Optimality conditions for the LASSO

Given a \(y \in \mathbb{R}^M \) and a \(M \times N \) matrix \(\Phi \), the LASSO solves

\[
\min_x \frac{1}{2} \| \Phi x - y \|_2^2 + \tau \| x \|_1.
\]

(1)

To make things easier (i.e. smooth), introduce the auxiliary variable \(t \), and rewrite (1) as

\[
\min_{x,t} \frac{1}{2} \| \Phi x - y \|_2^2 + \tau \cdot 1^T t \quad \text{subject to} \quad x - t \leq 0, \quad -x - t \leq 0.
\]

(2)

(By 1 we mean an \(N \)-vector of all ones.) The Lagrange function for (2) is

\[
L(x, t, \lambda_+, \lambda_-) = \frac{1}{2} \| \Phi x - y \|_2^2 + \tau \cdot 1^T t + \lambda_+^T (x - t) + \lambda_-^T (-x - t),
\]

and so solving (2) is equivalent to solving

\[
\min_{x,t} \max_{\lambda_+, \lambda_-} L(x, t, \lambda_+, \lambda_-), \quad \text{subject to} \quad \lambda_-, \lambda_+ \geq 0,
\]

and the dual program is

\[
\max_{\lambda_+, \lambda_-} \left(\min_{x,t} L(x, t, \lambda_+, \lambda_-) \right) \quad \text{subject to} \quad \lambda_-, \lambda_+ \geq 0.
\]

For fixed \(\lambda_+, \lambda_- \), we minimize \(L \) over \(x \) and \(t \) by finding where the gradient is zero (\(L \) is convex in \(x \) and \(t \)). We have

\[
\nabla_{x,t} L = \begin{bmatrix} \Phi^T (\Phi x - y) + \lambda_+ - \lambda_- \\ \tau \cdot 1 - \lambda_+ - \lambda_- \end{bmatrix}.
\]

Set \(v = - (\lambda_+ - \lambda_-) \). For \(\nabla_{x,t} L = 0 \), we need

\[
-\lambda_+ + \lambda_- = \Phi^T (\Phi x - y), \\
\lambda_+ + \lambda_- = \tau \cdot 1.
\]

(3)

Since \(\lambda_+, \lambda_- \geq 0 \), we can combine these two constraints to get the dual feasibility condition

\[
\| \Phi^T (\Phi x - y) \|_\infty \leq \tau.
\]

(4)

Now, note that in light of (3), we can re-write the Lagrangian as

\[
L(x, t, \lambda_+, \lambda_-) = \frac{1}{2} \| \Phi x - y \|_2^2 + \tau \cdot 1^T t + \lambda_+ (x - t) + \lambda_- (-x - t)
\]

\[
= \frac{1}{2} \| \Phi x - y \|_2^2 + \tau \cdot 1^T t + (\lambda_+ - \lambda_-)^T x + (-\lambda_+ - \lambda_-)^T (-x - t)
\]

\[
= \frac{1}{2} \| \Phi x - y \|_2^2 + (y - \Phi x)^T \Phi x,
\]

which now depends only on \(x \). At the solution \(x^* \), the Lagrangian will match the primal value,

\[
L(x^*) = \frac{1}{2} \| \Phi x^* - y \|_2^2 + \tau \| x^* \|_1.
\]
and so x^* must obey
\[(y - \Phi x)^T \Phi x = \tau \|x\|_1.\]

Since we have the dual feasibility condition (4), this means that we must have
\[
\Phi^T \Gamma (y - \Phi x^*) = \tau \text{sgn}(x^*_\Gamma)
\]
\[
\|\Phi^T \Gamma (y - \Phi x^*)\|_\infty \leq \tau
\]

where Γ is the set of locations on which x^* is supported, Φ_Γ are the columns from Φ indexed by Γ, and x^*_Γ is the $|\Gamma|$-vector containing the non-zero coefficients of x^*.