V 
(ii) If v~V preceeds u~U then ueV. 

An information set v in an upper layer V is called a starting set in V if no other 
information sets u~ V preceed v. The vertices of starting sets in V are called starting 
points in V. 

Let V be an upper layer of (F, f) .  For every strategy b of player 1 for F we 
construct a new symmetric two-person garne called the b-abrid9ement of (F, f )  
with respect to V. The b-abridgement is a game (F , ,  f , )  constructed as follows. 
All vertices and edges after the starting point of V are removed from the garne 
tree. The starting points of V become end points. The payoffs at a starting point 
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x are the conditional payoff expectations in the original game if x is reached and 
b and f(b) are played later on. The other specifications of (F . ,  f . )  are obtained 
as restrictions of the corresponding specifications of (F, f )  to the new garne tree. 

A strategy b of player 1 for (F, f )  is called quasi-strict at an information set u 
if a number e > 0 exists for whieh the following is true: I f r  is a strategy in the 
e-neighborhood of b and if f(r) does not block u, then the local strategy bu which b 
assigns to u is a strong local best reply to r and f(r) in F. 

Obviously, b is quasi-strict at u if b u is a strict best reply. Moreover, if b is 
quasi-strict at u, then bu is a pure local strategy, or in other words a choice at u. 

The following result is the Theorem 4 in Selten (1988). 

Result 19. Let (F, f )  be a symmetric extensive two-person game, let b be a strategy 
of player 1 for F and let V be an upper layer of (F, f) .  Moreover, let (F , ,  f , )  be 
the b-abridgement of (1-',f) with respect to V. Then b is a regular limit ESS of 
(F, f )  if the following two conditions (i) and (ii) are satisfied: 

(i) For  every information set v of player 1 which belongs to V the following is 
true: b is quasi-strict at v in (F, f) .  

(ii) The strategy b,  induced on (F,, f , )  by b is a regular limit ESS of ( / - ' ,  f , ) .  

Results 18 and 19 are useful tools for the analysis of evolutionary extensive 
garne models. In many cases most of the information sets are image detached and 
the image detached information sets form an upper layer. In the beginning two 
animals involved in a conflict may be indistinguishable, but as soon as something 
happens which makes them distinguishable by the history of the conflict all later 
information sets become image detached. A many-period model with ritual fights 
and escalated conflicts [Selten (1983, 1988)] provides an example. Result 18 helps 
to find candidates for a regular limit ESS and Result 19 can be used in order to 
reach the conclusion that a particular candidate is in fact a regular limit ESS. 
Further necessary conditions concerning decompositions into subgames and 
truncations can be found in Selten (1983). However, the sufficient conditions stated 
there in connection to subgame-truncation decompositions are wrong. 

8. Biological applications 

Evolutionary game theory can be applied to an astonishingly wide range of 
problems in zoology and botany. Zoological applications deal, for example, with 
animal fighting, cooperation, communication, coexistence of alternative traits, 
mating systems, conflict between the sexes, offspring sex ratio, and the distribution 
of individuals in their habitats, botanical applications deal, for example, with seed 
dispersal, seed germination, root competition, nectar production, flower size, and 
sex allocation. In the following we shall briefly review the major applications of 
evolutionary garne theory. It is not our intent to present the formal mathematical 
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structure of any of the specific models but rather to emphasize the multitude of 
new insights biologists have gained from strategic analysis. The biological literature 
on evolutionary games is also reviewed in Maynard Smith (1982a), Riechert & 
Hammerstein (1983), Parker (1984), Hines (1987), and Vincent & Brown (1988). 

8.1. Basic questions about animal contest behavior 

Imagine the following general scenario. Two members of the same animal species 
are contesting a resource, such as food, a territory, or a mating partner. Each 
animal would increase its Darwinian fitness by obtaining this resource (the value 
ofwinnino). The opponents could make use of dangerous weapons, such as horns, 
antlers, teeth, or claws. This would have negative effects on fitness (the eost of 
escalation). In this context behavioral biologists were puzzled by the following 
functional questions which have led to the emergence of evolutionary game theory: 

Question 1. Why are animal contests offen settled conventionally, without resort 
to injurious physical escalation; under what conditions can such conventional 
behavior evolve? 

Question 2. How are conflicts resolved; what can decide a non-escalated contest? 

Classical ethologists attempted to answer Question 1 by pointing out that it 
would act against the good of the species if conspecifics injured or killed each 
other in a contest. Based on this argument, Lorenz (1966) even talked of"behavioral 
analogies to morality" in animals. He postulated the fairly widespread existence 
of an innate inhibition which prevents animals from killing or injuring members 
of the same species. 

However, these classical ideas are neither consistent with the methodological 
individualism of modern evolutionary theory, nor are they supported by the facts. 
Field studies have revealed the occurrence of fierce fighting and killing in many 
animal species when there are high rewards for winning. For example, Wilkinson 
and Shank (1977) report that in a Canadian musk ox population 5 10 percent of 
the adult bulls may incur lethal injuries from fighting during a single mating season. 
Hamilton (1979) describes battlefields of a similar kind for tig wasps, where in 
some figs more than half the males died from the consequences of inter-male 
combat. Furthermore, physical escalation is not restricted to male behavior. In 
the desert spider Agelenopsis aperta females offen inflict lethal injury on female 
opponents when they fight over a territory of very high value EHammerstein and 
Riechert (1988)]. 

Killing may also occur in situations with moderate or low rewards when it is 
cheap for one animal to deal another member of the same species the fatal blow. 
For  example, in lions and in several primate species males commit infanticide by 
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killing a nursing-female's offspring from previous mating with another male. This 
infanticide seems to be in the male's "selfish interest" because it shortens the period 
of time until the female becomes sexually receptive again (Hausfater and Hrdy 
1984). 

Another striking phenomenon is that males who compete for access to a mate 
may literally fight it out on the female's back. This can sometimes lead to the 
death of the female. In such a case the contesting males destroy the very mating 
partner they are competing for. This happens, for example, in the common toad 
[Davies and Halliday (1979)]. During the mating season the males locate themselves 
near those ponds ¢¢here females will appear in order to spawn. The sex ratio at 
a given pond is highly male-biased. When a single male meets a single female he 
clings to her back as she continues her travel to the spawning site. Offen additional 
males pounce at the pair and a struggle between the males starts on the female's 
back. Davies & Halliday describe a pond where more than 20 percent of the 
females carry the heavy load of three to six wrestling males. They also report 
that this can lead to the death of the female who incurs a risk of being drowned 
in the pond. 

It is possible to unravel this peculiar behavior by looking at it strictly from the 
individual male's point of view. His individual benefit from interacting with a 
female would be to fertilize her eggs and thus to father her offspring. If the female 
gets drowned, there will be no such benefit. However, the same zero benefit from 
this female will occur if the male completely avoids wrestling in the presence of a 
competitor. Thus it can pay a male toad to expose the female to a small risk of death. 

The overwhelming evidence for intra-specific violence has urged behavioral 
biologists to relinquish the Lorenzian idea of a widespread "inhibition against 
killing members of the same species" and of "behavioral analogies to morality". 
Furthermore, this evidence has largely contributed to the abolishment of the 
"species welfare paradigm". Modern explanations of contest behavior hinge on 
the question of how the behavior contributes to the individual's success rather 
than on how it affects the welfare of the species. These explanations relate the 
absence or occurrence of fierce fighting to costs and benefits in terms of fitness, 
and to biological constraints on the animals' strategic possibilities. 

We emphasize that the change of paradigm from "species welfare" to "individual 
success" has paved the way for non-cooperative game theory in biology (Parker 
and Hammerstein 1985). The Hawk-Dove game in Figure 1 (Maynard Smith and 
Price 1973) should be regarded as the simplest model from which one can deduce 
that natural selection operating at the individual level may forcefully restrict the 
amount of aggression among members of the same species, and that this restriction 
of aggression should break down for a sufficiently high value of winning. In this 
sense the Hawk-Dove  game provides a modern answer to Question 1, but 
obviously it does not give a realistic picture of true animal fighting. 

The evolutionary analysis of the Hawk-Dove  game was outlined in Section 3. 
Note, however, that we confined ourselves to the case where the garne is played 
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between genetically unrelated opponents. Grafen (1979) has analyzed the Hawk- 
Dove game between relatives (e.g. brothers or sisters). He showed that there are 
serious problems with adopting the well known biological concept of "inclusive 
fitness" in the context of evolutionary game theory [see also Hines & Maynard 
Smith (1979)]. The inclusive fitness concept was introduced by Hamilton (1964) 
in order to explain "altruistic behavior" in animals. It has had a major impact on 
the early development of sociobiology. Roughly speaking, inclusive fitness is a 
measure of reproductive success which includes in the calculation of reproductive 
output the effects an individual has on the number of offspring of its genetic 
relatives. These effects are weighted with a coetticient of relatedness. The inclusive 
fitness approach has been applied very successfully to a variety of biological 
problems in which no strategic interaction occus. 

8.2. Asymmetric animal contests 

We now turn to Question 2 about how conflict is resolved. It is typical for many 
animal contests that the opponents will differ in one or more aspect, e.g. size, age, 
sex, ownership status, etc. If such an asymmetry is discernible it may be taken as 
a cue whereby the contest is conventionally settled. This way of settling a dispute 
is analyzed in the theory of asymmetric contests (see Section 6 for the mathematical 
background). 

It came as a surprise to biologists when Maynard Smith and Parker (1976) 
stated the following result about simple contest models with a single asymmetric 
aspect. A contest between an "owner" and an "intruder" can be settled by an 
evolutionarily stable "owner wins" convention even if ownership does not positively 
affect fighting ability or reward for winning (e.g. if ownership simply means prior 
presence at the territory). Selten (1980) and Hammerstein (1981) clarified the 
game-theoretic nature of this result. Hammerstein extended the idea by Maynard 
Smith and Parker to contests with several asymmetric aspects where, for example, 
the contest is one between an owner and an intruder who differ in size (strength). 
He showed that a payoff irrelevant asymmetric aspect may decide a contest even 
if from the beginning of the contest another asymmetric aspect is known to both 
opponents which is payoffrelevant and which puts the conventional winner in an 
inferior strategic position. For example, if escalation is sutticiently costly, a weaker 
owner of a territory may conventionally win against a stronger intruder without 
having more to gain from winning. 

This contrasts sharply with the views traditionally held in biology. Classical 
ethologists either thought they had to invoke a "home bias" in order to explain 
successful territorial defense, or they resorted to the weil known logical fallacy 
that it would be more important to avoid losses (by defending the territory) than 
to make returns (by gaining access to the territory). A third classical attempt to 
explain the fighting success of territory holders against intruders had been based 
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on the idea that the owner's previous effort already put into establishing and 
maintaining the territory would bias the value of winning in the owner's favor 
and thus create for him a higher incentive to fight. However, in view of evolutionary 
game theory modern biologists call this use of a "backward logie" the Concorde 
fallacy and use a "forward logic" instead. The value of winning is now defined as 
the individual's future benefits from winning. 

The theory of asymmetrie contests has an astonishingly wide range of applications 
in different parts of the animal kingdom, ranging from spiders and insects to birds 
and mammals [Hammerstein (1985)]. Many empirieal studies demonstrate that 
asymmetries are decisive for conventional confliet resolution [e.g. Wilson (1961), 
Kummer et al. (1974), Davies (1978), Riechert (1978), Yasukawa and Biek (1983), 
Crespi (1986)]. These studies show that differences in ownership status, size, weight, 
age, and sex are used as the cues whereby contests are settled without major 
escalation. Some of the studies also provide evidenee that the conventional 
settlement is based on the logic of deterrence and thus looks more peaceful than 
it really is (the animal in the winning role is ready to fight). This corresponds 
nicely to qualitative theoretical results about the structure of evolutionarily stable 
strategies for the asymmetric contest models mentioned above. More quantitative 
comparisons between theory and data are desirable, but they involve the intriguing 
technical problem of measuring game-theoretic payoffs in the field. Biological 
critics of evolutionary game theory have argued that it seems almost impossible 
to get empirical aceess to game-theoretic payoffs [see the open peer commentaries 
of a survey paper by Maynard Smith (1984)]. 

Question 3. Is it possible to determine game-theoretic payoffs in the field and to 
estimate the eosts and benefits of fighting? 

Despite the pessimistic views of some biologists, there is a positive answer to 
this question. Hammerstein and Riechert (1988) analyze contests between female 
territory owners and intruders of the funnel web spider Agelenopsis aperta. They 
use data [e.g. Riechert (1978, 1979, 1984)] from a long-term field study about 
demography, ecology, and behavior of these desert animals in order to estimate 
all garne payoffs as changes in the expected lifetime number of eggs laid. Here the 
matter is complicated by the fact that the games over web sites take place long 
before eggs will be laid. Subsequent interactions occur, so that a spider who wins 
today may lose tomorrow against another intruder~ and today's loser may win 
tomorrow against another owner. 

In the major study area (a New mexico population), web site tenancy crucially 
affects survival probability, fighting ability, and the rate at which eggs are produced. 
The spiders are facing a harsh environment in which web sites are in short supply. 
Competition for sites causes a great number of territorial interactions. At an 
average web site which ensures a moderate food supply, a contest usually ends 
without leading into an injurious fight. For small differences in weight, the 
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Figure 3. Fighting in the desert spider Agelenopsis aperta. The left animal is an intruder who challenges 
the owner of a territory. The contest takes place on the owner's funnel web. Typically the opponents  
do not touch each other and keep a min imum distance of approximately one inch. The web is used 
as a "scale" in order to determine relative body weight. The heavier spider wins conventionally if there 
is an important  weight difference. Otherwise ownership is respected in most  cases. (Drawing by D. 
Schmidl after a photograph by S.E. Riechert.) 

owner-intruder asymmetry typically settles the dispute in favor of the owner. For 
great differences in weight, the weight asymmetry settles it in favor of the heavier 
spider. Apparently the information about relative weight is revealed when the 
spiders are shaking the web. This follows from the observation that in most contests 
the spiders do not even touch each others' bodies, and from the fact that vision 
is relatively poor in these creatures whose sensory systems are more specialized 
on dealing with vibratory and chemical information. Experiments with artificial 
weights glued on the spider's abdomen also support this view. 

In order to examine carefully whether we understand the evolutionary logic of 
fighting in these desert animals it is clearly impotant to deal with Question 3 about 
measuring payoffs in the field. However, only the immediate consequences of a 
contest and not the game payoffs can be measured directly. For example, the 
outcome ofa territorial fight between two spiders may be that one of the contestants 
has lost two legs during a vicious biting match, and that the opponent has gained 
the territory which yields a daily energy intake of 72 joule per day. Here, we are 
dealing with very different currencies: how dojoules compare to leg amputations? 

The currency problem can be solved by converting legs and joules into the 
leading currency of evolutionary biology, i.e. fitness. This requires numerical 
simulations of future life histories for healthy and injured spiders with different 
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starting conditions. In the study by Hammerstein and Riechert these simulations 
are based on data from 15 years of desert field work. The results are used to 
calculate, for example, the value of winning as the difference in expected future 
egg mass between a healthy owner and a healthy wanderer. The wanderer's expected 
egg mass can be interpreted as a biological opportunity cost. 

A glance at the outcome of these calculation reveals an interesting aspect of this 
spider society. The estimated benefit of winning is 20 mg for an average site and 
72 mg for an excellent site. These values differ by a factor of more than 3. In 
contrast, the immediate benefits in terms of daily weight gain are not eren twice 
as good for excellent sites (5.1 versus 7.9mg). This "multiplier effect" can be 
explained as follows. An individual who occupies an excellent site gains weight at 
a rate which is near the maximum for this population. As a result, an individual's 
weight relative to the population mean will increase as long as it inhabits the 
excellent site. This is important for remaining in possession of the site because 
weight counts in territorial defense. Therefore, an originally "richer" spider will 
have better future chances of maintaining its wealth than an otherwise equal 
"poorer" individual. This anthropomorphic feature of the spider society explains 
the multiplier effect. 

The negative consequences of fighting can be calculated on the same scale as 
the value of winning (egg mass). Leg loss costs 13 mg and death costs 102mg in 
the New Mexico population. Furthermore, the risk of injury is known for escalated 
fights. Using these data it can be shown that intruders would pay a high price for 
"breaking the rules" of this society by disregarding the status of an owner of similar 
weight. This cost is high enough to ensure the evolutionary stability of the "owner 
wins" convention. 

In order to give a consistent picture of the spider territorial system the 
assumption had to be made that an individual spider has little information about 
how its weight compares to the rest of the population, and good informtion about 
its relative size in a given contest situation. Otherwise small spiders would have 
to engage in more fierce fights with small opponents because they would then be 
in a "now or never" situation. Grafen (1987) calls asymmetries devisive when they 
pur animals in such now or never situations. This feature does not seem to prevail 
in the spider population because of the apparent lack of an individual's information 
about its "position" in the population weight distribution. At this point it should 
be emphasized that game-theoretic studies of field data often reveal details about 
information that is not available to an animal although it would be advantageous 
for the individual to have this information. Such constraints, for example, were 
also discovered in a famous field study about digger wasps [Brockmann et al. 
(1979)]. These wasps face a strategic decision to either work hard and digg a 
burrow or to save this effort and enter an existing burrow which may or may not 
be in use by a conspecific animal. Surprisingly, the wasps seem to be unable to 
distinguish between empty and occupied burrows although in view of the fighting 
risk it would be important to have this capability. 
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The analysis of spider behavior by Hammerstein and Riechert (1988) is based 
on a way of modelling called the fixed background approach. This means that 
payoffs for a given contest are calculated from field data about habitat structure, 
demography, and observed behavior of the population under investigation. The 
"fixed background" is a mathematical representation of biological facts about the 
existing population. In other theoretical studies that are more detached from 
empirical information one can also adopt the variable background approach. Here, 
the entire sequence of an individual's contests with varying opponents is modelled 
within a single large population game. Houston and McNamara (1988a, 1991) 
study the Hawk-Dove game from this point of view. 

8.3. War of attrition, assessment, and signallin9 

The Hawk-Dove game and related models emphasize the problem of when an 
individual should initiate injurious biting or other forms of esclated fighting 
behavior. It is assumed that the onset of true aggression is a discrete step rather 
than a gradual transition (such a discrete step occurs, for example, in the spider 
example presented above). Maynard Smith (1974) introduced the "war of attrition" 
as a different model that captures ways of fighting in which costs arise in a smoother, 
gradual way. This modelling approach emphasizes the following problem: 

Question 4. When should an animal stop a costly fighting activity? 

Bishop and Cannings (1978a, b) analyzed the symmetric war of attrition and 
another variant of this garne with random rewards about which the contestants 
have private information. Hammerstein and Parker (1981) analyzed the asymmetric 
war of attrition, i.e. a conflict where a role difference between two opponents is 
known to both of them with some small error. They showed that typically the 
benefit-cost ratio V/C should be decisive: the individual with the higher benefit-cost 
ratio should win (here, V is the value of winning, C is the constant time rate of 
cost, and both parameters may differ for different roles). This result has an 
important implication, namely that common-sense rules for conflict resolution are 
the only evolutionarily stable solutions in the asymmetric war of attrition model! 
Needless to say that this is in sharp contrast with the results obtained for models 
of the Hawk-Dove type (see previous section). 

The original war of attrition model is lacking an important feature. Behavioral 
biologists find it hard to imagine a real animal contest in which no assessment of 
the opponent takes place during an ongoing aggressive interaction. This has led 
to an interesting refinement of the war of attrition model by Enquist and Leimar. 
They developed the "sequential assessment game" in which the opponents acquire 
information about their true fighting abilities throughout an agonistic interaction 
[Enquist and Leimar (1983, 1987, 1988), Leimar (1988)]. The beauty of the sequen- 
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tial assessment game is its potential for creating quantitative predictions that can 
be tested by empirical biologists. Enquist et al. (1990) demonstrate this for fighting 
in the cichlid fish Nannacara anomala, Leimar et al. (1991) for fighting in the bowl 
and doily spider Frontinella pyramitela [see also Austad (1983)]. 

The problem of assessment is closely related to the problem of signalling and 
communication in animal contests. When animals assess each other, it may pay 
an individual to convey information about strength by use of signals rather than 
by actual fighting [e.g. Clutton-Brock and Albon (1979)]. Evolutionary game 
theory has strongly influenced the biological study of signalling. It caused behavioral 
biologists to address the strategic aspects of animal communication. 

Question 5. What is communicated by animal display behavior? 

It seems obvious that animals should demonstrate strength or resource holding 
potential during an agonistic display. However, it is much less clear as to whether 
or not animals should communicate behavioral intentions, such as the intention 
to escalate. Maynard Smith (1982b) expressed the extreme view that the intention 
to escalate could not be communicated by a cheap signal, such as barking. He 
argued that if such a signal did indeed deter opponents it would be profitable to 
use this signal even in situations where no escalation is intended. As a result of 
this cheating the signal would then lose its meaning. 

It was Maynard Smith's merit to bring this problem of cheating to the attention 
of behavioral biologists. However, he clearly pushed the cheating argument a little 
too rar. Enquist (1985) provided the first biological model in which cheap signals 
do relate to intended fighting behavior at evolutionary equilibrium. As far as the 
empirical side of this problem is concerned, Caryl (1979) has reanalyzed a number 
of bird studies on aggresion in the light of Maynard Smith's idea. He concluded 
that the displays are far from being good predictors of physical attack. In contrast, 
Enquist et al. (1985) povide an example of aggressive behavior in fulmars, where 
the behavior shown by an individual at an early stage during a contest is 
related to this individual's persistence at a later stage. Andersson (1984) dis- 
cusses the astonishingly high degree of interspecific variation found in threat 
displays. 

So far we addressed the use of cheap signals in animal communication. More 
recent developments in biological signalling theory deal with the evolution of 
costly signals. Zahavi (1975, 1977, 1987) made the first major attempt to consider 
horns, antlers, and other structures as costly signals used in animal communication. 
He formulated the so-called handicap principle which roughly states that animals 
should demonstrate their quality to a rival or a potential mate by building costly 
morphological structures that in some sense handicap the signaller. The handicap 
principle was formulated in a verbal way by a field biologist. It attracted major 
criticism by Maynard Smith (1976, 1985) and other theoreticians who rejected 
Zahavi's idea on the ground of simple model considerations. However, recently 
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Pomiankowski (1987) and Grafen (1990a, b) used more intricate models from 
population genetics and game theory to re-establish Zahavi's principle. This shows 
nicely how biologists may sometimes learn more quickly about game rationality 
from studying real animals than by dealing with mathematical models. 

8.4. The evolution of cooperation 

There are a number of different ways (see Questions 6-9) in which cooperation 
between animals can be explained from an evolutionary point of view. Hamilton 
(1964) argued convincingly that altruistic behavior towards genetic relatives 
be.comes understandable if one includes into the evolutionary measure of success 
(fitness) not only the altruist's own offspring but also the effect of the altruistic act 
on the receiver's reproductive output. The so-called kin selection theory weighs 
this effect on the receiver's offspring with the coefficient of genetical relatedness 
between donor and receiver. Hamilton's theory therefore takes indirect gene 
transmission via relatives into account. 

Question 6. Is genetic relatedness an important key to the understanding of 
animal cooperation? 

Because of its emphasis on genetic relatedness, kin selection theory does not 
attempt to explain cooperation between non-relatives. Except for this limitation 
in scope it has become the most successful theory about cooperation in animals. 
It is crucial, for example, for the understanding of castes and reproductive division 
of labor in highly social species of ants, bees, wasps, and termites. The remarkable 
complexity of social organization in ant colonies was recently surveyed by 
H611dobler and Wilson (1990). Interestingly, many of the features of a typical ant 
colony are also found in a highly social mammal called the naked mole-rat 
[Sherman et al. (1991)]. Again, elementary kin selection theory rather than 
evolutionary game theory seems to provide the essential ideas for the understanding 
of sociality in this mammal. Kin selection also plays an important role in the 
explanation of helping and cooperative breeding in various bird species [Stacey 
and Koening (1990)]. 

Question 7. Does the (non-genetic) inheritance of resources or mating partners 
lead to animal cooperation? 

Reyer (1990) described a cooperatively breeding bird population in which two 
kinds of cooperation occur that call for very different explanations. In the Pied 
Kingfisher, young male birds stay with their parents and help them to raise brothers 
and sisters instead of using the reproductive season for their own breeding attempts. 
This is explicable by straight forward kin selection arguments. In contrast, other 
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young birds of the same species are also helpers but are not genetically related to 
the receivers of their help. 

Reyer was able to show that the latter helpers through their help increased their 
future chances of becoming the breeding female's mating partner in the subsequent 
season. Note here that the mating market in Reyer's population is fairly asymmetrical. 
Female partners are scarce "resources". There is a game involved in the sense that 
it would be in the breeding pair's interest to impose a high work load on the 
helper whereas the helper would be better oft by inheriting the female without 
incurring the cost of help. There seem to be a number of other biological examples 
where garnes of a similar kind are being played. 

Question 8. Do animals cooperate because of partially overlapping interests? 

Houston and Davies (1985) give an example of cooperation in birds where it 
may happen that two unrelated males care cooperatively for the same female's 
offspring. Here the point is that both have copulated with this female and both 
have a positive probability of being the father of the offspring they are raising. 
There is nevertheless a game-like conflict between the males as to how much each 
contributes to the joint care. Houston and Davies used ESS models to analyze 
the consequences of unequal mating success for the amount of male parental care. 
They also included the female as a third player in this garne. 

Question 9. Has evolution taught its organisms the logic of repeated games? 

Trivers (1971) introduced the idea into evolutionary theory that a long-term 
benefit of an altruistic act may result from the fact that it will be reciprocated later 
by the receiver. He caused biologists to search for the phenomenon of reciprocal 
altruism. In his seminal paper, Trivers already referred to the game-theoretic 
literature on cooperation in a repeated game, such as the supergame of the 
prisoner's dilemma. After more than a decade of search for reciprocal altruism, 
however, it became clear that this search has not been very successful [Packer 
(1986)] except for the discovery of elaborate alliances in primates [-e.g. Seyfart and 
Cheney (1984)]. 

In non-primates, only a few cases are known that have at least some flavor of 
reciprocity. Perhaps the most interesting example was provided by Wilkinson 
(1984) who studied vampire bats in Costa Rica. In the population under investigation, 
female vampire bats roost in groups of several individuals. They fly out every night 
searching for a blood meal. If they fail to obtain such a meal for two consecutive 
nights, death from starvation is very likely to occur. Females who return to the 
roost without a blood meal solicit help from other females by licking under their 
wings. If their begging is successful, blood will be donated by regurgitation. 
Wilkinson demonstrated that bats who had previously received help from a begging 
individual had a stronger tendency to provide help than others. 
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Although Trivers (1971) had already introduced the idea of cooperation in 
repeated games, this idea entered the biological literature for a second time when 
Axelrod and Hamilton (1981) analyzed the repeated Prisoner's dilemma game in 
the context of evolutionary garne theory. They emphasize that cooperation could 
not very easily start to evolve in a population of non-cooperating animals because 
a threshold value for the proportion of cooperators in the population would have 
to be exceeded in order to make cooperation a successful evolutionary strategy. 
Here, kin selection may once again play an important role if one attempts to 
understand the initial spread of cooperation. 

Axelrod and Hamilton also stated that "tit for tat" would be an evolutionarily 
stable strategy. This, however, is not quite correct because "tit for tat" fails to 
satisfy the second condition for evolutionary stability [Hammerstein (1984), Selten 
and Hammerstein (1984)]. Boyd and Richerson (1988) discussed further problems 
with the logic of biological cooperation in groups of more than two individuals. 
Nowak and Sigmund (1992) st udied repeated conflict in heterogeneous populations. 

Brown and Brown (1980) and Caraco and Brown (1986) interpreted the 
phenomenon of food sharing in communally breeding birds as cooperation based 
on the repeated structure of an evolutionary garne. Their key argument is the 
following. When neighboring parents share the task of delivering food to their 
offspring, this may result in a fairly steady supply of nutrition even when an 
individual's daily foraging success varies a lot. This benefit from food sharing may 
be achievable in a game equilibrium, since foraging takes place repeatedly. 

The idea that "tit for tat"-like cooperation might evolve caused Milinski (1987) 
to tun a series of experiments in which he manipulated cooperation in sticklebacks. 
These fish swim towards a predator in order to inspect the enemy. Milinski studied 
pairwise predator inspection trips. Using a mirror, he replaced the partner of a 
stickleback by the animal's own mirror image. Depending on the mirror's angle, 
the artificial companion behaved in a more or less cooperative way by either 
following or swimming away. With a cooperative mirror image, the sticklebacks 
approached the predator more closely than with a non-cooperative mirror image. 

At first glance this seems to be explicable in a fairly simple way through the 
effect of risk dilution, and there seems to be no need to invoke the far-sighted 
logic of repeated garne interaction. However, Milinski offers a number of reasons 
that indicate the importance of the repeated structure [see also Milinski et al. 
(1990a, b)]. He created a lively discussion of the predator inspection phenomenon 
[e.g. Lazarus and Metcalfe (1990), Milinski (1990)] and caused other fish biologists 
to search for similar phenomena in their species [Dugatkin (1988, 1991), Dugatkin 
and Alfieri (1991)]. 

Fischer (1980, 1981, 1988) suggested another example of animal behavior that 
seemed to have some similarity with the "tit for tat" strategy. His study object is 
a fish called the black hamlet. This is a simultaneous hermaphrodite who produces 
sperm and eggs at the same time. When mating takes place between a pair of fish, 
each fish alternates several times between male and female role. Fischer argues 
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that eggs are relatively few and expensive compared with sperm, and that, therefore, 
it is easy for a hamlet to get its own eggs fertilized by another fish. Thus a fish 
can use the eggs in its possession to trade them in for the opportunity to fertilize 
the eggs of another fish. The egg exchange takes place in a sequence containing 
several distinct spawning bouts. 

To trade, or not to trade; that is the question Friedman and Hammerstein (1991) 
asked about the Hamlet's peculiar mating behavior. They modelled the conflict as 
a population game in which the search for other partners after desertion of a given 
partner is explicitly taken into account. It follows from their analysis that there 
is less similarity with a repeated prisoner's dilemma game and with "tit for tat" 
than Fischer (1988) had originally suggested. Friedman and Hammerstein show 
in particular that cheating does not pay in the Hamlet's egg trading, and that there 
is no scope for specialization on male function. Enquist and Leimar (1993) analyzed 
more generally the evolution of cooperation in mobile organisms. 

8.5. The great variety of biological games 

A final "tour d'horizon" will take us through a number of different biological 
applications. Evolutionary conflict seems to exist in almost any area of animal 
and plant behavior where individuals interact directly or indirectly. Consider, for 
example, the problem of parental care. Both father and mother of a young animal 
would benefit from offering parental care if this increased their offspring's chances 
of survival. However, when there is a cost involved in parental care, both father 
and mother would often be better off if they could transfer some or all of the work 
load to the other sex. 

A similar point can be made about the problem of mate searching. Although 
both sexes have an interest in finding each other for the purpose of mating, an 
individual of either sex would benefit from saving the cost of mate searching. Once 
the sexes have found each other, there may be a conflict as to whether or not 
mating should take place. It may pay offfor one sex to mate but not for the other. 

The problem of conflict over parental investment was first described by Trivers 
(1972). However, through his way of looking at this problem he came close to 
committing the so-called Concorde fallacy [Dawkins and Carlisle (1976)]. Ma~ynard 
Smith (1977) analyzed conflict over parental investment in the context of evolutionary 
game theory. Hammerstein (1981) provided a formal justification for his modelling 
approach. Grafen and Sibly (1978) further discussed the evolution of mate desertion. 
Mate searching games and conflict over mating were studied by Bengtsson (1978), 
Packer (1979), Parker (1979), and Hammerstein and Parker (1987). 

Finding a mate can be facilitated if one sex calls in order to attract a mate. This 
is what some males - the callers - do, for example, in the natterjack toad. Other 
males in this species - the satellites - remain silent and try to intercept females as 
they approach the caller. If everybody is silent, there is a high incentive to behave 
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as a caller. If everybody calls, some males have a high incentive to remain silent. 
Arak (1988) used garne theory in order to model the evolution of this system. 

Alternative male mating tactics are also found in various other parts of the 
animal kingdom. For example, in a population of the white-faced dragonfly males 
either defend territories on the pond or they act as transients in the vegetation 
surrounding the pond. Waltz and Wolf (1988) used ESS theory in order to 
understand the dragonfly mating strategies. Another dragonfly mating system was 
investigated in a similar spirit by Poethke and Kaiser (1987). 

Before mating takes place a male may have to defend the female against other 
males who show an interest in the same partner (pre-copulatory mate guarding). 
Even after mating a male may have to defend the female against other males if a 
new mate would still be able to fertilize a considerable fraction of the eggs 
(post-copulatory mate guarding). These conflicts were analyzed by Grafen and 
Ridley (1983), Ridley (1983), and Yamamura (1986, 1987). 

Related to the problem of mate guarding and access to a mate is the evolution 
of male armament. In many species males have a greater body size than females, 
and they are equipped with morphological structures that may serve as weapons 
in a fight. The evolution of such features resembles an arms race that can be 
treated as an evolutionary garne [Parker (1983)]. However, the equilibrium 
approach of ESS theory may not always be appropriate [Maynard Smith and 
Brown (1986)] for this kind of problem. 

Males use their weapons not only against their rivals. In several species of 
primates and in lions, males have a tendency to kill the offspring of a nursing 
female after they chased away the father of this offspring. This infant killing seems 
to considerably shorten the time span that elapses until the female becomes sexually 
receptive again. Hausfater et al. (1982), and Glass et al. (1985) argued that infant 
killing is an equilibrium strategy of an evolutionary game. One can look in a 
similar way at the phenomenon of siblicide and at other forms of sib competition 
[Dickins and Clark (1987), Parker et al. (1989)]. 

Fortunately, there are many cases in nature where less violent means than infant 
killing serve the purpose of gaining access to a mate. For example, the female may 
have to be "conquered" by donation of a nuptial gift that would resemble a box 
of chocolates in the human world. Parker and Simmons (1989) studied game- 
theoretic models of nuptial feeding in insects. 

Yet another problem concerning the sexes is that of sex ratio among a female's 
offspring. Throughout the animal kingdom there is a strong tendency to produce 
both sexes in roughly equal numbers. This fact was already known to Darwin 
(1871) who reviewed sex ratio data for various groups of animals with little success 
in explaining the 1:1 property. It was indeed left to Fisher (1930, 1958) and to 
Shaw and Mohler (1953) to give a convincing explanation of this phenomenon. 
There is an implieit game-theoretic structure in Fisher's way of reasoning. This 
structure was revealed by Maynard Smith (1982a) who reformulated Fisher's 
thoughts in the formal framework of evolutionary garne theory. Maynard Smith 
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(1980) also introduced a new theory of sexual investment in which the evolution 
of the sex ratio is subject to severe constraints. Reviews of sex ratio theory can 
be found in Charnov (1982), Karlin and Lessard (1986), and Bull and Charnov 
(1988). 

When animals live in groups, such as a flock of birds, game-like situations arise 
from the problem of how individuals should avoid dangers caused by predators. 
There is an obvious conflict concerning the safest locations within the group. 
However, there is also an evolutionary conflict with regard to the individual rate 
of scanning for predators. Properties of this vigilance game were investigated by 
Pulliam et al. (1982), Parker and Hammerstein (1985), Motro (1989), Motro and 
Cohen (1989), Lima (1990), and McNamara and Houston (1992). 

The distribution of foraging animals over a patchy habitat can be studied 
theoretically under the extreme assumption that each individual is free to choose 
its foraging patch and can change between patches at no cost. Fretwell and Lucas 
(1970) and Fretwell (1972) pointed out that ideally each animal should move to 
the patch were its success will be highest. When competitive ability is equal this 
should result in a distribution over patches with the property that (a) individuals 
in different patches have equal gains, and that (b) average success is the same for 
all patches. This pattern of habitat utilization is called the ideal free distribution. 

A number of experiments [e.g. Milinski (1979), Harper (1982)] have shown that 
prediction (b) is supported by facts even when there are differences in competitive 
ability so that (a) does not hold. This has led to interesting theoretical work by 
Houston and McNamara (1988b) who enrich the game-theoretic analysis with 
additional methods from statistical mechanics [see also Parker and Sutherland 
(1986)3. A review of models in relation to the ideal free distribution is given by 
Milinski and Parker (1991). Yamamura and Tsuji (1987) examine the use of patchily 
distributed resources as a game that is closely related to standard models in optimal 

foraging theory. 
Organisms are not always free to choose their location. An interesting example 

of unfree choice of location is that of seed dispersal. Here the parental plant can 
impose its "will" on the offspring by attaching morphologieal structures to it that 
will enforce migration. Hamilton and May (1977) used evolutionary garne theory 
in order to discuss the question of how (enforced) seed dispersal is affected by 
intraspecific competition. They found that substantial dispersal should occur even 
when the habitat is homogeneous, constant, and saturated, and when there are 
high levels of seed mortality during dispersal. This is in sharp contrast with the 
view previously held in ecology that seed dispersal serves the main purpose of 
colonizing new empty patches. The seminal paper by Hamilton and May stimulated 
various authors to analyze dispersal as an evolutionary game [Comins et al. (1980), 
Comins (1982), Hastings (1983), Stenseth (1983), Levin et al. (1984), Holt (1985), 
Frank (1986), Lomnicki (1988), Taylor (1988), Cohen and Motro (1989)]. 

A somewhat related matter is the game between individuals of a parasitoid who 
have to decide where to lay their eggs. This game can lead to the phenomenon of 
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superparasitism where the number of eggs laid in a host is far greater than the 
number of offspring that can emerge from this host. Oviposition in a previously 
parasitized host can be observed even when only one offspring will emerge from 
this host. Originally, biologists tended to interpret this phenomenon as a mistake 
made by the egg-laying parasitoid. However, with the help of evolutionary game 
theory superparasitism can be understood much more convincingly as an adaptive 
phenomenon [van Alphen and Visser (1990)]. 

Parental plants can impose their "will" not only on the spatial distribution of 
their offspring, but also on the temporal distribution of when the seeds should 
germinate; different degrees of encapsulation lead to different germination patterns. 
These patterns have to be adapted to the environment in competition with other 
members of the same species. Germination games and the problem of dormancy 
were investigated by Ellner (1985a, b; 1986, 1987). 

There are more games played by plants. Desert shrubs use their root systems 
in order to extract water and nutrients from the soil. Near the surface, water is 
in short supply and there are many indications that neighboring plants compete 
for access to this scarce resource. Riechert and hammerstein (1983) modelled root 
competition as a population game and showed that the evolutionarily stable root 
strategy would not result in optimal resource exploitation at the species level. This 
result casts some doubt on classical ideas in ecology that are based on species 
welfare considerations. 

The root game can be extended to a co-evolutionary case where plants of different 
species interact. Co-evolutionary games were first studied by Lawlor and Maynard 
Smith (1976). Riechert and Hammerstein (1983) introduced a modelling approach 
to co-evolution in which the game-theoretic nature of interspecific conflict is made 
more explicit. They analyzed the problem of root evolution under the simultaneous 
occurrence of intra- and interspecific competition for water. Their model shows 
that co-evolution should lead to the use of different soil strata by different species, 
and that similar species should show the phenomenon of character displacement 
in areas were they overlap. As a matter of fact, most communities of desert plants 
are stratified in this sense. A number of other papers relate co-evolution to the 
framework of evolutionary game theory [e.g. Eshel and Akin (1983), Brown and 
Vincent (1987), Eshel (1978), Leimar et al. (1986)]. 

So far we have discussed applications of evolutionary game theory to either 
zoology or botany. However, some ESS models relate to both disciplines. This is 
most obvious in the field of pollination biology. There is a game-like conflict 
between plants and insects where the plant uses its flower to advertise nectar. Once 
a pollinator visits the flower, the insect's pollination service is rendered regardless 
of whether or not nectar is found. Given that this is the case, why should a plant 
offer nectar at all and how much nectar should it provide? Cochran (1986) explained 
the existence of non-rewarding orchids using her own empirical work. In contrast, 
Selten and Shmida (1991) answered the question of why a population of rewarding 
plants can be in stable equilibrium. 
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