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TheShapeof theLossCurve
and

the Impact ofLong-RangeDependence onNetworkPerformance
Michel Mandjes and Nam Kyoo Boots

Abstract: Empirical studies showed that many types of network
traffic exhibit long-range dependence (LRD), i.e., burstiness on
a wide variety of time-scales. Given that traffic streams are indeed
endowed with LRD properties, a next question is: what is their
impact on network performance?
To assess this issue, we consider a generic source model: traffic
generated by an individual user is modeled as a fluid on/off pat-
tern with generally distributed on- and off-times; LRD traffic is
obtained by choosing the on-times heavy-tailed. We focus on an
aggregation of many i.i.d. sources, say n, multiplexed on a FIFO
queue, with the queueing resources scaled accordingly. Large de-
viations analysis says that the (steady-state) overflow probability
decays exponentially in n; we call the corresponding decay rate, as
a function of the buffer size B, the loss curve.

To get insight into the influence of the distribution of the on-
and off-times, we list the most significant properties of the loss
curve. Strikingly, for small B, the decay rate depends on the dis-
tributions only through their means. For large B there is no such
insensitivity property. In case of heavy-tailed on-times, the decay
of the loss probability in the buffer size is slower than exponential;
this is in stark contrast with light-tailed on-times, in which case this
decay is at least exponential.

To assess the sensitivity of the performance metrics to the
probabilistic properties of the input, we compute the loss curve
for a number of representative examples (voice, video, file transfer,
web browsing, etc.), with realistic distributions and parameters.

Our conclusions on the impact of LRD on the performance can
be summarized as follows: (1) If the maximally tolerable delay is
relatively small, there is hardly any difference between heavy-tailed
and light-tailed inputs; this gives a theoretical handle on observa-
tions that appeared in the literature. Only for very delay tolerant
applications the above-mentioned large B results kick in. (2) The
level of aggregation is a significant factor. If the ratio between the
link rate and the peak rate of a single source is high, a high utiliza-
tion can be achieved, while at the same time the delay requirements
are met; this holds even if the delay requirements are stringent.
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1. Introduction
With the advent of high-speed packet-based network tech-
nologies – such as the Internet Protocol – an accurate
prediction of the achievable performance becomes ex-
tremely useful. In the end, the Quality of Service (mostly
expressed in terms of performance metrics like packet
loss, delay, throughput) is what the users experience, and
in this sense it determines the success of the service. Con-
sequently it is of major interest to get insight into the
factors that affect the network performance. One could
think of the influence of the characteristics of the traffic
offered to the system (particularly its ‘variability’ in time,
commonly called burstiness), as well as the features of
the network and its network elements (buffer sizes, link
speeds, routing).
In performance prediction throughmathematical mod-

eling, a crucial role is played by the traffic model. The
common procedure is the following. First traffic measure-
ments are done. These are used to develop a traffic model
– such a model is usually phrased in terms of a stochastic
process. Finally, it is calculated what performance is real-
ized if this traffic stream feeds into the network – the type
of models used are usually queueing models.

Long-range dependence. In other words, misspecifi-
cations of the traffic model might cause inaccurate per-
formance predictions. This explains why the discovery of
long-term dependences (in the beginning of the 1990’s –
a key paper is Leland et al. [23]) raised considerable con-
cerns. Before, it was generally accepted that short-range
dependent (SRD) source models captured all essential fea-
tures of network traffic, i.e., models in which the correla-
tion function of the arrival process decays exponentially
in time. Long-range dependent traffic, however, would
require a slowly (for instance polynomially) decaying cor-
relation function.
After the discovery of LRD, one wondered what made

network traffic behave like this. A key result here states
that the aggregate of a large number of sources with
heavy-tailed on- and/or off-times looks like an LRD pro-
cess [41]. Then it can be argued that an individual user
transferring files tends to resemble a heavy-tailed on/off
fluid source, due to the heavy-tailed distribution of file
sizes. The aggregate of many users leads to LRD traf-
fic [9, 41].

Queueing results. For SRD sources an extensive body
of queueing results is available. Usually one considers the
buffer overflow probability, but due to the constant ser-
vice rate of the queue, this can be translated easily into
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the probability that the delay is longer than a specific
threshold. Notably, for SRD input the overflow probability
decays (roughly) exponentially. The case of statistically
identical phase-type on/off fluid sources was explicitly
solved [1, 22]: the overflow probability can be expressed
in terms of the solution of an eigensystem.
However, for queues fed by a superposition of LRD

sources hardly any results were available. Therefore,
during the past, say, five years, the focus shifted to-
wards those models. Explicit solutions of the buffer occu-
pancy distribution are not known; considerable attention
was paid to large-buffer asymptotics. The earliest re-
sults [7, 31] were on GI/G/1 queues with heavy-tailed
service times. For the case of multiple on-off sources
partial results were derived, see e.g. [4, 5, 20]. Remark-
ably, in these cases the large-buffer asymptotics inherit
the heavy tail of the service times (for GI/G/1) or on-
times (for superposition of on/off sources); the tail is in
general even heavier than the service times or on-periods
themselves.

Impact on performance.The above results suggest that
LRD input (rather than SRD input) indeed leads to per-
formance degradation. However, there are two fundamen-
tal objections against the use of large-buffer asymptotics.
In the first place, the convergence is typically slow: only
for extremely large buffers the asymptotic is accurate.
In the second place, not for all applications the regime
of large buffers is the most relevant one. Particularly for
real-time applications smaller buffers (or: smaller delay
thresholds) are more important.
This last point was well-taken in a couple of more

practically oriented articles by Ryu and Elwalid [34],
Heyman and Lakshman [18], and Grossglauser and
Bolot [17]. Based on mathematical modeling and experi-
ments with real traffic traces (the so-called Bellcore trace,
VBR (Variable Bit Rate) MPEG video, etc.), they arrive at
a common conclusion: as long as delay requirements are
in some sense stringent, only the correlation structure on
shorter time-scales plays a role. Long-term correlations do
not have a significant impact, and hence SRD models can
be used.

Analysis. In our study, we succeed in getting a the-
oretical handle on the result found in [17, 18, 34]. Our
analysis consists of two steps: First we present a versa-
tile queueing model of traffic multiplexed at a router, and
then we synthesize a number of strong existing structural
results. Then we use these results to assess the influence
of the sources’ characteristics on the performance for re-
alisic scenario’s. In greater detail, our contribution is the
following.
1. Our versatile queueing model is the following. We
have n i.i.d. sources, feeding into a FIFO queue with
buffer B and link rate C. A generic source model is
considered: traffic generated by an individual user is
modeled as a fluid on/off pattern with generally dis-
tributed on- and off-times. Notice that this model cov-
ers both LRD (choose heavy-tailed on-times and/or
off-times) and SRD input.
A crucial point is that we do not focus on large-buffer
asymptotics but rather on many-sources asymptotics:

we let the aggregation level n grow large, and at the
same time the resources are scaled accordingly: B ≡
nb and C ≡ nc. Notice that in many practical applica-
tions the assumption of many sources is considerably
more realistic than the assumption of large buffers (or
equivalently: large delay tolerance).
The asymptotics developed byBotvich andDuffield [3]
state that the overflow probability decays exponen-
tially in n. In this paper a major role is played by
the resulting decay rate, particularly as a function
of b. The results from [3] enable us to calculate
the loss curve I(·), i.e., the decay rate as function
of b.
A disadvantage of the use of the Botvich-Duffield re-
sult is that it is implicit, in that the value of I(b) is
hidden behind a variational problem. Therefore we
consider explicit characterizations of the loss curve
for small and large b [3, 25, 26]. Here the fundamen-
tal difference between LRD and SRD input comes to
the surface. Crucially, for small buffers an insensi-
tivity result holds: I(b) depends on the on- and off-
times only through their means – in other words,
SRD and LRD sources (with the same mean on-
and off-times) behave roughly identically. For large
buffers however, there is a distinction between SRD
sources, where I(b) is (at least) linear in b, and LRD
sources, where I(b) is sublinear (for instance like bρ,
with ρ ∈ (0, 1), or like log b). Hence, for LRD in-
put the decay of the loss probability in the buffer
size is slower than exponential; this is in stark con-
trast with SRD input, which has at least exponen-
tial decay. For the regime of large b we also have
insightful properties of the behavior of the sources
during the queue’s path to overflow, which again in-
dicate the fundamental differences between SRD and
LRD input.
Although our model is versatile (covering a broad
range of traffic types), it of course has a number of
less realistic properties. In practice, traffic that is mul-
tiplexed on a network will be heterogeneous (rather
than homogeneous), and it will traverse a concatena-
tion of links rather than just one. Also, in our model
(unlike TCP), the rate the users send at does not adapt
to the available resources in the network. We will de-
tail these drawbacks, and argue why our model still
captures the essential features.

2. Armed with the characteristics of the loss curve, we
are in a position to assess the impact of LRD on the
experienced performance. We select a number of sce-
narios of applications (voice, video, file transfer, web
browsing, . . . ), and use traffic parameters that ap-
peared in the literature and application-dependent de-
lay requirements.
Then for any value of the maximum delay (that may
be exceeded by no more than a small fraction of the
packets) we can compute how many sources of a spe-
cific type can be admitted on a link with given rate. We
examine to what extent this number is affected by the
shape of the on- and off-time distributions (keeping
the mean on- and off-times fixed).
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Our conclusions on the impact of LRD on the perform-
ance can be summarized as follows: (i) If the delay
threshold is strict, there is hardly any difference be-
tween LRD and SRD input. For delay requirements
in an ‘intermediate’ range, the probabilistic law of the
input streams plays a role, but the ‘heaviest tails’ do
not necessarily lead to the worst performance. Only
for very tolerant delay requirements the large buffer
results, as mentioned above, kick in. (ii) The level of
aggregation is a significant factor. If the ratio between
the link rate and the peak rate of a single source is
high (and the sources are not too bursty), a high uti-
lization can be achieved, while at the same time the
delay requirements are met; this holds even if the de-
lay requirements are stringent. Consequently, in traffic
engineering one could use tight delay requirements,
corresponding to the (insensitive) small buffer situ-
ation, while still running the system at a fairly efficient
level.
This paper is organized as follows. Section 2 concen-

trates on the multiplexing queueing model, and describes
the main properties of the loss curve. Section 3 applies this
modeling to assess the impact of the model parameters on
the realized performance. Section 4 reflects on important
caveats regarding LRD traffic – particularly illegitimate
reversal of limits leads to misleading results. Section 5
concludes.

2. The shape of the loss curve

This section presents the mathematical model underlying
our analysis. The model and preliminaries are provided by
Section 2.1. Structural results on the loss curve are given
in Sections 2.2 and 2.3. The main contribution of this sec-
tion is that we give a complete overview of the relevant
results that provides (on an abstract level) important in-
sights in the fundamental differences between LRD and
SRD input. We do so by combining theoretical results that
appeared in [3] and our previous work [25, 26]. In Sec-
tion 2.4 we comment on the influence of the correlation
structure of the arrival process on the shape of the loss
curve.

2.1 Model and preliminaries

Model. We consider traffic from n on-off fluid sources
feeding into a buffered resource. This resource is mod-
eled as a queue with constant depletion rate C. The traffic
rate of each source alternates between on and off; during
the on-times traffic is generated continuously at a (nor-
malized) peak rate of 1. The activity periods constitute
an i.i.d. sequence of random variables, each of them dis-
tributed as random variable A with values in R+. The
silence periods are also an i.i.d. sequence, distributed as
random variable S with values in R+. Both sequences are
mutually independent. Define also

A(t) :=Traffic generated by a single source,
in steady state, in a time interval of length t.

Later in our analysis we need the following assumption.

Assumption 2.1 The random variables A and S are such
that EA1+ζ < ∞ (for some positive ζ) and ES< ∞. The
distribution of A+ S is non-lattice.

This assumption has two major implications – for de-
tails we refer to Section 2.1 of [14]. In the first place, the
fact that both EA and ES are finite ensures that the long-
run fraction of time the source spends in the on-state is

p := EA
EA+ES ,

and the fraction spent in the off-state is its comple-
ment 1− p. Also, the residual activity period A# is well-
defined: conditioned on the process being in the on-state,
A# has distribution

FA# (x) := P(A# ≤ x) = 1
EA

∫ x

0
P(A > y)dy;

S# is defined analogously.

Performance measures.We are interested in the probabil-
ity of the buffer content exceeding level B, denoted by
p(B,C). Using the constant depletion rate, it is not hard to
see how this performance metric can be translated into the
probability that the queueing delay exceeds some prespec-
ified threshold. Unfortunately, only in a few special cases
p(B,C) can be evaluated explicitly. This motivates why
we resort to asymptotics.
In this work we choose the asymptotic regime in

which the number of sources, say n, grows large. At the
same time we rescale the resources : C ≡ nc and B ≡ nb.
This scaling was first introduced by Weiss [39] and has
proven to be very powerful, see e.g. [3, 8, 36]. We believe
that this scaling is quite natural: network elements of cur-
rent packet networks are usually fed by many relatively
small flows. In any case, the asymptotic regime of many
sources seems to be more realistic than the regime of large
buffers, as the latter regime is not appropriate for delay-
sensitive applications.
We assume that the system is stable and non-trivial:

p< c< 1. In the scaled model we define

pn(b, c) := steady-state probability that the buffer
content exceeds level nb.

In particular we will analyze its exponential decay rate (as
a function of b, for fixed c):

I(b) := − lim
n→∞

1
n
log pn(b, c).

We call this curve the loss curve. The key result on I(b) is
given below in Theorem 2.3.
Theorem 2.3 describes the many sources asymptotics

for general b. Botvich and Duffield [3] proved it under
fairly general conditions, whereas related results were de-
rived in [8, 24, 36]. The result that we use in this paper is
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a slight variation of [24], that requires the following mild
additional assumption.

Assumption 2.2 Assume inft>0 It(b) is a continuous func-
tion of b, where

It(b) := sup
θ

(
θ(b+ ct)− logEeθA(t)) .

Theorem 2.3 [Loss curve for general b] Under Assump-
tions 2.1 and 2.2,

I(b) = inf
t>0

It(b) = inf
t>0
sup

θ

(
θ(b+ ct)− logEeθA(t)) . (1)

For the proof of Theorem 2.3 we refer to Mandjes and
Borst [26]. Informally, the following exponential approx-
imation applies:

pn(b, c) ≈ e−nI(b), n large.

Discussion. Wischik [42] provides useful insight into the
heuristics behind Theorem 2.3. He phrases I(b) as an op-
timization over all paths of the buffer leading to overflow.
His reasoning shows that the optimizing value of t, in the
sequel denoted by t#b , can be interpreted as the typical du-
ration from the epoch the buffer starts to fill until overflow,
given that this busy period leads to overflow. Therefore,
we will call t#b the most likely time to overflow. The most
substantial drawback of Theorem 2.3 is its intransparency:
its value is concealed behind the inf sup program. This ex-
plains the interest in simple approximations of I(b) for
small and large b. In the next two subsections we re-
view the approximations for small buffers (found in [26])
and large buffers (see [3, 25]). For large buffers the loss
curve is strongly affected by the distributions of the on-
and off-times – we explain in detail the intuition behind
this.

2.2 Small buffers: insensitivity in the shape
of the distribution

The small buffer implies that the state of any individual
source is not likely to change often during the trajectory
to overflow, simply because the time to overflow is small.
This is formalized in the next assumption, which is sat-
isfied for a broad class of on- and off-time distributions
– in fact it is enough that the corresponding densities are
bounded.

Assumption 2.4 The probability that the state (i.e., on or
off) of any individual sources makes two or more transi-
tions in an interval of length t is O(t2), where t ↓ 0.

Now define the following two constants:

α(c) := c log
(
c
p

)
+ (1− c) log

(
1− c
1− p

)
,

and

β(c) :=

2

√(
c
EA

+ 1− c
ES

)
log

(
c

1− c
· ES
EA

)
−2

(
c
EA

− 1− c
ES

)
.

The following theorem is proved by Mandjes and
Kim [26].

Theorem 2.5 [Loss curve for small b] With α and β de-
fined above, for small b,

lim
n→∞

1
n
log pn(b, c) = −α(c)−β(c)

√
b+O(b), (2)

under Assumptions 2.1, 2.2, and 2.4.

• Influence of distributions. Importantly, Theorem 2.5
states that the exponential decay rate depends on the
distribution of the on and off-times, only through their
means EA,ES. In other words, for given means, and
small b, is not important whether the distributions
have heavy tails or exponential tails. Consequently,
the small buffer results found by Weiss [39] for ex-
ponential on/off sources generalize to general on/off
sources.

• Multiplexing gains. For small buffers the loss curve
I(b) increases like

√
b. This means that for small

buffers the overflow probability decreases very fast, so
there is a large ‘marginal benefit’ of an additional unit
of buffer space.
It was already widely recognized that small buffers
were useful to absorb traffic fluctuations at the packet
level (that are due to the asynchronous arrival of pack-
ets). However, the shape of the loss curve for small b
states that even if traffic is modeled as fluid (and hence
the packet level is ignored), it is worthwhile to have
a small buffer.

• Path to overflow. The time to overflow is proportional
to

√
b; the proportionality constant is a straightfor-

ward function of EA, ES, and c, see Eq. 11 of [26]. As
for the case with Exponential on- and off-times [39],
the trajectory to overflow looks like a hyperbolic co-
sine.

2.3 Large buffers: linear and sublinear loss curve

For large buffers no insensitivity result applies. We re-
capitulate two results, namely the result for light-tailed
on-times (giving rise to SRD input) by Botvich and
Duffield [3] and the result for heavy-tailed on-times (giv-
ing rise to LRD input) by Mandjes and Borst [25]. These
results state that the shape of the distribution of the ac-
tivity period essentially determines the shape of the loss
curve for large b.
We need a formal classification of probability distri-

butions. Particularly, we rely on the concept of subexpo-
nential distributions, defined below in Definition 2.6 and
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reviewed in detail in the appendices of [5]. The heavy-
tailed distributions we use in this paper are in the class of
subexponential distributions. We also define the class of
subexponentially varying distributions.

Definition 2.6 [Heavy-tailed distributions] Suppose

P(X+ X ′ > t)
P(X > t)

→ 2, t → ∞,

where X and X ′ are i.i.d. random variables. With FX(·) :=
P(X ≤ x), we say that X has a subexponential dis-
tribution, or FX(·) ∈ S. Suppose the function vX(·) :=
− logP(X > t) is regularly varying of index h (at infinity),
that is,

vX(yt)
vX(t)

→ yh, t → ∞,

for all y > 0. If vX(·) is regularly varying of index h ∈
[0, 1), we say that X has a subexponentially varying dis-
tribution, or FX(·) ∈ V.
Unfortunately, the exact relation between the classes S

andV is not clear. The most important heavy-tailed distri-
butions (like Pareto, Lognormal, and Weibull) are in both
of them. A well-known implication [5, Lemma 7.2 and
7.3] of FX(·) ∈ S is that for all positive ε,

eεtP(X > t) → ∞, as t → ∞. (3)

– Light tails. First we review the case of light-tailed on-
times, due to [3]. Define

θ# := sup
{
θ : lim

t→∞
t−1 logEeθ(A(t)−ct) ≤ 0

}
. (4)

Theorem 2.7 [Loss curve for large b – light-tailed
on-times]With θ# defined in (4),

lim
b→∞

I(b)− θ#b= ν,

under Hypotheses 1.(i)–(iv) of [3], and assuming that
ν := − limt→∞ logEeθ

#(A(t)−ct) exists.

The crucial assumption here is Hypothesis 1. (iii)
of [3], i.e., there exists a positive θ such thatEeθ(A(t)−ct)

< 1 for all t large enough. For on-off sources with
subexponential on-time, because of (3), for θ > 0 and
t large:

EeθA(t) ≥ pP(A# > t) eθt ≥ eθct;

here we focused on the probability that the source
is on at time 0 and stays on during [0, t]. Therefore
Theorem 2.7 is not applicable if the bursts are heavy-
tailed.

– Heavy tails. The following theorem, from [25], covers
the case of heavy-tailed on-times.

Theorem 2.8 [Loss curve for large b – heavy-tailed
on-times] If FA# (·) ∈ S ∩V:

lim
b→∞

I(b)
v(b)

=






c−p
1−p

if h = 0,
(
c−p
1−p

) ( 1
1−h

) ( h
1−h (c− p)

)−h

if h ∈ (0, 1) and
(
c−p
1−p

) ( 1
1−h

)
≤ 1,

( 1
1−c

)h

if h ∈ (0, 1) and
(
c−p
1−p

) ( 1
1−h

)
> 1,

with v(t) := − logP(A# > t), under Assumptions 2.1
and 2.2.

• Influence of distributions. If the on-times are not
heavy-tailed, Theorem 2.7 applies, even if the off-
times are heavy-tailed. Hence I(b) is asymptotically
linear in b, implying that the decay of the loss prob-
ability in the buffer size is essentially exponential. An
alternative expression for θ# is

sup
{
θ : EeθA (1−c)Ee−θSc ≤ 1

}
,

cf. [13, 40]. In other words, in this regime, the loss
curve depends on the entire distributions of A and S.
If the on-times are heavy-tailed, according to Theo-
rem 2.8, I(b) more or less looks like v(b). Hence I(b)
is sublinear, i.e., the decay of the overflow probability
is slower than exponential. More precisely, I(b) looks
like logb for Pareto on-times, and like bρ, ρ ∈ (0, 1),
for Weibull on-times. Notice that the asymptotics de-
pend on the distribution of S only through its mean.

• Multiplexing gains. It was already mentioned that for
small b the overflow probability decreases fast in b.
From Theorems 2.7 and 2.8, we conclude that this
marginal benefit is smaller for larger b, since the loss
curve increases only linearly or even sublinearly.
Notice that Theorem 2.7 is a more accurate than
Theorem 2.8, in that the former gives a function f(·)
such that I(b)− f(b) tends to a constant, whereas
the latter gives a function g(·) such that I(b)/g(b)
tends to a constant. Theorem 2.7 nicely describes (for
light-tailed input) the multiplexing gain that can be
achieved on top of bufferless multiplexing, as op-
posed to the crude ‘effective bandwidth approxima-
tion’ I(b) ≈ θ#b, see the introduction of Botvich and
Duffield [3] and Choudhury, Lucantoni, andWhitt [6].

• Path to overflow. The theoretical results of this section
enable us to get a better qualitative understanding of
the most likely way for buffer overflow to occur.
– For systems with light-tailed on-times, detailed
analyses are available. It is well understood that
the sources must behave according to a different
statistical law in order to fill a large buffer: The on-
periods are longer and the off-periods shorter than
during average behavior. More precisely: the on-
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and off-times are exponentially twisted. Essentially,
during the path to overflow, all sources behave ac-
cording to the same ‘new’ statistical law, cf. the
seminal paper of Weiss [39], and more recent art-
icles [2, 28].

– For sources with subexponential on-periods, the in-
tuition behind the trajectory to overflow is com-
pletely different. During a path to overflow, there
are two types of sources. A first group sends at peak
rate the entire time from an empty system to over-
flow. Another group alternates between on and off,
in such a way that they effectively contributing at
mean rate (i.e., these sources behave according to
their normal statistical law). Note that this in stark
contrast with the behavior exhibited by light-tailed
sources; as described above in that case all sources
essentially behave in the same way, and alternate
between on and off, effectively sending at a higher
rate than their mean rate.
The validity of this intuition is supported by the fol-
lowing heuristic calculation. Consider the situation
of n homogeneous on-off sources with FA# (·) ∈
S ∩V. Let us follow the above intuition, and let K
be the number of sources that send at peak rate. An
approximation for the loss probability is

p(B,C) ≈

max
K :K+(n−K)p>C

P
(
A# >

B
K + (n− K)p−C

)K
,

K ∈ {0, . . . , n}.

Putting K ≡ nk,

1
n
log pn(b, c) (5)

≈ − min
k:k+(1−k)p>c

k ·v
(

b
k+ (1− k)p− c

)

≈ − min
k:k+(1−k)p>c

k · (k+ (1− k)p− c)−hv(b).

The minimum is reached for

k# =min
{(

c− p
1− p

)(
1

1−h

)
, 1

}
. (6)

Inserting k# into (5) this indeed directly leads to the
decay rate given in Theorem 2.8. Notice that k# can
be interpreted as the fraction of sources that send at
peak rate during the entire path to overflow.

– Examples.We give three examples of sources with
essentially different trajectories to overflow. The
off-times are assumed to be exponentially dis-
tributed.

1. Light-tailed on-times. A and S are exponentially
twisted. Following [2], for large b,

t#b ≈ EĀ+ES̄
(1− c)EĀ− cES̄

,

where EĀ := EA e
θ#A(1−c)

Eeθ#A(1−c)

and ES̄ := ESe
−θ#Sc

Ee−θ#Sc .

2. Pareto on-times. It is easily checked that if the
on-periods are Pareto distributed, then FA# (·) ∈ V
with h = 0; we assume that v(t) ∼ (α−1) log t for
an α > 1. As h = 0, according to (6) a fraction
k# = (c− p)(1− p)−1 send at peak rate essen-
tially during the entire path to overflow, whereas
the remaining fraction (1− c)(1− p)−1 contribute
at mean rate p (by alternating between on and
off with their ‘normal’ statistical law). An easy
calculation gives aggregate input rate c. In other
words: if h = 0, then the net input rate will be
only slightly larger than 0. This suggests that [25]
t#b should grow faster than linearly in b. In fact,
Mandjes and Borst [25] show that t#b = b f(b),
with f(·) such that log(b f(b))/ f(b) → 1 (with
b large). Thus f(b) is clearly smaller than poly-
nomial, but larger than a constant. It is easily
checked that for A Lognormal we have similar
behavior.
3. Weibull on-times. Here A has a cumulative dis-
tribution function exp[−tβ], which leads to a v(·)
function which is regularly varying of index β, with
β ∈ (0, 1). From (6) it is seen that the net input rate
is positive, thus leading to a time to overflow that
is essentially linear in the buffer size, with t#bk#(1−
c) ≈ b. If h is close to 1, then all sources will have
long bursts (as k# = 1).

To illustrate the influence of the distributions, we con-
clude this section with characteristic graphs of I(b) and
t#b as functions of b. In Figure 1 we compare light-tailed
(Geometric), Pareto, and Weibull on-times. For numeri-
cal ease, we use slotted time; consequently the I(b) curve
does not quite look like a square root for small b. It can
be verified that for large b, I(b) is indeed linear for Ge-
ometric bursts, log-like for Pareto, and polynomial for
Weibull. Notice the superlinear behavior of t#b for Pareto
on-times.

2.4 Correlations and concavity

A general conjecture is that, if the packet arrivals are
negatively (positively) correlated on time scale t#b , then
the loss curve is convex (concave) at b. Empirical mo-
tivation for this conjecture can be found in [3, Section
4.4]. There a discrete-time queue is considered, fed by
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Fig. 1. I(b) and t#b , as functions of b.

sources with Geometric(q1) on-times and Geometric(q2)
off-times. They found that depending on the correlation
structure, the loss curve has a convex or concave shape.
More precisely, for q1+q2 > 1 (negative correlation) they
showed convexity, for q1+q2 < 1 concavity (positive cor-
relation).
In the cases described in the previous subsections the

loss curve is concave, due to the positive correlations of
the inputs that satisfy the assumptions of Theorems 2.7
and 2.8. However, it is possible to construct on-off fluid
sources with negative correlations, for instance by taking
deterministic on and off-times. In the literature significant
attention has been paid to this type of ‘adversarial traf-
fic’ [15].
From the formulas reviewed in the previous subsec-

tions we also conclude that the level of correlation de-
termines the level of concavity. For b = 0 the curve is
highly concave (second derivative is∞), for larger b (and
consequently longer associated time scale) the concavity
is less pronounced. In the light-tailed case the concav-
ity vanishes: the loss curve has a linear asymptote. This
is in line with the observation that for light-tailed activ-
ity periods there is indeed hardly any correlation left on
the relevant time-scale (which is proportional to b), due
to the short-range dependent character of the sources. In
the heavy-tailed case the loss curve could be still quite
concave (log b for Pareto, bβ for Weibull), because on the
relevant time scale still considerable positive correlations
exist.

3. Numerical evaluations

Section 2 indicated that for small buffers LRD hardly af-
fects queueing performance, whereas for large buffers it
does. Hence, it is of crucial importance to identify which
of these two regimes applies in realistic situations. To that
end, our approach is the following. We first list a number
of relevant applications (voice, video, file transfer, web
browsing, etc.). The corresponding traffic characteristics
(in terms of our on-off model) and performance require-
ments are identified from empirical studies, e.g., [9, 32].
Then we compute, for different values of the link rate C,
how many flows can be accepted without violating the
performance criterion, varying the shape of the distribu-
tions (but leaving the mean on- and off-times constant).
Clearly, this statistic gives important insight into the im-
pact of the traffic characteristics.
This section is organized as follows. We start by pre-

senting the related literature in Section 3.1, and indicate
where we depart from their approach. Then we describe
in Section 3.2 the traffic scenarios and performance re-
quirements. In Section 3.3 we assess the impact of the
traffic characteristics for the described traffic scenarios.
Section 3.4 presents the conclusions.

3.1 Literature on the impact of LRD

Before we present our own approach, and its results, we
first briefly review a number of important contributions on
the impact of LRD.

Ryu and Elwalid [34]. In this paper attention is fo-
cused on multiplexed real-time VBR video sources (with
purposes like video conferencing, etc.). The main conclu-
sion is that the long-term correlations do not affect the
performance – short-term correlations are dominant, and
therefore Markov modeling is adequate. The main reason
behind this lies in the rather strict delay requirement (in
the order of 20–30ms per queue) imposed by real-time
video. The performance metric used is the probability
that the delay exceeds the upper bound mentioned above,
which can be translated into the probability that the buffer
content exceeds some specific level. It can be argued that
the strict delay constraint implies, loosely speaking, that
the buffer has little memory, such that long tails cannot
have a significant impact. The analysis relies on the notion
of critical time-scale, i.e., the number of time-lags that
contribute to the buffer overflow probability – the authors
show that even in the presence of LRD this number is
small.

Heyman and Lakshman [18]. The authors also con-
sider real-time VBR video, and not surprisingly, the con-
clusion of the paper is similar to the one of [34]. LRD
does not affect the buffer occupancy distribution signifi-
cantly, andMarkovianmodels suffice to accurately predict
performance. Only knowledge of the mean and variance
of the marginal distribution and the lag-1 autocorrelations
are required. The authors advocate the use of the (short-
range dependent model) DAR(1), i.e., a discrete autore-
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gressive model of order 1. The authors present additional
results in [19].

Grossglauser and Bolot [17]. The authors conclude
that the amount of correlation required is determined by
the time-scales that are typical for the system under con-
sideration. This justifies the use of Markov models (or
self-similar models, as long as they have the right cor-
relation structure up to the ‘correlation horizon’). This
in line with the findings from [18, 34]. Grossglauser and
Bolot [17] consider the packet loss rate rather than the
probability that the delay exceeds some critical value. The
authors also conclude that, in order to decrease the loss
rate, it is much more efficient to adjust the marginal dis-
tribution of the rate than to use large buffers. The authors
propose a modulated fluid traffic model of which a special
case is constituted by a superposition of on-off sources.

Evaluation. The studies mentioned [17, 18, 34] have
a strongly empirical character, supported by mathemat-
ical modeling. Both [18] and [34] exclusively address
real-time video, although the same question (‘what is the
impact of LRD?’) is of great importance for other applica-
tions. Below we will define a broader set of applications.
The interesting point of [34] is the notion of critical

time scale, i.e., the number of time-lags that contribute to
the overflow probability. The authors use large deviations
theory to support this – the role of the critical time scale is
comparable to t#b in our analysis, and the correlation hori-
zon identified in [17].
As noted above, the model of [17] covers on-off

sources. However, they assume that the distributions of
the bursts and the silences are identical, which seems to
be quite restrictive. Clearly, our model does not have this
constraint.
The performance metric used in [17] is the packet loss

ratio, instead of the probability of exceeding some delay
level. This does not seem to be so adequate, as the authors
mention that the buffer that they consider is so large that
packets can have a delay of a few seconds. Evidently,
in applications like real-time applications, it is usually
not desirable that packets experience delays of that order.
Therefore we prefer the probability of the delay exceeding
some predefined bound (considerably smaller than a few
seconds).
From the above, we conclude that there is a need for

a unified modeling that covers a broader set of applica-
tions (apart from video also applications like audio, file
transfer, etc.). In the next subsection we detail the ap-
proach that is followed in the present paper.

3.2 Approach

We will use the results of the previous section to shed
some light on the impact of LRD. For the sake of con-
venience we choose slotted time. An important advan-
tage of discrete time is that it is easy to evaluate the
moment generating functions recursively (as described
in Appendix A). At the same time, Theorem 2.3 goes
through. Also the theorems on small and large buffers are
essentially still valid, given that the number of packets per

burst is large (because then there is little difference be-
tween the discrete-time model and the fluid model).

Performance measure. The metric we use is the prob-
ability pD of the packet delay exceeding some maximum
– this probability must be small, typically in the order of
10−4–10−5. The delay probability can be translated into
the overflow probability of Section 2: with delay require-
ment D, we must have that pn(cD, c) ≤ pD.
For any value of the delay requirement D, we calcu-

late the number of sources that can be admitted. If j is the
number of sources that can be admitted to achieve this per-
formance target, it is clear that j is an increasing function
of D. As follows easily from Theorem 2.3,

j = inf
k∈N

sup
θ

(
θ(CD+Ck)+ log pD
logE exp(θA(k))

)
. (7)

Alternatively, we can choose n large (and as before B ≡
nb and C ≡ nc), and δ such that exp[−nδ] = pD. Then,
j = nJ(D), with

J(D) := inf
k∈N

sup
θ

(
θ(cD+ ck)− δ

logE exp(θA(k))

)
.

Note that in this case j rather than n denotes the number of
sources. We call this curve (as a function of D) the accept-
ance curve.We will assess the impact of the distributions
of the on- and off-times on the basis of this acceptance
curve. In Appendix B we derive that it is, for small D, in-
sensitive to higher moments of the activities and silences
(just like the loss curve is).

Applications. The source models we present below do
not intend to describe the stochastic behavior of the traffic
flow as accurately as possible. However, we believe that
the capture the essential features, such that we can draw
general conclusions on the impact of the source charac-
teristics. Table 1 summarizes the source models and per-
formance requirements.
• Scenario 1: Voice, non-real-time audio. Due to its

interactive character, voice has very strict delay re-
quirements, typically in the order of a few ms per
hop (router). We will consider voice with silence sup-
pression, leading to on-off streams, with mean on and
off-times in the order of a second. We will choose
the parameters given in Sriram and Whitt [37]: ac-
tivities of mean length 352ms, and silences of mean
length 650ms, and a peak rate of 32 kbit/s. In the ex-
periments below, we will vary the distribution of the
activities and silences.
As opposed to voice, non-real-time audio (for instance
broadcast) does not impose severe delay constraints.
One could think of a delay requirement up to 1 s per
router. For reasons of simplicity we use the same traf-
fic characteristics as those described above for coded
voice.

• Scenario 2: VBR video. Several studies describe the
statistical behavior of variable bit rate MPEG video –
an overview of available models is given in Section 3.2
of Rose [33]. Jelenković, Lazar, and Semret [21] ex-
amine the traces from [33]. We will use a simplified
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Table 1. Traffic source parameters.

Application EA in s ES in s Peak rate (minimum rate) in kbit/s

voice/audio 0.352 0.650 32
VBR video 9.0 9.0 800 (400)

web browsing (i/ii/iii) 0.01/0.10/0.50 10 3000/300/60

version of the model of [21]: sources with two lev-
els of activity, so-called scenes. These scenes have
mean lengths of about 9 seconds, i.e., 18.75 so-called
Groups of Pictures (GOPs), where a GOP corresponds
to 0.5 s. The distributions of the scenes are i.i.d.: for
both activity levels the density of the duration is Pareto
with tail-parameter in the order of 2.5 (i.e., the proba-
bility of a scene exceeding level x roughly looks like
x−1.5). The traffic rate at the high activity level could
be about 800kbit/s (about 4 ·105 bits per GOP), and
400kbit/s (about 2 ·105 bits per GOP).
Notice that the model presented in [21] is more accu-
rate, as it identifies a fluid model as described above
(on a somewhat longer time-scale), but also a detailed
model for the short time-scale. Also they distinguish
more than just two activity levels (four levels, with
traffic rates of 230, 440, 680 and 1180kbit/s). We be-
lieve however that our two-level model captures the
main effects – notice that a queue fed by sources
with two activity levels can be analyzed by the on-off
models of this paper (by adjusting the peak rate and
the link rate).
The delay requirements are quite stringent in case of
real-time video (e.g., video conferencing), in the order
of a few ms per hop; for broadcast video one could
think of delays up to 1 s per hop.

• Scenario 3: Web browsing. A first important obser-
vation is that we should distinguish between packet
delay and file transfer delay. The former is the delay
an individual packet experiences, whereas the latter is
roughly the delay between the request and the arrival
of the last bit – we focus on the former. Packet delay
requirements (per router) could be thought of as in the
order of a few tens of ms.
An important contribution to the distribution of file
sizes is by Crovella and Bestavros [9]. They do ex-
tensive statistical analysis of WWW document sizes.
They find a heavy-tailed distribution, where the tail of
the complementary distribution function is of Pareto-
type of index 1.0 up to 1.3, and with mean in the order
of a few thousand bytes, see [9, Table 1]; compara-
ble figures are given by Paxson and Floyd [32] for ftp
connections on the Internet.
As motivated in [9, Section 5] the traffic generated by
a web browsing user could be described as an on-off
source: the on-times are the transfers, the off-times are
the think-times. The mean on-times depend of course
on the peak rate at which the file arrives at the router.
In our calculations below we will use (i) a high peak
rate (in the order of 3000kbit/s), (ii) a medium peak
rate (in the order of 300 kbit/s), and (iii) a low peak

rate (in the order of 60 kbit/s). We take a think-time
with mean 10 s.
The idea is to plot the acceptance curve for the traffic

profiles described above, for different distributions of the
on- and off-times. We will do that for different values of
the link rate C. Then, by visual inspection, for any delay
requirement, we can conclude whether or not the specific
distributions play a role or not. Based on Theorem 2.5 and
Appendix B we expect that for small D there will hardly
be any difference, but Theorems 2.7 and 2.8 indicate that
for larger D the curves will diverge. The interesting ques-
tion is: is there any difference at the practically relevant
values of D?

Evaluation of the approach. The approach described
above offers a unified framework for evaluation of the im-
pact of LRD under realistic circumstances. Obviously the
model does not capture all effects that play a role in prac-
tice. Below we present a number of these drawbacks, and
argue why we think that our results are still applicable.
• Traffic is homogeneous. In practice, network traffic is

composed from a number of heterogeneous sources.
As explained in [3, p. 300] it is possible to calcu-
late the loss curves of heterogeneous superpositions of
sources. For the sake of clarity we will restrict our-
selves in the numerical experiments below to homoge-
neous input. We expect that heterogeneous input will
lead to similar figures.

• No (feedback) rate control taken into account. Real-
time video and interactive voice are not likely to be
transported by a feedback-based protocol. However
for the other (non-real-time) applications there will
be a role played by TCP – this protocol provides the
sender with information on the state of congestion, on
the basis of which he can adapt the rate at which he
sends.
In other words, for instance for a file transfer the pat-
tern of packet arrivals is not on-off, on a detailed time-
scale. However, as justified in [9, Section 5.2.1] on
a somewhat longer time-scale the rough approxima-
tion by an on-off fluid source applies. Also, notice that
it is possible to explicitly model TCP-like feedback
control mechanisms by fluid models, e.g. the one ex-
amined by Mandjes, Mitra, and Scheinhardt [27]. For
reasons of conciseness with did not use these models
here.

• Single link instead of network model.We consider just
a single link, but of course the end-to-end delay is the
metric the user is interested in. One could take this into
account by approximating the end-to-end delay by the
sum of individual delays. Notice that this is quite con-
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servative: if in all N queues the probability of a delay
larger than D is ε, then (under an independence as-
sumption), the probability that the end-to-end delay is
larger than ND is much smaller than ε. In Van der Wal
et al. [38] a method is explained how to generate more
realistic estimates on the end-to-end delay.

• Drawbacks of the traffic model. Although the traffic
model is rather generic (since the on and off-times are
general), some remarks can be made here. As indi-
cated above, for VBR video a model with more than
just two levels could be more suitable. It should be
emphasized that these more complicated models can
in principle be treated by the same large deviations
machinery.
We also assume that sources are stationary: their sta-
tistical behavior is constant in time. Therefore, we
could not deal with the cases described in [9], where
Pareto-distributed file size are described with parame-
ter 0.9.

3.3 Numerical results

In this section we present graphs of the acceptance curve
j(D) corresponding to the scenarios described in Sec-
tion 3.1. This is done for different on-time distributions
(as we saw in Section 2 that the distribution of the off-
time does not really affect the shape of the loss curve). We
also varied the link rate C, thus allowing different levels of
multiplexing.
The on- and off-times are N-valued random variables.

Like in Figure 1, we choose the following distributions:
• Weibull(κ, τ) distribution (‘moderately’ heavy tail)

with

P(A = k) = e−[τ(k−1)]
κ − e−[τk]

κ
(0< κ < 1, τ > 0).

In the experiments the κ, which determines the heavi-
ness of the tail of the distribution, is fixed at 0.4. The τ
is chosen such that the mean has the right value.

• Pareto distribution (‘very’ heavy tail) with

P(A = k) = [β/(β + k−1)]α − [β/(β + k)]α

(α,β > 0).

The index parameter α determines the heaviness of the
tail of the distribution. In the numerical examinations,
α has a application-specific value. The β is chosen
such that the distribution has the desired mean.

• Geometric(q1) distribution (light tail) with

P(A = k) = (1−q1)k−1q1 (0< q1 < 1).

The mean of this distribution is 1/q1.
We take Geometric(q2) off-times with

P(B = k) = (1−q2)k−1q2 (0< q2 < 1).

We evaluate three sizes of the link rate, namely 45Mbit/s
(aggregation level), and 150Mbit/s and 600Mbits/s
(backbone). We take the delay exceedance probability pD
equal to 10−5 and we choose the packet size equal to
300 bytes. For our computations we use the convention
that one Kbyte equals 1024 bytes.
As mentioned in Section 3.2, in our VBR video model

traffic generated by a single source is not on-off, but rather
is the rate alternating between two positive levels. For im-
plementation purposes we normalize the peak rate to 1
(in the VBR video model we normalize the difference be-
tween the peak rate and the minimum rate to 1) and we
scale the link rate, the minimum rate (in case of the VBR
video model) and the mean of the on- and off-times ac-
cordingly.
Obviously, if there is no delay constraint the number

of accepted sources is C/p, recalling that p is the mean
rate. For this reason we also plot the line C/p in the pic-
tures. As said before, a scheme for the computation of
E exp(θA(k)) and the acceptance curve are given in Ap-
pendix A.

3.4 Discussion

In this section we discuss the influence of the shape of
the on-time distribution on the acceptance curve, as fol-
lows from the graphs in Section 3.3. We also conclude
that the level of aggregation (i.e., the size of the link
rate) is an important factor; below we comment on its
impact.

The on-time distribution. A general conclusion is
that the relevance of the on-time distribution strongly
depends on the delay requirement D. As can be seen
from the graphs, for stringent delay requirements the on-
time distribution does not play a role at all; in fact we
are in the small buffer regime. When the delay thresh-
old increases the shape of the on-time distribution be-
comes more important. However, from the results for
voice and video we conclude that here the heaviness of
the tail is certainly not the only determining factor, since
the graph of the Pareto distribution lies above the graph
of the Weibull distribution (although for large enough
delay this is no longer the case, according to Theo-
rem 2.8). Apparently, detailed information on the shape
of the distribution (not necessarily the tail) has significant
impact.
For web browsing, presumably due to the large off-

times (and consequently the large peak-to-mean ratio),
the large buffer regime is reached rather quickly. Con-
sequently the positioning of the graphs for the different
distributions is as expected: Pareto is worse than Weibull,
which is worse than Geometric.

Level of aggregation. From the above figures we can
draw the following general conclusion regarding the level
of aggregation. If the ratio between the link rate and the
peak rate of a single source is high (and the sources are not
too bursty), a high utilization can be achieved, while at the
same time the delay requirements are met; this holds even
if the delay requirements are stringent.
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Consequently, in traffic engineering one could use
tight delay requirements, corresponding to the (insensi-
tive) small buffer situation, while still running the system
at a fairly efficient level. One could even resort to the zero
buffer case (‘rate-envelope multiplexing’) if the resulting
efficiency is sufficiently high. From the graphs we con-
clude that the rate-envelope multiplexing utilization for
voice and video is in the range 80–90%. Similar results
hold for (ii) and (iii) of the web browsing model. Scenario
(i) however leads to a poor utilization, particularly when
C = 45Mbit/s; this is due to the extremely high peak-to-
mean ratio).
Clearly, if one is satisfied with the rate-envelope mul-

tiplexing utilization, distributions do not play a role at
all. Only in case of a low level of aggregation (low link
rates, for instance in the access network), in conjunction
with (extremely) bursty input, this leads to a low effi-
ciency. Then it could be worthwhile to exploit the buffer

(equivalently: to allow for significant delay) in the traf-
fic engineering guidelines. Unfortunately, this requires in-
formation about the on-time distribution, which is more
detailed than just the mean. The graphs suggest that the
efficiency can be increased considerably, even by a con-
servative choice of the on-time distribution (Weibull for
voice and video, Pareto for web browsing).

4. On the impact of long-range
dependence on network performance

With the theoretical results of Section 2, as well as the nu-
merical results of Section 3 in mind, we are in a position to
give a well-founded assessment of the influence of long-
range dependence on network performance.
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The structure we use in this section is the following. We
phrase a number of statements that have some truth, but
whose validity is more subtle. We detail the extent to
which the statement holds, and where more care needs
to be taken. Some of the arguments are perhaps already
known in the literature; the text below is intended to give
a complete account on this issue.
Claim 4.1 If sources with heavy-tailed inactivity periods
are multiplexed, this leads to performance degradation, in
the sense that the tail of the queue length distribution is
heavier than exponential.
In the literature attention is paid to the tails of the

distribution of inactivity periods. In many cases it was
found that these are non-exponential – for instance Feld-
mann [16] describes that interarrival times of TCP con-
nections can be accurately modeled by a heavy-tailed
Weibull distribution.

Now consider the situation that a large number of sources
with heavy-tailed off-times are multiplexed. From the for-
mulae of Section 2, it is not hard to see that this hardly
affects the queue’s tail behavior: (1) In case the on-times
have a light tail, we get from Theorem 2.7 that the queue
size distribution decays exponentially in the buffer size;
(2) If on the other hand the on-times have a subexpo-
nential tail, Theorem 2.8 indicates that the queue size
distribution mimics the heavy tail of the residual activ-
ity period; the off-time is represented just by its mean.
We conclude that a possibly heavy tail of the off-time
does not contribute to non-exponential tail behavior of the
queue.

Claim 4.2 The Hurst parameter is a valuable measure of
long-range dependence. The higher it is, the fatter the tail
of the queue size distribution, i.e., the worse the experi-
enced QoS.
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The statement is formally true: Consider fractional
Brownian motion (FBM) BH(t) with Hurst parameter H ,
i.e., the Gaussian process with zero mean, stationary in-
crements and correlation structure

E (BH(s) · BH(t)) = 1
2

(
s2H + t2H − |s− t|2H

)
.

For a queue fed by this process it is known that the queue-
length distribution has a Weibull-like tail with tail pa-
rameter 2(1−H ). In other words, roughly the asymptotic
relation

P
(
sup
t>0

BH(t)−Ct> B
)

≈ exp
(−κB2(1−H )

)

applies [29, 30]. In other words, indeed, a higher H leads
to performance degradation.
However, a number of limit results that appeared in the

literature might lead to some confusion here. Consider on-
off sources of which either the on-times are of Pareto-type

(of index αon) or the off-times of Pareto-type (of index
αoff), or both. Loosely speaking, in [41] it was show that
the aggregation of many of these sources looks like FBM
with

H = 1
2

· (3−min(αon,αoff)).

The exact definition of this convergence is given in de-
tail in [41] – it should be noted that both the number of
sources is large and time is rescaled. This would suggest
that the loss curve of a large number of these sources looks
like b2(1−H ). However, from Theorem 2.8 we know that it
behaves as (αon−1) logb. Apparently, the limits that are
taken (large aggregation, large buffer, time rescaling) do
not commute.
Notice also that in case of Exponential on-times and

Pareto off-times, the aggregate still converges to FBM,
whereas Theorem 2.7 gives that the overflow probability
decays exponentially in the buffer size.
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Claim 4.3 If the on-times of the sources are heavy-tailed,
so is the queue-length distribution.

This claim needs to be stated a little more precisely. As
shown by Dumas and Simonian [14], the overflow prob-
ability decays exponentially in the buffer size as long as
the peak rates of the sources with heavy-tailed on-times
plus the mean rates of the sources with Exponential on-
times is below the link rate. If this is not the case, then the
statement is formally true, in the sense that the overflow
probability decays in a subexponential way in the buffer
size.
However, as the experiments in Section 3 showed, in

practical terms, in hardly any scenario the large buffer
regime is reached; the small buffer regime seems to be
more relevant as long as the on-times are not endowed
with extremely heavy tails, the delay requirement is not
extremely loose, and there is a reasonable level of aggre-
gation.

Claim 4.4 The loss probabilities in a multiplexing system
are determined by the tails of the distributions of activity
and silence periods of the sources.

This ‘myth’ was already falsified in [17, 18, 34]: in
‘realistic scenarios’ there a critical time-scale was found
beyond which the correlations do not significantly af-
fect the overflow probability. In other words: Markovian
models that capture the short-term correlations (up to the
critical time-scale) are well-suited to predict the over-
flow probability. The exact shapes of the tails of the dis-
tributions of the on and off-times are therefore of mi-
nor importance. By ‘realistic scenarios’ we again mean
that tails are not extremely fat, the delay requirement is
somewhat stringent, and there is a fair amount of multi-
plexing. One could expect that in practical scenarios, the
distribution ‘at the left hand side’ could be more rele-
vant, i.e., the probability of extremely short on- and off-
times. It could be seen easily that there could be important
that with relatively high probability there is an extremely
small interarrival times or silence periods (for a given
mean).
Based on our objections to Claims 4.1 up to 4.4,

clearly the statement ‘Long range dependence leads to
performance degradation’ is not universally true.

5. Conclusions

Starting from the generic on-off source model, we have
assessed the impact of long-range dependence (LRD)
on queueing performance. Importantly, this impact is
parametrized by the performance criterion imposed, as
shown in detail in Section 3. If the delay requirement
is ‘tight’, the number of admissible sources is insensi-
tive in the distributions of the bursts and silences. The
second relevant factor is the so-called ‘level of aggre-
gation’: if the link rate is large compared to the peak
rate of the source (which is not too large compared to

the mean rate of the source), a fairly high utilization
can be achieved, even when the delay requirements are
tight. Hence, from a more practical point of view, the
claim that LRD leads to performance degradation does
certainly not hold in general. As illustrated in Section 4,
there are also a number of theoretical objections to this
statement.
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Appendix A. Computation of the loss
curve and the acceptance curve

In this appendix we indicate how to compute the loss
curve for the case that A and S are discrete random vari-
ables. In this case the distribution of the residual activity
period A# is given by

P(A# > k) = 1
EA

∞∑

l=k
P(A > l).

A similar result holds for the residual silence distribution.
Abbreviate

ak := P(A = k);
a#
k := P(A# = k);

sk := P(S= k);
s#k := P(S# = k).

Moment generating function. First we point how to com-
pute moment generating function E exp(θA(k)). This can
be done recursively, as follows. Clearly, in evident nota-
tion,

EeθA(k) = pEA#eθA(k) + (1− p)ES#eθA(k).

Both terms can be evaluated as follows:

EA#eθA(k) =
k−1∑

i=1
a#
i e

θiESeθA(k−i) +
∞∑

i=k
a#
i e

θk,

ES#eθA(k) =
k−1∑

i=1
s#i EAeθA(k−i) +

∞∑

i=k
s#i ,

where

EAeθA( j) =
j−1∑

i=1
aieθiESeθB( j−i) +

∞∑

i= j

aieθ j,

ESeθA(k) =
j−1∑

i=1
siEAeθA( j−i) +

∞∑

i= j

si .

If the process alternates between two positive levels
(rather than just on-off), it is convenient to write A(k)
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as a on-off part B(k) plus a part that is linear in k. This
is done as follows. Let rm denote the minimum rate, let
rp denote the peak rate, and define r := rp − rm . We can
rewrite A(k) as rmk+ rB(k), where B(k) is traffic gener-
ated by an on-off source with peak rate 1.

Loss curve and acceptance curve. When calculating
I(b), the variational problem

inf
k∈N

sup
θ

(
θ(b+ ck)− logEeθA(k))

has to be solved. It is easy to find θ(k), i.e., the optimiz-
ing argument of the inner optimization for fixed k. This is
because the function is convex in θ; there is a unique opti-
mizer in R+. Then the infimum over k has to be computed
– there is no nice concavity property, unfortunately.
When calculating j(D) in (7), we lack the convexity

property of the optimization over θ . However, the com-
plexity of the numerical procedure turns out to be compa-
rable to that of the loss curve.
The main effort in computing the acceptance curve

numerically consists of computing the moment generat-
ing function E exp(θA(k)) for various combinations of θ
and k. In order to compute this moment generating func-
tion for a given k, one has to compute for all l = 1, . . . ,
k−1. It is not hard to see that hence the complexity of
computing E exp(θA(k)) equals O

( ∑k
l=1 O(l)

) = O(k2).
Call the optimizing k in (7) k#. Since for fixed D the max-
imum value of k is approximately k#, the complexity of
computing j(D) is roughly O

(
k#2).

Recall from Section 2.3 that for Weibull and Geo-
metric on-times k# grows linearly in D, and for Pareto
on-times the growth of k# is even superlinear in D. Thus
the computing time for j(D) increases rapidly for large D.
For this reason we choose interrupt our calculations for D
equal to some kmax.We chose kmax = 1500 in our numeri-
cal computations.
An approximation for the acceptance curve for higher

delays can be obtained by increasing the packet size.
Effectively, this redefines the time unit: the interarrival
time of packets (within a burst) increases. In this way
the rapid growth of k# (as function of D) can be con-
trolled.

Appendix B. Acceptance curve for small
delays

In this appendix we derive a generic property of the ac-
ceptance curve. For small values of D we expect that the
number of sources to be admitted grows rapidly, based on
the square root in Theorem 2.5. Then, for small b= cD,
we have to solve

J(D) ·α
(

c
J(D)

)
+ J(D) ·β

(
c

J(D)

)
·
√

b
J(D)

= δ.

Let us try the approximation J(D) ≈ J(0)+ K
√
b for

some positive constant K . Abbreviate

αJ := α

(
c
J(0)

)
; α′

J := α′
(

c
J(0)

)
;

βJ := β

(
c
J(0)

)
; β′

J := β′
(

c
J(0)

)
.

Notice that δ = J(0)αJ due to Theorem 2.5. We get, neg-
lecting terms of order O(b),

δ = (
J(0)+ K

√
b
) ·α

(
c

J(0)+ K
√
b

)
+ (

J(0)+ K
√
b
)

·β
(

c
J(0)+ K

√
b

)
·
√

b
J(0)+ K

√
b

=
(
J(0)+ K

√
b
)
·
(

α

(
c
J(0)

− cK
J2(0)

√
b
)

+β

(
c
J(0)

− cK
J2(0)

√
b
)

·
√

b
J(0)

)

=
(
J(0)+ K

√
b
)
·
(

αJ − cK
J2(0)

√
bα′

J

+
(

βJ − cK
J2(0)

√
bβ′

J

)
·
√

b
J(0)

)

= δ+
√
b
(
KαJ − cK

J(0)
α′
J +

√
J(0)βJ

)
.

This gives us

K =
(

α′
J
c
J(0)

−αJ

)−1 (√
J(0)βJ

)

=
(
log

(
1− p

1− c/J(0)

))−1 (√
J(0)βJ

)
.

As K is a finite positive number, our initial guess J(D) ≈
J(0)+ K

√
b turns out to hold. Interestingly, the accept-

ance curve is insensitive in the higher moments of activ-
ities and silences (just like the loss curve is). This is an
immediate consequence of the fact that J(0) only depends
on the on- and off-times through p, and βJ through EA
andES. We notice that the acceptance curve grows rapidly
for small b, namely like

√
b.
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