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ABSTRACT
Internet traffic exhibits multifaceted burstiness and corre-
lation structure over a wide span of time scales. Previous
work analyzed this structure in terms of heavy-tailed ses-
sion characteristics, as well as TCP timeouts and congestion
avoidance, in relatively long time scales. We focus on shorter
scales, typically less than 100-1000 milliseconds. Our objec-
tive is to identify the actual mechanisms that are responsible
for creating bursty traffic in those scales. We show that TCP
self-clocking, joint with queueing in the network, can shape
the packet interarrivals of a TCP connection in a two-level
ON-OFF pattern. This structure creates strong correlations
and burstiness in time scales that extend up to the Round-
Trip Time (RTT) of the connection. This effect is more im-
portant for bulk transfers that have a large bandwidth-delay
product relative to their window size. Also, the aggregation
of many flows, without rescaling their packet interarrivals,
does not converge to a Poisson stream, as one might expect
from classical superposition results. Instead, the burstiness
in those scales can be significantly reduced by TCP pacing.
In particular, we focus on the importance of the minimum
pacing timer, and show that a 10-millisecond timer would be
too coarse for removing short-scale traffic burstiness, while
a 1-millisecond timer would be sufficient to make the traffic
almost as smooth as a Poisson stream in sub-RTT scales.

Categories and Subject Descriptors: C.2.m [Computer-
Communication Networks]

General Terms: Measurement, Experimentation, Perfor-
mance

Keywords: Traffic modeling, burstiness, wavelet-based mul-
tiresolution analysis, ON-OFF model, TCP self-clocking,
TCP pacing.
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1. INTRODUCTION
To characterize and explain the variability of Internet traf-

fic has been a long research endeavor. The discovery of Self-
Similarity (SS) and Long-Range Dependency (LRD) in both
LAN and WAN traffic in [21] was a breakthrough, as it es-
tablished that Internet traffic exhibits a strong correlation
structure that extends up to several hours (LRD signature),
and that the traffic process, scaled by an appropriate fac-
tor, maintains the same distribution when averaged across
a wide range of time scales (SS signature). The significance
of these statistical properties for queueing performance and
traffic prediction has been debated, with some models ar-
guing for a major impact (see [6]), while others insisting
that finite buffers limit the largest correlation scale1 that
can affect queueing (see [10]). Another major step was the
identification of the physical mechanisms that cause LRD
and SS behavior in large scales: it is the heavy-tailed distri-
bution of the duration of active or idle user times [31], also
related to the distribution of transfer sizes and user thinking
times [4].

More recently, another question raised significant atten-
tion: what is the impact of TCP, the dominant transport
protocol, on the correlation structure of Internet traffic?
Contrary to earlier claims that TCP can create self-similarity,
it has been now established that the correlations introduced
by TCP with its retransmission timeout and the conges-
tion avoidance algorithm extend over a certain range of time
scales, from a few Round-Trip Times (RTTs) up to tens or
hundreds of seconds [11, 9]. Nevertheless, these scales are of
great interest in traffic prediction and capacity provisioning,
and so the effect of these TCP mechanisms should not be
ignored in traffic modeling or simulation studies.

The major open question in the quest to understand In-
ternet traffic, however, is the burstiness of Internet traffic
in “short” scales. Short, here, typically refers to time inter-
vals up to 100-1000 milliseconds, in which the factors that
cause large-scale correlations may not yet be strong or even
present. Previous work in this area has given somewhat
contradictory results both in characterizing the variability of
Internet traffic through statistical models, but also in identi-
fying the mechanisms that create that variability. A review
of previous results is given in §2. For now, we note that
the traffic models which have been proposed cover the range
from a simple Poisson process, independent Gamma interar-
rivals, to quite complex non-Gaussian multifractal processes.

Our objective in this paper is to examine the link between
the TCP protocol and the short scale burstiness of Internet

1We use the terms “time scale” and “scale” interchangeably.
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traffic. The emphasis on TCP is justified by the fact that
typically more than 90% of Internet traffic is carried by the
TCP protocol. Additionally, since we are interested in short
time scales, we focus on the TCP self-clocking mechanism.
Self-clocking is responsible for shaping the interarrivals of
data segments from a single flow in sub-RTT scales, i.e., in
time intervals that are shorter than the RTT of that flow.
Specifically, we start with the following basic question: can
a TCP flow create bursty traffic in sub-RTT scales, and if
so, under which conditions?

We find that TCP self-clocking, joint with network queue-
ing due to the packets of the flow itself or due to cross
traffic, can shape the packet interarrivals of a TCP flow
in an one-level or two-level ON-OFF pattern, respectively.
This packet-train structure creates strong correlations and
burstiness in sub-RTT scales, especially in the case of bulk
transfers that have a large bandwidth-delay product rela-
tive to their window size. Such flows can build up a large
window, due to their size. Additionally, if their bandwidth-
delay product is quite larger than their window, they tend
to transmit their packets in bursts, or clusters of bursts.

We also show that the aggregation of many flows, without
rescaling their packet interarrivals, does not converge to a
Poisson stream, as one might expect from classical superpo-
sition results. Instead, the correlation structure of individ-
ual flows can shape the correlation structure of the aggre-
gate stream, independent of how many flows are multiplexed
together. Looking for ways to reduce the burstiness of In-
ternet traffic in short scales, we show that ideal TCP pacing
at the sources is very effective. Instead of only examining
ideal pacing, however, we also consider the presence of a
minimum pacing timer and show that the commonly used
10-millisecond timer would be too coarse for removing short-
scale traffic burstiness. On the other hand, a 1-millisecond
pacing timer can reduce the burstiness in sub-RTT scales to
almost the level of a Poisson process with the same average
rate.

Note that we do not claim that TCP self-clocking is the
only mechanism that can create short scale burstiness. Our
results can help, however, to explain the results of previous
measurement studies in terms of the characteristics (such as
size, RTT, capacity, average window size) of the TCP flows
that were dominant in the corresponding packet traces.

Section 2 summarizes the most relevant previous work.
Section 3 gives a brief background on multiresolution anal-
ysis. Section 4 shows the link between TCP self-clocking
and sub-RTT burstiness for a single TCP connection. Sec-
tion 5 focuses on the effects of traffic aggregation. Section 6
is a case-study, in which we analyze an OC-48 trace and
identify the flows that cause sub-RTT burstiness. Section 7
examines the effect of pacing. We conclude in Section 8.

2. PREVIOUS WORK
The work by Feldmann et al. [8] was one of the first to fo-

cus on short time scales, and also to use wavelet-based mul-
tiresolution analysis in the analysis of the scaling behavior
(a special type of correlation structure) of Internet traffic.
That work provided empirical evidence that WAN traffic can
be modeled using a multifractal model, similar to that de-
veloped in [26]. More recent work, however, argues that the
traffic at a tier-1 ISP is well modeled as monofractal, rather
than multifractal [34]. This discrepancy is probably due to
differences in the marginal distribution of the traffic used

by the two studies: if the marginal distribution is Gaussian,
which is often the case with traces from highly aggregated
WAN links, the process can only exhibit monofractal scal-
ing.

A paper that is more related to our work is [7]. The
authors showed that scaling in short time scales is related
to the TCP closed-loop flow control, and argued that the
cutoff between short and long scale behavior is, roughly,
the RTT of the TCP transfers. They identified, however,
ACK compression [33], which is a specific case of TCP self-
clocking failure, as a primary suspect for the scaling behavior
observed in short time scales. Our work provides new insight
in the observations of [7]. For instance, it now becomes clear
that ACK compression is not necessary to create sub-RTT
burstiness; self-clocking by itself is a sufficient condition, as
long as the bandwidth-delay product is larger than the TCP
window.

More recently, it has been shown that the short scale
burstiness does not depend on the TCP flow arrival process
[12]. Additionally, in not heavily loaded networks, corre-
lations across different flows do not affect the short scale
burstiness either. In a follow-up work [13], the authors
showed that the the correlation structure of aggregate traffic
can be captured by a Poisson cluster process in which the
packet interarrivals within individual clusters of each flow
follow an overdispersed Gamma distribution, while the flow
volumes are heavy-tailed. Another related study was pub-
lished in [34]. The authors introduced the concept of “dense
flows” i.e., flows with bursts of densely clustered packets,
and showed that dense flows create short time scale bursti-
ness. Our work explains the presence of dense flows based
on self-clocking, putting the results of [34] in a more TCP-
specific context and providing a cause-effect relationship.

Liu and Baras proposed a structural model for TCP traf-
fic, referred to as Hierarchical On-Off (HOO) model [24].
Misra and Gong had shown earlier that a hierarchical On-
Off traffic pattern can produce scaling in a certain range of
time scales [22]. HOO captures the transmission of packet
bursts within a TCP window, and so it is similar with our
model in §4. However, the analysis of [24] does not relate the
transmission rate and length of those bursts with TCP’s self-
clocking. Additionally, it does not explain how the relation
between the window size and the flow’s bandwidth-delay
product controls the TCP burstiness in sub-RTT scales.

Sarvotham et al. proposed an interesting classification of
traffic in alpha and beta flows (analyzing the traffic at the
500ms time scale) [27]. The former are large transfers over
high-capacity links and produce non-Gaussian traffic, while
the latter are mostly low-throughput transfers and they pro-
duce Gaussian and LRD traffic. Jiang et al. identified nine
ways in which a TCP or UDP source can send long back-to-
back packets (referred to as “source-level bursts”), causing
significant correlations in short scales [18]. Those reasons
include UDP message segmentation, TCP slow start, lost
ACKs, and others.

Morris and Lin showed that Web flows, which are rela-
tively short compared to bulk transfers, produce a linear
relation between the mean and the variance of the traffic
process in the 100ms time scale [23]. Such a linear relation
is characteristic of a Poisson process, but only for the given
scale. In an extension of that work, it has been shown that
the variance-mean relation depends on the network load and
on the time scales of interest, and that a general characteri-
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zation of the traffic as “Poisson-like” would not be accurate
[32]. Recently, it has been argued that network traffic today
can be well represented by the Poisson model in sub-second
scales [29]. The authors explain their findings based on a
certain interpretation of a classical result from the theory
of point processes, namely that, as the number of multi-
plexed flows increases the aggregate traffic process tends to
a Poisson process [3].

3. ENERGY PLOTS AND BURSTINESS
In this section, we describe a statistical tool that we use

throughout the paper to analyze the burstiness of a traffic
process in a range of time scales. Furthermore, we define
more precisely what we mean by “burstiness” and smooth
versus bursty traffic. This tool is based on wavelet-based
MultiResolution Analysis (MRA), and it was developed by
Abry and Veitch [1, 30]. The traffic process at a network
link can be described as a time series of packet arrival times
and sizes. More commonly, a traffic process is described
as a sequence of counts that measure the amount of bytes
appearing at the link in successive and non-overlapping in-
tervals of a certain duration. Specifically, the counting pro-
cess at a time scale Tj=2jT0 (j = 0, 1, . . . ) is a time series
Xj={Xj,0, Xj,1, . . . }, with Xj,k the amount of bytes in the
k’th interval tj,k of duration Tj . The scale T0 is our refer-
ence time scale, and it corresponds to the minimum interval
in which counts are measured.

Informally, the term “burstiness” refers to the statisti-
cal variability of the traffic process at a given scale Tj . High
variability in Xj implies a more fluctuating traffic load, when
the latter is measured at scale Tj . Since there is no particu-
lar scale that we should be only interested in, the variability
of Xj is typically measured and analyzed in a wide range
of time scales. Even though a number of statistical tech-
niques can be used for measuring the variability of a traffic
process, such as the Index of Dispersion for Counts, Index
of Dispersion for Intervals, or the Power Spectral Density,
we prefer to use wavelet-based MRA energy plots, produced
with [30], following a number of previous studies in this area
that adopted the same technique.

An MRA energy plot shows the variance of the wavelet
coefficients of the traffic process Xj as a function of the scale
index j. An important assumption is that Xj is covariance
stationary, meaning that, for a given j, the mean of Xj

is constant and the covariance between any Xj,k and Xj,k′
only depends on |k − k′|. In the following, we limit the
presentation in the special case of Haar wavelets2. The Haar
wavelet coefficients Wj,k at a scale j are defined as

Wj,k = 2−j/2(Xj−1,2k −Xj−1,2k+1) (1)

The energy Ej at scale j is then defined as the variance of
the coefficients Wj,k,

Ej = Var[Wj,k] = 2−jE[(Xj−1,2k −Xj−1,2k+1)
2] (2)

= 2−jVar[∆Xj−1,k] (3)

where ∆Xj−1,k=Xj−1,2k-Xj−1,2k+1 (with E[∆Xj−1,k]=0).
Equation (3) gives an interpretation of the energy Ej at
scale j: it is the variance of the traffic variation ∆Xj−1,k

2Even though we explain energy plots in terms of the
Haar wavelet for simplicity, we actually use higher order
Daubechies wavelets.

at scale j − 1, scaled by the factor 2−j . A more common
interpretation, related to the power spectral density of the
time series Xj,k, can be found in [1].

In practice, the energy Ej is estimated from a finite time
series as

Ej ≈ 2−j

PNj

k=1 ∆X2
j−1,k

Nj
(4)

where Nj is the number of wavelet coefficients at scale j.
An energy plot, like that of Figure 1, shows the base-2 log-
arithm of Ej as a function of j. Note that the top of the
graph shows the time scale Tj−1 (in milliseconds), while the
corresponding scale at the x-axis is j. The reason for this
mismatch is that Ej is determined by the terms ∆Xj−1,k at
the previous scale Tj−1.

The MRA signature of a Poisson process (independent ex-
ponential interarrivals) is that its energy plot is a horizontal
line. This can be easily proven as follows. Due to the mem-
oryless property of the exponential distribution, the process
Xj is independent at any scale j, and so

Var[∆Xj−1,k] = 2Var[Xj−1] = 2jVar[X0]

where Var[X0]=λT0 is the variance of a Poisson process with
rate λ at a time scale T0. So, the energy of Xj at any scale
j is

Ej = 2−j 2jVar[X0] = λT0

meaning that the energy plot of a Poisson process is a hori-
zontal line at log2(λT0). The Poisson process plays a major
role in this paper, providing a reference point for the bursti-
ness of other traffic processes. Since, traditionally, the Pois-
son process has been considered as a benign traffic model in
terms of queueing performance, we say that a traffic process
Xj is bursty at scale j if the energy of Xj is higher than
the energy of a Poisson process with the same average rate.
Otherwise, we say that Xj is smooth at scale j.

A reader that is familiar with previous MRA studies will
notice that we use energy plots in a different manner than
[1]. Specifically, most previous works focused on the scal-
ing behavior of the traffic process, which is characterized by
the slope of Ej in a range of time scales. We focus, instead,
on the burstiness of the traffic process relative to a Poisson
process of the same average rate, in different time scales3.
Consequently, we are interested in the absolute magnitude
of Ej , rather than in its local slope. The reason we focus on
burstiness relative to Poisson traffic, rather than on scaling
behavior, is that the former is clearly linked to the well-
known statistical and queueing characteristics of Poisson
processes. Furthermore, a traffic process may exhibit lo-
cal scaling behavior, or more generally it may have a strong
correlation structure in a range of scales, but without being
actually bursty. For example, a periodic process is strongly
correlated, but at the same time it is the smoothest among
all traffic models.

In the following, we show some energy plots for various
synthetic traffic processes. Out objective is, first, to provide
insight in the interpretation of MRA plots, and second, to
show the energy plots for some models that we use later in
the paper. Figure 1 shows the energy plots for four renewal

3A subtle point here is that we can only consider traffic
processes with a well-defined rate. For instance, we cannot
do these energy comparisons with renewal processes that
have infinite variance interarrivals.
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Figure 1: Energy plots for Exponential, Gamma,
Periodic, and Uniform independent interarrivals.

processes (i.e., independent and identically distributed in-
terarrivals). The corresponding interarrival distributions are
Exponential, Gamma, Uniform, and Periodic. All four dis-
tributions have the same average interarrival (50ms), while
the reference scale is T0=25ms. Because the average rate
is the same in all four processes, they would asymptotically
have the same energy at scale T0 if the latter would tend to
zero (in infinitesimal time scales all point processes with the
same rate look the same). Note that even if the interarrivals
are independent, the counting process Xj can be correlated
[3]. Then, the variance Var[∆Xj−1,k] can increase faster
than 2j due to positive correlations between Xj−1,2k and
Xj−1,2k+1. For example, Figure 1 shows the energy plot
of independent Gamma interarrivals with shape parameter
c=1/4. Notice that this process is bursty, in the sense that
it has a higher energy than the Poisson process in all scales.

On the other hand, Figure 1 also shows the case of Uni-
form interarrivals in a range [L,U], with L = 30ms and U =
70ms. The lower and upper bounds on the interarrivals limit
the minimum and maximum number of arrivals, and thus
the variability of Xj , in any scale Tj>L. This explains why
the energy of Xj is lower than the energy of the correspond-
ing Poisson process, making the Uniform process smooth in
time scales larger than L. It is also easy to see that the en-
ergy difference between the Uniform and Poisson processes
increases as the range U -L decreases. Reducing the range
of the uniform distribution to [T − ε, T + ε], where ε is very
small compared to T , leads to a practically periodic process
with period T . The energy of a periodic process becomes
zero theoretically (and its logarithm drops to −∞) at the
scale that corresponds to T , because ∆Xj−1,k=0 for all k
at that scale. This is shown in Figure 1 with T=50ms. The
periodic model can be viewed as the smoothest traffic pro-
cess, because it has the minimum possible energy after scale
T .

A traffic process that we use extensively in the rest of
the paper is the packet train model [16]. In that model, an
ON-period consists of W packets that arrive with a constant
interarrival τo, causing a burst of duration Wτo. After ev-
ery burst, an OFF-period follows with mean duration τf in
which no packets are received.. The average rate of this pro-
cess is W/(Wτo+τf ) packets per second. Figure 2 shows the
energy plot for two packet train models in which the OFF-
period is exponentially distributed. The train characteristics
are (W,Wτo, τf ) and they are set to (8, 100ms, 300ms) and
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Figure 2: Energy plots for two packet train models.

(32, 400ms, 1200ms) for each train model, respectively. Note
that both trains have the same packet transmission time
τo=12.5ms, and the same average rate (1 packet per 50ms),
but the second model has four times longer ON-periods. The
following facts for the packet train model with exponential
OFF-periods can be derived from Equation (2). First, the
packet train model has a periodicity at τo (12.5ms), which
becomes stronger as W increases, causing an energy drop at
the corresponding scale. Second, the energy increases from
τo to Wτo with a slope of 2.0. The energy in time scales
larger than Wτo remains constant, and higher than the en-
ergy of the corresponding Poisson process, meaning that the
packet train model generates bursty traffic in those scales.
Third, for a given average rate, the energy in time scales
larger than Wτo increases with the train length W due to
the presence of longer bursts. In the next section, we will
see that TCP self-clocking can create, under a certain condi-
tion, a structure of packet interarrivals that resembles that
of the packet train model in sub-RTT time scales.

4. TCP SELF-CLOCKING
The operation of a TCP sender in sub-RTT scales, namely

the transmission of a given window worth of data during
each round-trip, is largely determined by the self-clocking
mechanism. According to self-clocking, TCP should typi-
cally send a new packet whenever it receives a new ACK
[15]. In the case of Delayed-ACKs, which is the norm to-
day, an ACK is generated for every second received packet,
and so the sender usually generates a packet pair for every
received ACK4. An important implication of self-clocking is
that the sender does not need to schedule packet departures
based on a timer; packets are transmitted on an event ba-
sis, as ACKs arrive from the receiver. The timing of ACKs,
however, is determined by a number of effects, including
queueing of the data packets in the forward path, random
delays at the receiver, as well as queueing of the ACKs in the
reverse path. Consequently, the sender has no direct control
on the timing of packet departures, and so, under certain
conditions, it can send a large number of packets at a rate
that is much higher than the flow’s average throughput.

In this section, we explain that because of self-clocking
a TCP sender can be trapped into a state of sending long

4There are several deviations from this behavior, including
congestion window increases, idle times when the applica-
tion has no data to send, and retransmission timeouts.
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packet trains at the full capacity of the forward path. We do
so in two parts: first, ignoring any cross traffic in the forward
path, and second considering such traffic. Examples of TCP
flows from traffic traces provide further insight in the struc-
ture of TCP packet interarrivals. Then, to further illustrate
the link between self-clocking and burstiness, we create two
simple and stationary models of TCP interarrivals in sub-
RTT scales, and show, with MRA energy plots, that they
create bursty traffic. For simplicity, the following models
are open-loop, meaning that they do not consider the im-
pact of the network state on the resulting TCP interarrivals,
and so they should be considered only as a first-order ap-
proximation to self-clocking. Furthermore, we make several
simplifying assumptions: ACKs are not affected by queue-
ing in the reverse path, there is only a single queueing point
in the forward path (single bottleneck), and the sender and
receiver do not introduce delays in the transmission of data
packets and ACKs, respectively.

4.1 Self-clocking without cross traffic
Consider a TCP flow with a minimum RTT T seconds.

The capacity of the bottleneck link B at the forward path
is C bytes/sec. The bandwidth-delay product of the flow is
defined as CT bytes. The flow’s RTT can be larger than
T when a queue builds up at B. Suppose that all data
packets have a size of L bytes. We initially ignore the effect
of Delayed-ACKs; it is easy to modify the model later so
that it considers Delayed-ACKs. Since there is no cross
traffic, an initial window of W0 packets sent back-to-back
will arrive at the receiver periodically, with an interarrival
τ=L/C between any two successive packets. The receiver
will respond to each packet with an ACK, sent with the same
interarrival τ . T seconds after the sender had sent its first
packet, it will receive the first ACK and it will start sending
the packets of the second round-trip, with a larger window
size W1. This process will repeat in the following round-
trips, until the flow reaches the maximum window allowed
by the socket buffers, or until it experiences a congestion
event or timeout. The key point, however, is that during
each round-trip the TCP sender sends its current window
Wk with interarrivals τ between successive packets, i.e., at
the full capacity C of the forward path. With Delayed-
ACKs, an ACK is generated in every 2τ seconds, but the
interarrivals between successive data packets of the same
round-trip is still τ because an ACK releases two back-to-
back packets in that case.

Periodic interarrivals. Suppose now that, during a par-
ticular round-trip, the flow has a send-window of W pack-
ets. Based on the previous timing analysis, we know that
the sender transmits the W packets with a period τ at the
start of the round-trip. If Wτ ≥ T , the flow saturates the
path achieving the maximum possible throughput C, and
the effective RTT increases to WL/C. In that case, the
traffic process is periodic with period τ=L/C, as shown in
Figure 3-a, and the energy plot becomes as in Figure 1. So,
when the window of a TCP flow (in bytes) is larger than the
flow’s bandwidth-delay product, i.e., when WL ≥ CT , the
traffic that TCP generates is extremely smooth. Figure 4-a
shows the distribution of packet interarrivals for a TCP flow
(from the trace of Section 6) that falls in this class. The
RTT for this flow is about 52ms, the packet transmission
time is L/C=1.2ms, and the average window size is about

timeL/C

(a) WL >= C T

WL/C

timeL/C
T

(b) WL < C T (w/o cross traffic)

timeT

IBL/C

(c) WL < C T (with cross traffic)

∆

Figure 3: Packet interarrivals for a TCP flow dur-
ing a particular round-trip of length T . Three cases
are shown depending on whether WL < CT , and on
whether there is cross traffic in the flow’s bottleneck.
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Figure 5: Energy plot for a periodic TCP self-
clocking model without cross traffic.

42 packets. Note that almost all interarrivals are equal to
L/C, which means that the flow is basically periodic.

One-level ON-OFF interarrivals. On the other hand, it
is easy to see that if Wτ < T , the traffic process follows the
packet train model of §3. Specifically, TCP generates during
each round-trip k a packet train with size Wk packets, in-
terarrivals of length τ = L/C during the train, and with an
idle time τf = T −Wkτ between trains. The timing-pattern
of this traffic process is shown in Figure 3-b. Notice that
TCP does not distribute its window throughout the RTT.
Instead, when there is no cross traffic, the entire window ap-
pears back-to-back at the full capacity C of the forward path
in the start of the corresponding round-trip, creating a one-
level ON-OFF structure of packet interarrivals. Figure 4-b
shows a TCP flow that falls in this class. The flow has
T=49ms, L/C=1.2ms, W=12 packets (average). Note that
about 90% of the interarrivals are spaced at about L/C, cor-
responding to interarrivals within each train. The remaining
10% of the values are spaced at about 36ms, which is roughly
equal to T −WL/C, corresponding to interarrivals between
trains in successive round-trips.

Figure 5 shows the MRA energy plot for a synthetically
generated flow that follows the one-level ON-OFF model of
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Figure 4: Distributions of TCP packet interarrivals in three TCP flows from the trace of Section 6. All
three flows have the same packet transmission time L/C=1.2ms, corresponding to an Ethernet MTU packet
(L=1500B) and a C=10Mbps capacity. The interarrivals are rounded to the nearest multiple of L/C.

Figure 3-b. In this flow, we set T=256ms, W=16 packets,
L=1250 bytes, and consider two values of τ : 1ms (C=10Mbps),
and 2ms (C=5Mbps). Note that Wτ is 16ms or 32ms, which
is less than T in both cases. The energy plot of a Poisson
process with the same average rate WL/T is also shown
for comparison. The major observation from these energy
plots is that if the TCP window (in bytes) is less than the
flow’s bandwidth-delay product, TCP generates bursty traf-
fic in the sub-RTT scales that extend between approximately
WL/C and T .

Also note that for given T , W , and L, and thus for a given
average rate WL/T , the range of scales in which the traffic is
bursty increases with C. This means that if the capacity of
a path increases, but with a constant TCP average through-
put, the source creates bursty traffic over a wider range of
sub-RTT scales. This has a practical implication: as the ca-
pacity of the network edges increases, for instance replacing
dial-up modems with DSL or cable modems, or replacing
FastEthernet with Gigabit Ethernet, we should expect to
see wider-range burstiness in short timescales if the maxi-
mum TCP window (often determined by the default socket
buffer size at the end-hosts) remains the same. Finally, the
energy drop at scale 10 corresponds to the RTT T and is
due to the periodicity of the model at that scale.

4.2 Self-clocking with cross traffic
In the general case, the bottleneck B may carry some cross

traffic together with the TCP flow that we analyze. We as-
sume that that TCP flow shares the capacity C of B with
cross traffic in a First-Come First-Served (FCFS) manner.
Suppose that the TCP source sends a number N packets
with a transmission rate Cs>C. Let Pi be the i’th TCP
packet, and ai be its arrival time at B, with ai+1−ai=L/Cs

(i=1 . . . N − 1). If there are no cross traffic packets arriving
between ai and ai+1, the packets Pi and Pi+1 will depart
B with interarrival L/C. Otherwise, if one or more cross
traffic packets arrive in that interval, the packets Pi and
Pi+1 will depart with a smaller rate than C, i.e., a larger
interarrival than L/C. Such cross traffic interference parti-
tions the TCP window during that round-trip to a number
of smaller bursts. The length of these bursts, as well as
the interarrivals between them, depend on the cross traffic
load. The higher the load at the bottleneck, the shorter and
more widely dispersed are the resulting TCP bursts. Fur-

thermore, the presence of bursts in a round-trip k can create
a similar pattern in the corresponding ACKs, propagating
the burstiness of round-trip k to the following round-trips.

In general, suppose that a TCP window of W packets dur-
ing a particular round-trip is segmented in a number K≥1
of bursts of rate C and length Bi, with

PK
i=1 Bi=W , as

shown in Figure 3-c. The off-period between two succes-
sive bursts is Ii, while the total dispersion of the window,
i.e., the time distance between the first and last packets of
the window, is ∆. The expected value of ∆ is a function
of the average cross traffic rate, and it can be derived in
certain cases as shown in [5]. Note that this structure is
a two-level ON-OFF pattern. At the lower level, each ON
duration consists of bursts of Bi packets sent at the full
capacity of the forward path C. At the higher level, the
ON duration consists of a cluster of bursts, totally W pack-
ets long, with duration ∆ (WL/C ≤ ∆ < T ). Figure 4-c
shows a TCP flow that falls in the two-level ON-OFF class.
The flow has T=48ms, L/C=1.2ms, W=6 packets (aver-
age), and ∆=10ms (average). Note that about 65% of the
interarrivals are spaced at about 1.2ms (L/C), correspond-
ing to interarrivals within each burst. Another “mode”, with
about 15% of the interarrivals, appears at about 39ms that
is roughly equal to T − ∆, corresponding to interarrivals
between successive round-trips. The remaining values are
distributed almost uniformly between 1.2ms and 37ms, cor-
responding to interarrivals between successive bursts of the
same round-trip.

Figure 6 shows the MRA energy plot for a synthetically
generated flow that follows the two-level ON-OFF model of
Figure 3-c. In this flow, we set W=16 packets, T=1228ms,
L=1500 bytes, C=10Mbps, ∆=128ms, and B̄=2 packets.
The first five parameters are constant, while Bi follows a
geometric distribution with mean B̄5. The burst interar-
rivals Ii are first generated by an exponential distribution
with mean Ī = (∆ − WL/C)/(K − 1), and then scaled to

meet the constraint
PK−1

i=1 Ii = ∆ − WL
C

, where K is the
number of generated bursts in that round-trip. The en-
ergy plot of a Poisson process with the same average rate

5The last burst length BK during a round-trip follows a
truncated geometric distribution with maximum length W
if K=1, and W − (B1 + . . . BK−1) if K > 1. This constraint
guarantees that the window will be W packets.
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Figure 6: Energy plot for a periodic TCP self-
clocking model with and without cross traffic.

WL/T is also shown for comparison. Note that the energy
increases in two regions, corresponding to the two ON-OFF
patterns: first, between L/C and B̄L/C, and then, between
B̄L/C+ Ī and ∆. Overall, the process is bursty in almost the
entire range of sub-RTT time scales. Figure 6 also shows the
energy plot for the corresponding one-level ON-OFF train
model, with the same average rate WL/T , that would re-
sult without cross traffic. Notice that the two models show
different degrees of burstiness in different time scales. The
one-level ON-OFF model is more bursty at the higher end of
sub-RTT scales because its packet trains are not segmented
into shorter bursts.

5. FLOW AGGREGATION
In the previous section, we showed that a single TCP flow

can be bursty in sub-RTT scales due to the strong correla-
tions introduced by self-clocking. In practice, however, most
network links carry aggregates of some TCP and non-TCP
flows. How does the burstiness of the aggregated flow re-
late to the burstiness of its constituents? And, does the
“intermingling” of packets from different flows mitigate the
correlations between packets of individual flows?

To answer the first question, note that the energy E of the
aggregation, or superposition, of several independent flows
is equal to the sum of the energies of the constituent flows.
Specifically, suppose that X and Y are two stationary, inde-
pendent traffic processes, and that Z=X+Y is the aggregate
traffic process that results when X and Y are multiplexed on
the same link. As long as the multiplexing process does not
introduce queueing delays between the packets of the two
processes, X and Y remain independent. With this assump-
tion, it is easy to show from Equation (2) that EZ

j = EX
j +EY

j

at any scale j. An implication of this result is that flows that
do not have significant energy relative to the aggregate flow
do not have a major impact on the burstiness of the latter.

To answer the second question, let us first review a clas-
sical result from the theory of point processes, according to
which the superposition of N independent point processes
converges to the Poisson process as N increases [3]. It is im-
portant to note, however, that the previous result assumes
that the rate of each constituent flow is λ/N , so that the
rate of the aggregate flow remains the same, equal to λ,
independent of N . In other words, each constituent flow
becomes gradually “sparser” as N increases. In packet net-
works, on the other hand, the aggregation of N flows with
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Figure 7: Energy plot of the MFN OC-48 trace.

average rate λ creates a stream of rate Nλ, which is then
serviced by a link with capacity at least Nλ. Consequently,
in packet networks, the interarrivals of individual flows are
not scaled by a factor of N when the flows are multiplexed
in the same link.

Actually, the previous issue has been discussed in an ear-
lier paper by Sriram and Whitt [28]. They showed that, if
the rate of the constituent flows does not decrease with N ,
the interarrivals of the aggregate flow tend to exponential,
but they do not loose their correlation structure. The latter
is easy to show for N homogeneous flows. Let Xi,j be the
counting process for flow j at a given scale T , i.e., the num-
ber of bytes from flow j in the i’th time interval of length T ,
and Yi =

PN
j=1 Xi,j , the counting process for the aggregate

flow. We assume that Xi,j is stationary in i, and indepen-
dent and homogeneous in j. Let r(k) be the autocorrelation
of the aggregate at lag k, and rj(k) be the autocorrelation
of flow j at the same lag. Then

r(k) =
Cov(Yi, Yi+k)

Var(Y )
=

PN
j=1 Cov(Xi,j , Xi+k,j)
PN

j=1 Var(Xj)

=
Cov(Xi,j , Xi+k,j)

Var(Xj)
= rj(k) (5)

So, the aggregate flow has the same autocorrelation function
with any of its constituents, independent of N .

Recently, Karagiannis et al. argued that Internet traffic
today can be well-modeled by the Poisson model in sub-
second scales [29]. The authors justified this position based
on statistical analysis of the interarrivals in some OC-48
traces from MFN. Specifically, they observed that the inter-
arrivals of the aggregate traffic match closely the exponential
distribution, and also, the interarrivals appear to be inde-
pendent. The approximate match to the Poisson model was
attributed to the previously mentioned superposition result
from the theory of point processes. However, there was no
discussion regarding the deviations from the Poisson model
shown in both the IDI graph (Index of Dispersion for In-
tervals) and the MRA energy plot. We analyzed one of the
MFN OC-48 traces that were used in [29]; specifically, the
trace collected between 11:00-11:10am on 1/15/2003. The
trace consists of 96% TCP traffic, and has an average rate of
278 Mbps. The energy plot of the trace is shown in Figure 7,
together with the energy of the corresponding Poisson pro-
cess. The weighted average of the TCP flow RTTs (defined
in §6) in this trace is about 172ms, meaning that the sub-
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RTT scales extend up to scale-12 (200ms). We observe that
the traffic of this trace is clearly more bursty than the Pois-
son model in sub-RTT scales, which contradicts the main
result of [29].

We make a final remark on the effect of aggregation in
the burstiness of network traffic. Even though, as previously
shown, aggregation does not lead to uncorrelated arrivals, it
does improve queueing performance in the following sense.
As N increases, the marginal distribution of the aggregate
flow tends to Gaussian, as long as the aggregation time scale
is sufficiently large (horizontal aggregation) and the number
of flows is sufficiently large (vertical aggregation) [20]. Since
both the mean and the variance of the marginal distribution
increase proportionally to N , the coefficient of variation de-
creases with the square-root of N . So, the traffic appears
to be “smoother” as N increases simply because the magni-
tude of the traffic variations at any given time scale decrease
in magnitude relative to the average traffic rate. We em-
phasize, however, that this is a basic property of statistical
multiplexing for independent flows, and it does not relate
to the correlation structure of the aggregate traffic, nor it
implies that the traffic tends to the Poisson model.

6. CASE STUDY
In this section, we apply the insight of the previous two

sections in the analysis of an OC-48 trace from a major Inter-
net2 backbone link. Starting from a large trace, with almost
half a million flows, our goal is to identify the flows that de-
termine the short scale burstiness of the entire trace. The
unidirectional trace that we use in this paper was collected,
with a high-precision DAG 4.23 OC-48 monitor, at the OC-
48 link that connects the Abilene routers from Cleveland
(CLEV) to Indianapolis (IPLS). The trace was collected on
8/14/2002 between 9:00-11:00am, and it is publicly avail-
able at NLANR-MOAT [25]. The following results refer to
a 90-second segment of the trace (10:08:30-10:10:00). In the
energy plots of this section, the reference time scale T0 is
0.1ms.

Subset GBytes TCP Percentage Percentage
flows of bytes of packets

Sorg 4.37 458669 100 100
Stcp 4.23 458669 96.8 93.6
S ¯tcp 0.14 N/A 3.2 6.4
Srtt 2.41 40885 55.1 46.6
Sr̄tt 1.83 417784 41.7 47.0

Srtt52 0.75 9041 17.1 13.2
Sbdp 2.25 10484 51.5 27.0
Slrg 2.22 3207 50.9 25.3
Ssml 0.03 7277 0.6 1.7
SlrΘ 2.12 3123 48.6 24.2
SsmΘ 0.10 84 2.3 1.1

Table 1: Subsets of the IPLS OC-48 trace

We start from the original trace, say Sorg, and gradually
form an increasingly narrower subset of flows that are re-
sponsible for the short scale burstiness of the entire trace.
This investigative work, which is similar to gradually reduc-
ing a set of crime suspects through additional evidence, leads
us eventually to a relatively small set of flows (about 3,100
flows, out of 460,000 in the original trace) that dominate the

short scale burstiness of the entire trace. As expected from
§4 and §5, we find that this set includes bulk TCP flows that
have a large bandwidth-delay product relative to their window
size. Table 1 shows the notation, and a few statistics, for
the various sets of flows that we consider in the remaining
of the section.

First, Figure 8-a shows the energy plot of the original
trace Sorg, together with the energy plot of a Poisson pro-
cess with the same average rate. Note that the trace shows
strong burstiness in short time scales, up to about 200ms. In
longer scales, the trace exhibits a range of linearly increasing
energy due to LRD effects, which is typical of Internet traffic
(see [8] or [34] for similar examples of this “bi-scaling” be-
havior in short vs long time scales). The boundary between
short and long scales is the dramatic energy drop around
scale 10. We will relate that scale with the RTT of the TCP
flows in the trace shortly. Figure 8-a also shows the en-
ergy plot of the subset Stcp, that includes only TCP traffic.
Since TCP accounts for 97% of the byte-traffic in this trace,
it should not be surprising that the energy plot of Stcp is
basically the same with that of Sorg. Even if the rest of
the traffic, denoted by S ¯tcp, had some interesting burstiness
characteristics, it would not be able to affect the energy plot
of the entire trace due to its small volume.

Next, we identify the extent of the short scale burstiness,
and relate it to the RTT distribution of the TCP flows.
To do so, however, we first need to know the RTT of each
TCP flow in the trace. That is hard to do, especially for a
unidirectional trace. The estimation technique proposed in
[17] can provide a single RTT measurement per connection
for a significant fraction of the TCP traffic in a trace. Using
that technique, we formed a new subset, Srtt, which includes
all TCP flows for which we have RTT estimates; TCP flows
without an RTT estimate belong in Sr̄tt. Even though the
number of flows in Sr̄tt is much larger than in Srtt, the latter
includes more than 50% of the bytes in the trace. Figure 8-b
shows the energy plots of the two subsets, which are quite
similar in shape and magnitude.

The estimated RTT distribution for Srtt is shown in Fig-
ure 8-c, plotted in terms of bytes rather than flows. Note
that most of the traffic in that subset is carried by flows with
RTT in the range 25-250ms. The weighted average of the
flow RTTs, with each RTT measurement weighted by the
fraction of bytes in the corresponding flow, is about 117ms.
Notice that the dip in the energy plot of Figure 8-a occurs
at scale 12 (about 200ms), which is close to the (weighted)
average RTT of the trace (about 120ms). In other words,
the major drop in the energy plot of an aggregate trace is
located at about the same time scale with the RTT of the
dominant flows in the trace. This should not be surprising.
As explained in §3, a periodicity in the traffic process causes
a drop in the energy plot at the time scale that corresponds
to the period. The RTT of a TCP flow, however, represents
a natural periodicity in its traffic process as long as the flow’s
window does not vary significantly from round to round. To
further examine the previous conjecture, we form another
trace subset, Srtt52, of all flows in Srtt for which the RTT is
less than 52ms. The weighted average RTT of Srtt52 is 39ms,
and its energy plot is shown in Figure 8-b. Note that the
energy plot dip has now moved to scale 10 (51ms), which
corresponds to the same scale with the previous weighted
average. To summarize, the dip that is commonly seen in
energy plots of Internet traffic occurs at roughly the same
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(c)  RTT distribution for Srtt

(f)  Flow size distribution for Sbdp

(b)  Energy plots for Srtt, Srtt52, and Stcp(a)  Energy plots for Sorg and Stcp

(e)  Energy plots for Sbdp, Slrg, and  Ssml

(d)  Capacity distribution for Srtt and Stcp

(g) Burstiness ratio distribution for Slrg

Figure 8: Analysis of Abilene OC-48 trace.
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time scale with the RTT of the dominant TCP flows, and
it provides an easy way to identify the extent of sub-RTT
burstiness.

To estimate the bandwidth-delay product of a TCP flow,
we need to know its forward-path capacity C, as defined
in §4, together with its RTT. That capacity of a TCP flow
can be estimated using the packet-pair technique, given that
TCP sends many packet pairs due to Delayed-ACKs. Using
a passive capacity estimation technique, similar to that re-
ported in [19], we can estimate the capacity of about 90%
of the bytes of Stcp, and a similar fraction of Srtt. Figure 8-
d shows the capacity distribution for the two sets. Notice
that about 40% of the bytes belong to high-capacity flows
(C≈100Mbps), while about 90% of the bytes are generated
from flows with C≥10Mbps. These relatively high capacity
values may be due to the fact that the trace captures In-
ternet2, rather than commercial Internet traffic. The set of
TCP flows for which we have both an RTT and a capac-
ity estimate is denoted by Sbdp. Its energy plot is shown in
Figure 8-e.

We next focus on the link between flow size and sub-RTT
burstiness. The conjecture is that it is the large flows that
determine the shape of the aggregate energy plot. Figure 8-f
shows the cumulative flow size distribution of Sbdp in terms
of both bytes and flows. Note that 70% of the flows are
shorter than 15KB, but they account for less than 2% of the
aggregate traffic. Such a heavy-tailed flow size distribution
is typical of Internet traffic, and it agrees with the general
classification between “elephants” and “mice”. We split the
flows of Sbdp into the set Slrg, which includes all flows larger
than 15KB, and Ssml, which includes the remaining small
flows. Figure 8-e shows the energy plots of the Slrg and Ssml

sets, together with the energy plots of the Sbdp and Stcp sets.
First, note that the energy plot of Slrg completely overlaps
with that of Sbdp, confirming our previous conjecture that
large flows determine the shape of the energy plot for the
entire trace. That is not surprising given that Ssml accounts
for only 0.6% of the bytes in the original trace. A second in-
teresting observation is that the energy plot of Ssml appears
to be almost horizontal beyond scale 5. That may be inter-
preted by someone as an indication of a Poisson-like process.
That is not the case however. Comparing the energy plot
of Ssml with that of a Poisson process of the same average
rate shows that Ssml is bursty in almost the entire sub-RTT
range of time scales.

Now that we have identified the large TCP flows as “pri-
mary suspects” for sub-RTT burstiness, and since we have
an estimate of the bandwidth-delay product for about 51%
of the bytes (Sbdp) in the trace, we can return to our origi-
nal conjecture: large TCP flows cause sub-RTT burstiness if
their bandwidth-delay product CT is large relative to their
window size WL. To examine this conjecture, we estimate
the number of bytes (WL)i in each round-trip i, for every
TCP flow in Slrg. Note that Slrg contains only data flows
since we do not have capacity estimates for ACK flows. Ob-
viously, the window measurements (WL)i vary with i, as
the TCP congestion window changes. In the following, we
use a certain percentile, denoted by Ŵ , of a flow’s window
size distribution to calculate the burstiness ratio Θ=CT/Ŵ .
This important metric is the ratio of the bandwidth-delay
product of a TCP data flow to a “typical” window size Ŵ
for that flow. Figure 8-g shows the distribution of Θ for
three percentiles Ŵ : 50-th, 75-th, and 90-th. Note that the

distribution is not so sensitive to the exact definition Ŵ ,
especially in lower values of Θ. In the following, we define
Ŵ based on the 75-th percentile.

An important observation in Figure 8-g is that Θ is quite
larger than 1.0 for most of the traffic in Slrg. Specifically,
more than 90% of the bytes in Slrg have Θ>4.0, while as
little as 5% of the bytes have Θ<2.0. We further split Slrg

into SlrΘ and SsmΘ, where the former includes the TCP
flows with Θ>2.0, while the rest of Slrg forms SsmΘ. The
energy plots of the two new subsets are shown in Figure 8-h.
First, note that the energy plot of SlrΘ completely overlaps
with Slrg, verifying our main conjecture that flows with large
values of Θ determine the sub-RTT burstiness of the entire
trace. Second, perhaps more surprisingly, the energy plot
of SsmΘ is below the energy of a Poisson process with the
same rate as that subset, i.e., TCP flows with small values
of Θ, close to 1.0, are smooth and they do not contribute to
the sub-RTT burstiness of the aggregate traffic.

We can summarize the case-study of this section as fol-
lows: the short time scale burstiness of this OC-48 trace
extends up to the weighted average RTT of the TCP flows.
The sub-RTT burstiness is due to large TCP flows (more
than 15KB) that have a burstiness ratio of at least two, i.e.,
more than twice as large bandwidth-delay product relative
to their typical window size. Non-TCP traffic, or small TCP
flows (less than 15KB), do not contribute to the burstiness of
the aggregate traffic due to their very small volume. Finally,
large flows with a burstiness ratio that is roughly equal to
one produce Poisson-like, or even smoother, traffic.

We have repeated the previous analysis in several NLANR
traces, ranging from OC-3 to OC-48 links. Consistently, and
without a single exception, we found that all traces show
sub-RTT burstiness, and that the burstiness is created by
relatively large TCP flows (>10-20KB) with large bursti-
ness ratio Θ. Actually, several traces did not include large
flows with small burstiness ratio. We note, however, that the
NLANR traces are collected mostly from university access
links and research networks, and so they may not be repre-
sentative of commercial Internet traffic in both the flow size
distribution and the flow capacity distribution.

7. TCP PACING
The previous sections showed that self-clocking is largely

responsible for the burstiness of individual TCP flows, and
of aggregate Internet traffic. The basic problem with self-
clocking is that, under certain conditions, it causes TCP to
send its entire window as a long burst, or as a cluster of
bursts, instead of distributing that window’s packets during
the corresponding round-trip. One way to remove, or at
least reduce, the burstiness of a TCP flow is to perform
pacing at the sender [2, 14]. With pacing, TCP sends packets
periodically during the corresponding round-trip, instead of
being driven by the arrival timing of ACKs.

Suppose that in a particular round-trip the TCP sender
has a window of length W packets,6 and that the RTT is T .
According to ideal pacing, the sender should send packets pe-
riodically, every T/W time units, i.e., at a rate that is equal
to the flow’s average throughput W/T in that round-trip.
We refer to this scheme as “ideal” because it would require

6For simplicity we assume here that the window is measured
in packets instead of bytes.
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for a round-trip with window Wi and RTT T {
X = Xmin;
n = max(1, b T

dW
X

eTc
c);

while (T < dW
X
enTc && X < W ) {

X++;
n = max(1, b T

dW
X

eTc
c);

}
return (n, X);

}
Figure 9: Pseudo-code for calculating X and n.

scheduling transmission events in arbitrary intervals. Such a
timing facility would be impractical, or it would introduce a
large overhead at the sender, especially for flows with large
W and small T . For example, if T=15ms and W=100 pack-
ets, the sending host would have to generate a timeout, to
schedule a packet transmission, in every 150µs. In practice,
commodity operating systems typically provide a minimum
timer of either 10ms, or 1ms in the best case. TCP pac-
ing will not be practical unless if we consider the presence
of a minimum pacing timeout Tc, with values in the range
of 1-10ms. Given that the TCP sender can only schedule
packet departures every nTc time units, where n is a pos-
itive integer, it may be required to send multiple packets
back-to-back when T/Tc < W . An algorithm that com-
putes the minimum burst length X, and the corresponding
value of n, is given in Figure 9. Xmin is the minimum burst
size (for instance, 1-2 packets) imposed. The algorithm finds
the minimum value of X that allows the transmission of W
packets during T time units, given that it is only possible to
send packets every nTc time units.

We now examine the burstiness reduction with ideal pac-
ing as well as with practical pacing for Tc=10ms or 1ms
and Xmin=2 packets. We show the impact of pacing on
the aggregate traffic, Sbdp from the OC-48 trace of §6, af-
ter performing pacing on each of the constituent flows. The
RTT T and the sequence of window lengths {Wi} for each
round-trip i are estimated as explained in §6. The approach
of artificially modifying the interarrivals of a packet trace
is referred in the literature as semi-experimental [13]. We
should note that a limitation of the semi-experimental ap-
proach is that it is intrinsically “open-loop”; specifically, it
does not consider the impact of pacing on the dynamics of
TCP flows (e.g., throughput, losses, RTT variations).

Figure 10 shows the resulting energy plots. The original
trace (upper graph) has strong sub-RTT burstiness (scales 2-
10). With ideal pacing, the traffic becomes smooth through-
out the sub-RTT scales up to scale 10 (50ms), as we would
expect, due to the periodic nature of packet departures in
every round-trip. The two curves that correspond to prac-
tical pacing (lower graph) show clearly that the minimum
pacing timer Tc has a major impact on the smoothing ef-
fectiveness of pacing. The 10ms timer is unable to reduce
the burstiness of the aggregate up to scale 6, i.e, there is re-
maining burstiness in very small time scales (up to 3-4ms).
The reason is that, with Tc=10ms, the burst length X can
be large when the ratio T/W is less than Tc. On the other
hand, the 1ms pacing timer manages to reduce burstiness in
sub-RTT scales to almost the level of a Poisson process with
the same average rate, even though it still does not generate
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Figure 10: The effect of ideal and practical pacing
on the Sbdp set of x6.

smooth traffic, the way ideal pacing does. We note that pac-
ing does not affect the burstiness of the traffic in time scales
that extend beyond the RTT range (scale 11 and higher).

8. CONCLUSIONS
We showed that TCP self-clocking, coupled with queueing

in the bottleneck of the connection’s forward path, can cre-
ate ON/OFF interarrival structures, and thus, strong corre-
lations and burstiness. Such structures are generated when
the bandwidth-delay product is large relative to the flow’s
window (i.e., high burstiness ratio). Aggregating many TCP
flows in the same link does not produce less correlated traf-
fic, as previously argued. Instead, the observed multiplex-
ing gains are due to a smoother marginal distribution. The
analysis of an OC-48 trace confirmed that the burstiness of
aggregate traffic in short time scales extends up to the RTT
of the dominant TCP flows, and it is due to large TCP
flows that have a burstiness ratio of more than 2.0. We also
showed that an effective way to reduce the sub-RTT bursti-
ness of Internet traffic is to perform pacing at the sources,
especially if the minimum pacing timer can be in the order
of 1ms.
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