
From Logic to Games

Igor Walukiewicz

CNRS
LaBRI, Université Bordeaux-1

351, Cours de la Libération, 33 405, Talence
France

1 Introduction

The occasion of 25th jubilee of FSTCS gives an opportunity to look a bit further
back then one normally would. In this presentation we will look at some devel-
opments in what is called formal verification. In the seventies logics occupied a
principal place: Hoare logic [43], algorithmic logic [38], dynamic logic [41, 42],
linear time temporal logic [55]. With a notable exception of the last one, these
formalisms included programs into syntax of the logic with an idea to reduce
verification to validity checking. Temporal logic was the first to advocate exter-
nalization of modeling of programs and passing from validity checking to model
checking. Since the eighties, this view became predominant, and we have seen a
proliferation of logical systems. We have learned that game based methods not
only are very useful but also permit to abstract from irrelevant details of logical
formalisms. At present games themselves take place of specification formalisms.

Roughly, model-checking can be seen as a discipline of verifying properties
of labelled graphs. So, we are interested in formalisms for specifying graph prop-
erties. This formulation is misleadingly simple at the first sight. Observe, for
example, that almost all the richness of first-order logic already appears over
graph models, i.e., models with one binary relation. Thus, the goal is to get for-
malisms that are expressive and at the same time have decidable model-checking
problem (and preferably with low computational complexity).

The foundations of the discipline were ready before 1980-ties. Automata the-
ory existed already for a long time[71]. Büchi and Rabin have shown decidability
of monadic second-order (MSO) theories of sequences [16] and trees [70], respec-
tively. Martin has proven determinacy of Borel games [56]. Manna and Pnueli
have already proposed a new way of looking at program verification using linear
time temporal logic. Kamp’s theorem gave equivalence of LTL with first-order
logic over sequences [46].

Nevertheless, it is fair to say that a quarter of a century ago, at the beginning
of 80-eighties, the next important period in the development of the field took
place. In a relatively short interval of time a big number of significant concepts
have been born. Emerson and Clarke introduced CTL and the branching/linear
time distinction was clarified [25, 52]. Kozen defined the µ-calculus [48], the logic
that will later bring games to the field. Independently, Büchi [17], and Gurevich
and Harrington [40], arrive at understanding that the cornerstone of Rabin’s

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 79–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Nein JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: FotografischArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: ISO CoatedGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Nein Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: NeinERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Nein Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 512000 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages false /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings false /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (ISO Coated) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 512000 /SubsetFonts false /DefaultRenderingIntent /Perceptual /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo false /ColorImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ASCII85EncodePages false /LockDistillerParams true>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

80 Igor Walukiewicz

decidability result for MSO theory of trees is a theorem about existence of some
special strategies, now called finite memory, in some class of games. A bit later,
Street and Emerson [77, 78] developed techniques to attack satisfiability problem
for the µ-calculus. Around 1980 a concept of alternation was born [23]. These
have given later rise to alternating automata [63] and finally to understanding
that these are essentially the same as the µ-calculus.

In what follows we will give a brief introduction to the concepts described
above. This will bring us in a position to discuss open problems and directions for
future research. Present note is not meant to be a comprehensive survey of the
discipline. Citations and results are merely chosen to demonstrate development
of some lines of research, there is by far not enough place to present all important
accomplishments of the field.

2 The Concepts

We need to start with presentation of some basic concepts. From 25 years per-
spective it is clear that they where very influential in development of the theory.
The µ-calculus turned out to be important because of its purity, its expressive
power and because of technical problems posed by the fixpoint operator. Old
methods, like construction of syntactic models from consistent sets of formulas,
are not applicable to the µ-calculus. New techniques were required, and this is
where automata theory and game theory came to rescue.

2.1 The µ-Calculus

Formulas of the µ-calculus over the sets Prop = {p1, p2, . . .} of propositional
constants, Act = {a, b, . . .} of actions, and Var = {X, Y, . . .} of variables, are
defined by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧ F |
〈Act〉F | [Act]F | µVar .F |νVar .F

Note that we allow negations only before propositional constants. This is not a
problem as we will be interested in sentences, i.e., formulas where all variables
are bound by µ or ν. In the following, α, β, . . . will denote formulas.

Formulas are interpreted in transition systems, these are of the form M =
〈S, {Ra}a∈Act , ρ〉, where: S is a nonempty set of states, Ra ⊆ S × S is a binary
relation interpreting the action a, and ρ : Prop → P(S) is a function assigning
to each propositional constant a set of states where this constant holds.

For a given transition system M and an assignment V : Var → P(S), the
set of states in which a formula α is true, denoted ‖ α ‖MV , is defined inductively
as follows:

From Logic to Games 81

‖ p ‖MV = ρ(p) ‖ ¬p ‖MV = S − ρ(p)

‖ X ‖MV =V (X)

‖ 〈a〉α ‖MV ={s : ∃s′.Ra(s, s′) ∧ s′ ∈ ‖ α ‖MV }
‖ µX.α(X) ‖MV =

⋂
{S′ ⊆ S : ‖ α ‖MV [S′/X] ⊆ S′}

‖ νX.α(X) ‖MV =
⋃

{S′ ⊆ S : S′ ⊆ ‖ α ‖MV [S′/X]}

We have omitted here the obvious clauses for boolean operators and for [a]α
formula. We will omit V in the notation if α is a sentence and will sometimes
write M, s � α instead of s ∈ ‖ α ‖M.

The model-checking problem for the µ-calculus is: given a sentence α and a
finite transition system M with a distinguished state s0 decide if M, s0 � α.

2.2 Games

A game G is a tuple 〈VE , VA, T ⊆ (VE ∪VA)2,Acc ⊆ (VE ∪VA)ω〉 where Acc is a
set defining the winning condition and 〈VE ∪ VA, T 〉 is a graph with the vertices
partitioned into those of Eve and those of Adam. We say that a vertex v′ is a
successor of a vertex v if T (v, v′) holds.

A play between Eve and Adam from some vertex v ∈ V = VE ∪ VA proceeds
as follows: if v ∈ VE then Eve makes a choice of a successor, otherwise Adam
chooses a successor; from this successor the same rule applies and the play goes
on forever unless one of the parties cannot make a move. The player who cannot
make a move looses. The result of an infinite play is an infinite path v0v1v2 . . .
This path is winning for Eve if it belongs to Acc. Otherwise Adam is the winner.

A strategy σ for Eve is a function assigning to every sequence of vertices v
ending in a vertex v from VE a vertex σ(v) which is a successor of v. A play
respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i with vi ∈ VE .
The strategy σ is winning for Eve from a vertex v iff all the plays starting in
v and respecting σ are winning. A vertex is winning for Eve if there exists a
strategy winning from it. The strategies for Adam are defined similarly. Usually
we are interested in solving games, i.e., deciding which vertices are winninng for
Eve and which for Adam.

A strategy with memory M is a triple:

c : M × VE → P(V), up : M × V → M, m0 ∈ M

The role of the initial memory element m0 and the memory update function up
is to abstract some information from the sequence v. This is done by iteratively
applying up function:

up∗(m, ε) = m and up∗(m, vv) = up∗(up(m, v), v)

This way, each sequence v of vertices is assigned a memory element up∗(m0, v).
Then the choice function c defines a strategy by σ(vv) = c(up∗(m0, v), v). The

82 Igor Walukiewicz

strategy is memoryless iff σ(v) = σ(w) whenever v and w end in the same
vertex; this is a strategy with a memory M that is a singleton.

In most of the cases here the winning conditions Acc ⊆ V ω will be Muller
conditions : that is, there will be a colouring λ : V → Colours of the set of
vertices with a finite set of colours and a set F ⊆ P(Colours) that define the
winning sequences by:

v ∈ Acc iff Infλ(v) ∈ F

where Infλ(v) is the set of colours appearing infinitely often on v.
An important special case is a parity condition. It is a condition determined

by a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim sup
i→∞

Ω(vi) is even}

Hence, in this case, the colours are natural numbers and we require that the
biggest among those appearing infinitely often is even. This condition was dis-
covered by Mostowski [60] and is the most useful form of Muller conditions.
It is the only Muller condition that guarantees existence of memoryless strate-
gies [33, 61, 58]. It is closed by negation (the negation of a parity condition is
a parity condition). It is universal in the sense that very game with a Muller
condition can be reduced to a game with a parity condition [60].

2.3 Between Games and Formulas

The truth of a given formula in a given model can be characterized by games.
To see this, consider the task of checking if a propositional formula (in a positive
normal form) is true in a given valuation. If the formula is a disjunction then Eve
should choose one of the disjuncts that she believes is true; if it is a conjunction
then Adam should choose one of the conjuncts he believes is false. The game
continues until it arrives at a literal (a proposition or its negation). Eve wins
iff the literal is true in the valuation fixed at the beginning. It is easy to see
that Eve has a winning strategy in this game iff the initial formula is true in the
valuation.

Observe that we can define a similar game for almost any logic, just using
directly the clauses defining its semantics. For example, for first-order logic Eve
would choose in the case of disjunction and existential quantifier, and Adam
in the case of conjunction and universal quantifier. This view is of course well
known. The reason why it is not used too much in the context of first-order logic
is that the game becomes quite complicated. One can consider Ehrenfeucht-
Fräısé games as a way of hiding these complications at the cost of limiting the
scope of applicability of the concept.

While it is clear how to define game rules for disjunction, conjunction, and
most other cases, it is much less clear what to do with fixpoints. The best we can
do when we want to see if a formula µX.α(X) holds is to check if its unwinding
α(µX.α(X)) holds. Such an unwinding rule introduces potential of infinite plays

From Logic to Games 83

as for µX.X . The other problem is that for the greatest fixpoint νX.α(X) we
cannot do better but suggest the same rule. One of the most important devel-
opments in these 25 years is to admit infinite plays and to realize that fixpoints
give rise to a parity condition on infinite plays: least fixpoints are given odd
ranks, greatest fixpoints even ranks, and the exact value of the rank depends on
the nesting depth (see [76] for details).

Summarizing, one can look at the formula as a kind of schema that when
put together with a model defines a game. Observe that a schema by itself
does not define a game directly; putting it differently, the satisfiability question
requires more than just examining the structure of the formula. We see the same
phenomenon in a formalism of alternating automata. It is a very beautiful fact
that the to formalisms agree. Actually it is one of the cornerstones of the whole
theory.

2.4 Alternating Automata

An alternating automaton on on transition systems is a tuple:

A = 〈A, P, Q∃, Q∀, q0, δ : Q × P(P) → P(A × Q),Acc〉
where A ⊆ Act ∪ {id}, P ⊆ Prop are finite set of actions and propositions,
respectively, relevant to the automaton. Set Q is a finite set of states partitioned
into existential, Q∃, and universal, Q∀ states. State q0 ∈ Q is the initial state
of the automaton and δ is the transition function that assigns to each state
and label, which is valuation relevant propositions, a set of possible moves. An
intuitive meaning of a move (a, q′) ∈ A × Q is to move over an edge labelled a
and change the state to q′. The action id is a self-loop permitting to stay in the
same node. Finally, Acc ⊆ Qω is an acceptance condition.

The simplest way to formalize the notions of a run and of an acceptance of
an automaton is in terms of games. Given an automaton A as above and a tran-
sition system M = 〈S, {Ra}a∈Act , ρ〉 we define the acceptance game G(A, P) =
〈VE , VA, T,AccG〉 as follows:

– The set of vertices for Eve is (Q∃ × S).
– The set of vertices for Adam is (Q∀ × S).
– From each vertex (q, s), for every (a, q′) ∈ δ(q, λ(s)) and (s, s′) ∈ Ra we have

an edge in T to (q′, s′); we assume that Rid is the identity relation on states.
– The winning condition AccG consists of the sequences:

(q0, s0)(q1, s1) . . .

such that the sequence q0, q1 . . . is in Acc, i.e., it belongs to the acceptance
condition of the automaton.

Let us see how to construct an automaton equivalent to a sentence α of the
µ-calculus (we do not admit free variables in α). The states of the automaton
Aα will be the subformulas of the formula α plus two states � and ⊥. The initial
state will be α. The action and proposition alphabets of Aα will consist of the
actions and propositions that appear in α. The transitions will be defined by:

84 Igor Walukiewicz

– δ(p, υ) = � if p ∈ υ and ⊥ otherwise;
– δ(β1 ∨ β2, υ) = δ(β1 ∧ β2, υ) = {(id , β1), (id , β2)};
– δ(〈a〉β, υ) = δ([a]β, υ) = {(a, β)};
– δ(µX.β(X), υ) = δ(νX.β(X), υ) = {(id , β(X))};
– δ(X, υ) = {(id , β(X))}.

The symbols in the last rule demand some explications. Here X is a variable and
β(X) is the formula to which it is bound, i.e., we have µX.β(X) or νX.β(X) in
α. We can suppose that X is bound precisely once in α as we can always rename
bound variables.

Observe that the rules for conjunction and disjunction are the same. The
difference is that a disjunction subformula will be an existential state of Aα and
the conjunction subformula an universal one. Similarly for ⊥, � as well as for
〈a〉 and [a] modalities. This means, in particular, that � is an accepting state as
there are no transitions from � and Adam looses immediately in any position
of the form (�, s).

It remains to define the acceptance condition of Aα. It will be the parity
condition where all the subformulas but variables have rank 0. To define the
rank of a variable X we look at the formula it is bound to. If it is µX.β(X)
then the rank of X is 2d + 1 where d is the nesting depth of µX.β(X). If it
is is νX.β(X) then it is 2d. For the precise definition of the nesting depth we
refer the reader to [4], here it suffices to say that the principle is the same as for
quantifier depth in first-order logic.

We will not discuss here, not too difficult, proof that this construction gives
indeed an automaton equivalent to the formula. What is worth pointing out is
that the translation in the other direction is also possible. From a given alternat-
ing automaton one can construct an equivalent formula of the µ-calculus. This
equivalence is a very good example of a correspondence between formula and di-
agram based formalisms as advocated by Wolfgang Thomas [79]. The µ-calculus
is compositional, it permits doing proofs by induction on the syntax. Automata
are better for algorithmic issues and problems such as minimization.

The last remark we want to make here is about satisfiability. The above re-
duction shows that the satisfiability question for the µ-calculus can be solved via
emptiness problem for alternating automata. This in turn requires transforma-
tion of alternating to nondeterministic automata or in other words, elimination
of universal branching. When we look back we can see that this is an universal
phenomenon that appears even in the case of propositional logic.

3 Perspectives

One of the obvious problems that resisted over the last 25 years is the model
checking problem for the µ-calculus. Equivalently, it is the problem of solving
parity games. In this formulation it is a, potentially simpler, instance of the
problem of solving stochastic games [44] which complexity is open for quite
some time. There are at least two directions of research that are connected to
this problem and that are also interesting in their own right.

From Logic to Games 85

One direction is to find polynomial-time algorithms for some restricted classes
of games. For example, for any constant, games whose graphs have tree-width
bounded by this constant can be solved in polynomial time [68]. Recently, a new
graph complexity measure, called entanglement, has been proposed and the same
result for graphs of bounded entanglement has been proved [8]. In the future it
would be interesting to consider the case of clique-width. Tree-width is connected
to MSO logic where quantification over transitions is permitted. It is known
that in this logic each µ-calculus formula is equivalent to a formula of quantifier
depth 3. Clique-width [27] is linked to MSO logic where only quantification over
states is permitted. In this case it is open whether a finite number of quantifier
alternations suffices to capture the whole µ-calculus.

The other direction is to consider the model-checking and game solving prob-
lems for graphs represented implicitly. A simple example is a graph represented
as a synchronized product of transition systems. In this case even alternating
reachability is Exptime-complete (see [30] for more detailed analysis) but the
model-checking problem for the whole µ-calculus stays also in Exptime. The
other possibility is to consider configuration graphs of some type of machines.
In recent years pushdown graphs, i.e., graphs of configurations of pushdown
machines have attracted considerable attention [62, 9, 34, 50, 74, 83]. One re-
search direction is to find interesting and decidable classes of properties of push-
down systems [11, 36, 75]. The other direction is to go forward to more compli-
cated cases like higher order pushdowns [18, 19], higher order recursive program
schemes [45, 47] or pushdowns with parallel composition [10]. The biggest chal-
lenge here is to push the decidability frontier.

The understanding that the µ-calculus corresponds exactly to games with
parity conditions suggest to look for other winning conditions with interesting
properties. For finite Muller conditions we know how to calculate a memory
required to win [32]. Recently, more general winning conditions were investigated
as for example Muller conditions over infinite number of colours [39]. A particular
case of such a condition is when colours are natural numbers and the winner is
decided by looking at the parity of the smallest number appearing infinitely often
(additionally we can assume that Eve wins if there is no such number). It turns
out that this infinite kind of a parity condition is the only type of infinite Muller
condition that guarantees the existence of memoryless strategies in all games. It
is important to add that for this result to hold all positions of the game need to
have a colour assigned. If we permit partial assignments of colours or put coloring
on edges of the game graph and not on positions then only ordinary (i.e. finite)
parity conditions admit memoryless strategies [26]. In the recent paper [37] this
later result is extended to include also quantitative conditions such as mean or
discounted pay-off.

While we know already a great deal about the µ-calculus itself [4], there
still remains a lot to explore. One of the obvious research topics suggested by
the syntax of the logic is that of the alternation hierarchy of fixpoint operators.
Curiously, as the translation presented above shows, the alternation depth of
the formula corresponds to the size of a parity condition in the equivalent al-

86 Igor Walukiewicz

ternating automaton. Thus, one can equivalently study the later hierarchy. The
infiniteness of the hierarchy for the µ-calculus was shown by Bradfield [14] and
for alternating tree automata independently by Bradfield [15] and Arnold [3].
It is worth noting that hierarchy questions for nondeterministic tree automata
were solved ten years earlier by Niwiński [64], and for the even simpler case
of deterministic automata, another ten years back by Wagner [82]. (As a side
remark let us mention that quite recently Arnold and Santocanale has shown
a surprising behaviour of diagonal classes [5].) Once the basic hierarchy ques-
tions are resolved, the next challenge is to provide algorithms for determining
the level in the hierarchy of a given recognizable language. The first step was
to give a polynomial time algorithm for computing the level in the hierarchy
of deterministic automata [65]. Next, Urbański [80] has shown that it is decid-
able if a deterministic Rabin tree automaton is equivalent to a nondeterministic
Büchi one. Actually, the problem is also in Ptime [66]. More recently [67], the
case of deterministic tree automata was completely solved. There are forbidden
pattern characterizations for all the levels of the hierarchy of nondeterministic
automata; that is, given a deterministic automaton one can tell by examining its
structure to which level of the hierarchy of nondeterministic automata it belongs
to. This also solves the problem for levels of alternating automata hierarchy as
all deterministic languages are recognizable by co-Büchi alternating automata.
The challenge for the future is to calculate hierarchy levels for nondeterministic
automata.

There are numerous other directions of active research. We will describe just
three more very briefly here, referring the reader to the cited papers for details.

Games as well as logics and automata can be augmented with real-time.
While real-time automata are around for some time now [2], there is no standard
logic for real-time. This is partially due to the fact that timed-automata are not
closed under complement and it is difficult to decide on some other good class
of real-time properties. Also quantitative reachability problems, like minimizing
reachability cost, appear to be interesting [1, 12, 21].

The rules of playing games may be extended [28]: one may allow concurrent
moves when two players choose moves independently and the game proceeds to
the state that is a function of the two choices. An example of “paper, scissors,
stone” game shows that randomized strategies are sometimes necessary to win
in such games. This means that now a player does not win for sure, but only
with certain probability; the maximal such probability is called the value of the
player. Another extension is to allow randomized positions where a successor is
chosen randomly with respect to some probability distribution. The quantitative
determinacy result of Martin [57] states that in every game with concurrent
moves and randomized positions the values for Eva and Adam sum up to 1.
In [28] de Alfaro and Majumdar show how to calculate the values of a game using
appropriate extension of the µ-calculus. It can also happen that the objectives of
the two players are not antagonistic, in this case we talk about Nash equilibria
rather than values of games. Recently [24], Chatterjee has shown how to calculate

From Logic to Games 87

Nash equilibria for a very general class of concurrent, stochastic, nonzero-sum,
infinite games.

Finally, each of these game models can be applied to synthesis [69, 72, 49,
20]. The synthesis problem is to construct a system from a given specification.
It is often solved by reduction to the problem of finding a strategy in some
game [6]. If the problem mentions real-time then the game will have real-time
constraints [7, 29, 31, 13, 22]. If the problem concerns distributed setting then
either the reduction or the game model will have to take it into account [73,
53, 54, 51, 59, 35]. The number of choices is truly overwhelming and we need to
understand much better in what cases synthesis is feasible.

References

[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP, volume 3124 of Lecture Notes in Computer Science,
pages 122–133, 2004.

[2] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In Formal Methods for the Design of Real-Time Systems, volume 3185 of Lecture
Notes in Computer Science, pages 1–24, 2004.

[3] A. Arnold. The mu-calculus alternation-depth hierarchy is strict on binary trees.
RAIRO–Theoretical Informatics and Applications, 33:329–339, 1999.

[4] A. Arnold and D. Niwiski. The Rudiments of the Mu-Calculus, volume 146 of
Studies in Logic. North-Holand, 2001.

[5] A. Arnold and L. Santocanale. Ambiguous classes in the games mu-calculus hi-
erarchy. In FOSSACS 03, volume 2620 of Lecture Notes in Computer Science,
pages 70–86, 2003.

[6] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers
with partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

[7] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Contrloller synthesis for timed
automata. In Proc. IFAC Symp. System Structure and Control, pages 469–474,
1998.

[8] D. Berwanger and E. Grädel. Entanglement - a measure for the complexity of
directed graphs with applications to logic and games. In LPAR 2004, volume 3452
of Lecture Notes in Computer Science, pages 209–223, 2004.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Applications to model checking. In CONCUR’97, volume 1243 of Lecture
Notes in Computer Science, pages 135–150, 1997.

[10] A. Bouajjani, M. Mueller-Olm, and T. Touili. Regular symbolic analysis of dy-
namic networks of pushdown systems. In CONCUR’05, volume 3653 of Lecture
Notes in Computer Science, 2005.

[11] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbound-
edness and regular conditions. In FSTTCS’03, volume 2914 of Lecture Notes in
Computer Science, pages 88–99, 2003.

[12] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS, Lecture Notes in Computer Science, 2004.

[13] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of Lecture Notes in Computer Science,
pages 180–192, 2003.

88 Igor Walukiewicz

[14] J. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoretical
Computer Science, 195:133–153, 1997.

[15] J. Bradfield. Fixpoint alternation: Arithmetic, transition systems, and the binary
tree. RAIRO–Theoretical Informatics and Applications, 33:341–356, 1999.

[16] J. R. Büchi. On the decision method in restricted second-order arithmetic. In
Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, pages
1–11. Stanford Univ. Press, 1960.

[17] J. R. Buchi. State strategies for games in Fσδ ∩ Gδσ. Journal of Symbolic Logic,
48:1171–1198, 1983.

[18] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In
ICALP’02, volume 2380 of Lecture Notes in Computer Science, pages 704–715,
2002.

[19] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. In
A. Kucera and R. Mayr, editors, Proceedings of the 4th International Workshop on
Verification of Infinite-State Systems, volume 68 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2002.

[20] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic Publishers, 1999.

[21] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR’05, Lecture Notes in
Computer Science, 2005.

[22] F. Cassez, T. Henzinger, and J. Raskin. A comparison of control problems
for timed and hybrid systems. In Hybrid Systems Computation and Control
(HSCC’02), number 2289 in Lecture Notes in Computer Science, pages 134–148,
2002.

[23] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
Association of Computing Machinery, 28(1):114–133, 1981.

[24] K. Chatterjee. Two-player nonzero-sum omega-regular games. In CONCUR’05,
Lecture Notes in Computer Science, 2005.

[25] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

[26] T. Colcombet and D. Niwiński. On the positional determinacy of edge–labeled
games. Submitted, 2004.

[27] B. Courcelle and P. Weil. The recognizability of sets of graphs is a robust
property. To appear in Theoretical Computer Science, http://www.labri.fr/
Perso/˜weil/publications/.

[28] L. de Alfaro. Quantitative verification and control via the mu-calculus. In CON-
CUR’03, volume 2761 of Lecture Notes in Computer Science, pages 102–126, 2003.

[29] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In CONCUR’03, volume 2761 of Lecture
Notes in Computer Science, pages 142–156, 2003.

[30] S. Demri, F. Laroussinie, and P. Schnoebelen. A parametric analysis of the state
exposion problem in model checking. In STACS’02, volume 2285 of Lecture Notes
in Computer Science, pages 620–631, 2002.

[31] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifica-
tions. In STACS’02, volume 2285 of Lecture Notes in Computer Science, pages
571–582, 2002.

[32] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed
to win infinite games. In LICS, pages 99–110, 1997.

From Logic to Games 89

[33] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. FOCS’91, pages 368–377, 1991.

[34] J. Esparza and A. Podelski. Efficient algorithms for pre star and post star on
interprocedural parallel flow graphs. In POPL’00: Principles of Programming
Languages, 2000.

[35] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In LICS05, 2005.
[36] H. Gimbert. Parity and explosion games on context-free graphs. In CSL’04,

volume 3210 of Lecture Notes in Computer Science, pages 56–70, 2004.
[37] H. Gimbert and W. Zielonka. When can you play positionally? In MFCS’04,

volume 3153 of Lecture Notes in Computer Science, 2004.
[38] G.Mirkowska and A.Salwicki. Algorithmic Logic. D.Reidel PWN, 1987.
[39] E. Grädel and I. Walukiewicz. Positional determinacy of infnite games, 2004.

Submitted.
[40] Y. Gurevich and L. Harrington. Trees, automata and games. In 14th ACM Symp.

on Theory of Computations, pages 60–65, 1982.
[41] D. Harel. Dynamic logic. In Handbook of Philosophical Logic Vol II, pages 497–

604. D.Reidel Publishing Company, 1984.
[42] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[43] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12:576–585, 1969.
[44] A. Hoffman and R. Karp. On nonterminating stochastic games. Management

Science, 12:369–370, 1966.
[45] C.-H. L. O. K. Aehlig, J. G. de Miranda. The monadic second order theory of

trees given by arbitrary level-two recursion schemes is decidable. In TLCA’05,
volume 3461 of Lecture Notes in Computer Science, pages 39–54, 2005.

[46] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, 1968.

[47] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars
and panic automata. In ICALP’05, volume 3580 of Lecture Notes in Computer
Science, pages 1450–1461, 2005.

[48] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[49] R. Kumar and V. K. Garg. Modeling and control of logical discrete event systems.
Kluwer Academic Pub., 1995.

[50] O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Proceedings of CAV’00, volume 1855 of Lecture Notes
in Computer Science, pages 36–52. Springer Verlag, 2000.

[51] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th
IEEE Symp. on Logic in Computer Science, 2001.

[52] L. Lamport. “sometime” is sometimes “not never” – on the temporal logic of
programs. In POPL’80, pages 174–185, 1980.

[53] P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD thesis,
University of Madras, 2001.

[54] P. Madhusudan and P. Thiagarajan. A decidable class of asynchronous distributed
controllers. In CONCUR’02, volume 2421 of Lecture Notes in Computer Science,
2002.

[55] Z. Manna and A. Pnueli. Verification of the concurrent programs: the tempo-
ral framework. In R.Boyer and J.Moore, editors, The Correctness Problem in
Computer Scince, pages 215–273. Academic Press, 1981.

[56] D. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

90 Igor Walukiewicz

[57] D. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

[58] R. McNaughton. Infinite games played on finite graphs. Ann. Pure and Applied
Logic, 65:149–184, 1993.

[59] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS’03, volume 2914
of Lecture Notes in Computer Science, pages 338–351, 2003.

[60] A. W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. In Fifth Symposium on Computation Theory, volume 208 of LNCS,
pages 157–168, 1984.

[61] A. W. Mostowski. Games with forbidden positions. Technical Report 78, Univer-
sity of Gdansk, 1991.

[62] D. Muller and P. Schupp. The theory of ends, pushdown automata and second-
order logic. Theoretical Computer Science, 37:51–75, 1985.

[63] D. Muller and P. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[64] D. Niwiński. On fixed-point clones. In Proc. 13th ICALP, volume 226 of LNCS,
pages 464–473, 1986.

[65] D. Niwiński and I. Walukiewicz. Relating hierarchies of word and tree automata.
In STACS’98, volume 1373 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[66] D. Niwiński and I. Walukiewicz. A gap property of deterministic tree languages.
Theoretical Computer Science, 303(1):215–231, 2003.

[67] D. Niwiński and I. Walukiewicz. Deciding nondeterministic hierarchy of deter-
ministic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

[68] J. Obdrzalek. Fast mu-calculus model checking when tree-width is bounded. In
CAV’03, volume 2725 of Lecture Notes in Computer Science, pages 80–92, 2003.

[69] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. ACM
POPL, pages 179–190, 1989.

[70] M. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

[71] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, pages 114–125, 1959. Reprinted in Se-
quential machines (editor E. F. Moore), Addison-Wesley, Reading, Massachusetts,
1964, pages 63-91.

[72] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(2):81–98, 1989.

[73] K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Trans. on Automat. Control, 37(11):1692–1708, 1992.

[74] O. Serre. Note on winning positions on pushdown games with ω-regular condi-
tions. Information Processing Letters, 85:285–291, 2003.

[75] O. Serre. Games with winning conditions of high Borel complexity. In ICALP’04,
volume 3142 of Lecture Notes in Computer Science, pages 1150–1162, 2004.

[76] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer, 2001.

[77] R. S. Streett and E. A. Emerson. The propositional mu-calculus is elementary. In
ICALP, volume 172 of Lecture Notes in Computer Science, pages 465–472, 1984.

[78] R. S. Streett and E. A. Emerson. An automata theoretic procedure for the propo-
sitional mu-calculus. Information and Computation, 81:249–264, 1989.

[79] W. Thomas. Logic for computer science: The engineering challenge. volume 2000
of Lecture Notes in Computer Science, pages 257–267, 2002.

From Logic to Games 91

[80] T. Urbański. On deciding if deterministic Rabin language is in Büchi class. In
ICALP’00, volume 1853 of Lecture Notes in Computer Science, pages 663–674,
2000.

[81] M. Y. Vardi and P.Wolper. Automata theoretic techniques for modal logics of
programs. In Sixteenth ACM Symposium on the Theoretical Computer Science,
1984.

[82] K. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer Fol-
genmengen. J. Inf. Process. Cybern. EIK, 13:473–487, 1977.

[83] I. Walukiewicz. Pushdown processes: Games and model checking. Information
and Computation, 164(2):234–263, 2001.

	Introduction
	The Concepts
	Perspectives

