
Basis representation fundamentals

Having a basis representation for our signals of interest allows us
to do two very nice things:

• Take the signal apart, writing it as a discrete linear combi-
nation of “atoms”:

x(t) =
∑
γ∈Γ

αγψγ(t)

for some fixed set of basis signals {ψγ(t)}γ∈Γ. Here Γ is a
discrete index set (for example Z, N, Z × Z, N × Z etc.)
which will be different depending on the application.

Conceptually, we are breaking the signal up into manageable
“chunks” that are either easier to compute with or have some
semantic interpretation.

• Translate (linearly) the signal into into a discrete list of num-
bers in such a way that it can be reconstructed (i.e. the
translation is lossless). Linear transform = series of inner
products, so this mapping looks like:

x(t) −→



〈ψ̃1(t), x(t)〉
〈ψ̃2(t), x(t)〉

...

〈ψ̃γ(t), x(t)〉
...


for some fixed set of signals {ψ̃γ(t)}γ∈Γ.

Having a discrete representation of the signal has a number
of advantages, not the least of which is that they can be
inputs to and outputs from digital computers.
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Here are two very familiar examples:

1) Fourier series:
Let x(t) ∈ L2([0, 1]). Then we can build up x(t) using harmonic
complex sinusoids:

x(t) =
∑
k∈Z

αk e j2πkt

where

αk =

∫ 1

0

x(t) e−j2πkt dt

= 〈x(t), e j2πkt〉.

Fourier series has two nice properties:

1. The {αk} carry semantic information about which frequen-
cies are in the signal.

2. If x(t) is smooth, the magnitudes |αk| fall off quickly as k
increases. This energy compaction provides a kind of implicit
compression.

If x(t) is real, it might be sort of annoying that we are representing
it using a list of complex numbers. An equivalent decomposition
is

x(t) = α0ψ0,0(t) +
∑

m∈{0,1}

∞∑
k=1

αkψm,k(t),

where αm,k = 〈x(t), ψm,k(t)〉 with

ψ0,k(t) =

{
1 k = 0√

2 cos(2πkt) k ≥ 1

ψ1,k(t) =
√

2 sin(2πkt).
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2) Sampling a bandlimited signal:
Suppose that x(t) is bandlimited to [−π/T, π/T ]:

x̂(ω) =

∫
x(t) e−jωt dt = 0 for |ω| > π/T.

Then the Shannon-Nyquist sampling theorem tells us that we can
reconstruct x(t) from point samples that are equally spaced by T :

x[n] = x(nT ),

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT ))

π(t− nT )/T
.

We can re-interpret this as a basis decomposition

x(t) =
∞∑

n=∞
αn ψn(t)

with

ψn(t) =
√
T

sin(π(t− nT ))

π(t− nT )

αn =
√
T x(nT ).

If x(t) is bandlimited, then the αn are also inner products against
the ψn(t):

αn =
√
T x(nT )

=

√
T

2π

∫ π/T

−π/T
x̂(ω) ejωnT dω

=
1

2π
〈x̂(ω), ψ̂n(ω)〉,

where

ψ̂n(ω) =

{√
T e−jωnT |ω| ≤ π/T

0 |ω| > π/T.
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Then by the classical Parseval theorem for Fourier transforms:

αn = 〈x(t), ψn(t)〉,

where

ψn(t) =

√
T

2π

∫ π/T

−π/T
e−jωnTejωt dω

=

√
T

2π

∫ π/T

−π/T
e jω(t−nT ) dω

=
√
T · sin(π(t− nT )/T )

π(t− nT )
.

Thus we can interpret the Shannon-Nyquist sampling theorem as
an expansion of a bandlimited signal in an basis of shifted sinc
functions. We offer two additional notes about this result:

• Sampling a signal is a fundamental operation in applications.
Analog-to-digital converters (ADCs) are prevalent and rela-
tively cheap — ADCs operating at 10s of MHz cost on the
order of a few dollars/euros.

• The sinc representation for bandlimited signals is mathemat-
ically the same as the Fourier series for signals with finite
support, just with the roles of time and frequency reversed.
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Orthobasis expansions

Fourier series and the sampling theorem are both examples of
expansions in an orthonormal basis (“orthobasis expansion” for
short). The set of signals {ψγ}γ∈Γ is an orthobasis for a space H
if

1.

〈ψγ, ψγ′〉 =

{
1 γ = γ ′

0 γ 6= γ ′
.

2. span{ψγ}γ∈Γ = H . That is, there is no x ∈ H such that
〈ψγ, x〉 = 0 for all γ ∈ Γ. (In infinite dimensions, this should
technically read the closure of the span).

If {ψγ}γ∈Γ is an orthobasis for H , then every x(t) ∈ H can be
written as

x(t) =
∑
γ∈Γ

〈x(t), ψγ(t)〉ψγ(t).

This is called the reproducing formula.

Orthobases are nice since they not only allow every signal to be
decomposed as a linear combination of elements, but we have a
simple and explicit way of computing the coefficients (the αγ =
〈x, ψγ〉) in this expansion.

Associated with an orthobasis {ψγ}γ∈Γ for a spaceH are two linear
operators. The first operator Ψ : H → `2(Γ) maps the signal x(t)
in H to the sequence of expansion coefficients in `2(Γ) (of course,
if H is finite dimensional, it may be more appropriate to write the
range of this mapping as RN rather than `2(Γ)). The mapping Ψ
is called the analysis operator, and its action is given by

Ψ[x(t)] = {〈x(t), ψγ(t)〉}γ∈Γ = {αγ}γ∈Γ.
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The second operator Ψ∗ : `2(Γ) → H takes a sequence of coeffi-
cients in `2(Γ) and uses them to build up a signal. The mapping
Ψ∗ is call the synthesis operator, and its action is given by

Ψ∗[{αγ}γ∈Γ] =
∑
γ∈Γ

αγ ψγ(t).

Formally, Ψ and Ψ∗ are adjoint operators (see the notes on frame
operators later in this section).
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The generalized Parseval theorem

The (generalized) Parseval theorem says that the mapping from
a signal x(t) to its basis coefficients preserves inner prod-
ucts (and hence energy). If x(t) is a continuous-time signal, then
the relation is between two different types of inner products, one
continuous and one discrete. Here is the precise statement:

Theorem. Let {ψγ}γ∈Γ be an orthobasis for a space H . Then
for any two signals x,∈ H

〈x, y〉H =
∑
γ∈Γ

αγβ
∗
γ

where
αγ = 〈x, ψγ〉H and βγ = 〈y, ψγ〉H.

Proof.

〈x, y〉H =

〈∑
γ

αγψγ,
∑
γ′

βγ′ψγ′

〉
H

=
∑
γ

∑
γ′

αγβ
∗
γ′〈ψγ, ψγ′〉H

=
∑
γ

αγβ
∗
γ,

since 〈ψγ, ψγ′〉H = 0 unless γ = γ ′, in which case 〈ψγ, ψγ′〉H = 1.

Of course, this also means that the energy in the original signal
is preserved in its coefficients. For example, if x(t) ∈  L2(R) is a
continuous-time signal and αγ = 〈x, ψγ〉, then

‖x(t)‖2
L2(R) =

∫
|x(t)|2 dt =

∫
x(t)x(t)∗dt =

∑
γ∈Γ

αγα
∗
γ =

∑
γ∈Γ

|αγ|2

= ‖α‖2
`2(Γ).
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Everything is discrete

An amazing consequence of the Parseval theorem is that every
space of signals for which we can find any orthobasis can be dis-
cretized. That the mapping from (continuous) signal space into
(discrete) coefficient space preserves inner products essentially means
that it preserves all of the geometrical relationships between the
signals (i.e. distances and angles). In some sense, this means
that all signal processing can be done by manipulating discrete
sequences of numbers.

For our primary continuous spaces of interest, L2(R) and L2([0, 1])
which are equipped with the standard inner product, there are
many orthobases from which to choose, and so many ways in which
we can “sample” the signal to make it discrete.

Here is an example of the power of the Parseval theorem. Suppose
that I have samples {x[n] = x(nT )}n of a bandlimited signal x(t).
Suppose one of the samples is perturbed by a known amount ε,
forming

x̃[n] =

{
x[n] + ε n = n0

x[n] otherwise
.

What is the effect on the reconstructed signal? That is, if

x̃(t) =
∑
n∈Z

x̃[n]
sin(π(t− nT )/T )

π(t− nT )/T

what is the energy in the error

‖x− x̃‖2
L2

=

∫
|x(t)− x̃(t)|2 dt ?
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Projections and the closest point problem

A fundamental problem, which arises in several applications we
will talk about later in the day, is to find the closest point in a
fixed subspace to a given signal. If we have an orthobasis for this
subspace, this problem is easy to solve.

Formally, let ψ1(t), . . . , ψN(t) be a finite set of orthogonal vectors
in H , and set

V = span{ψ1, . . . , ψN}.
Given a fixed signal x0(t) ∈ H , the solution x̃0(t) to

min
x∈V
‖x0(t)− x(t)‖2

2 (1)

is given by

x̃0(t) =
N∑
k=1

〈x0(t), ψk(t)〉ψk(t).

We will prove this statement a little later.

The result can be extended to infinite dimensional subspaces as
well. If {ψk(t)}k∈Z is a set of (not necessarily complete) orthogonal
signals in H , and we let V be the closure of the span of {ψk}k∈Z,
then the solution to (1) is simply

x̃0(t) =
∑
k∈Z

〈x0(t), ψk(t)〉ψk(t).

Example: Let x(t) ∈ L2(R) be an arbitrary continuous-time
signal. What is the closest bandlimited signal to x(t)?
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The solution of (1) is called the projection of x0 onto V . There is a
linear relationship between a point x0 ∈ H and the corresponding
closest point x̃0 ∈ V . If Ψ is the (linear) mapping

Ψ[x0] = {〈x0, ψk〉}k,

and Ψ∗ is the corresponding adjoint, then x̃0 can be compactly
written as

x̃0 = Ψ∗[Ψ[x]].

We can define the linear operator PV that maps x0 to its closest
point as

PV = Ψ∗Ψ.

It is easy to check that Ψ[Ψ∗[{αk}k]] = {αk}k for any set of coef-
ficients {αk}k, and so

PVPV = PV.

It is also easy to see that PV is self-adjoint:

P ∗V = PV.
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Non-orthogonal bases in RN

When x ∈ RN , basis representations fall squarely into the realm
of linear algebra. Let ψ0, ψ1, . . . , ψN−1 be a set of N linearly
independent vectors in RN . Since the ψk are linearly independent,
then every x ∈ RN produces a unique sequence of inner products
against Ψ. That is, we can recover x from the sequence of inner
products 

α0

α1
...

αN−1

 =


〈x, ψ0〉
〈x, ψ1〉

...
〈x, ψN−1〉

 .
Stacking up the (transposed) ψk as rows in an N ×N matrix Ψ,

Ψ =


—– ψ∗0 —–
—– ψ∗1 —–

... ... ...
—– ψ∗N−1 —–

 ,
we have the straightforward relationships

α = Ψx, and x = Ψ−1α.

(In this case we know that Ψ is invertible since it is square and
its rows are linearly independent.) Let ψ̃0, ψ̃1, . . . , ψ̃N−1 be the
columns of Ψ−1:

Ψ−1 =

 | | · · · |
ψ̃0 ψ̃1 · · · ψ̃N−1

| | · · · |

 .
Then the straightforward relation

x = Ψ−1Ψx,
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can be rewritten as the reproducing formula

x[n] =
N−1∑
k=0

〈x, ψk〉ψ̃k[n].

For the non-orthogonal case, we are using different families of basis
functions for the analysis and the synthesis. The analysis opera-
tor that maps x to the αk = 〈x, ψk〉 is the N × N matrix Ψ.
The synthesis operator, which uses the vector α to build up x, is
the N × N matrix Ψ−1 which we could conveniently re-label as
Ψ−1 = Ψ̃∗. When the ψk are orthonormal, we have Ψ∗ = Ψ−1, and
so Ψ̃ = Ψ, meaning that the analysis and synthesis basis functions
are the same (ψ̃k = ψk). In the orthonormal case, the analysis op-
erator is Ψ and the synthesis operator is Ψ∗, matching our previous
notation.

For non-orthogonal {ψk}k, the Parseval theorem does not hold.
However, we can put bounds on the energy of the expansion coef-
ficients in relation to the energy of the signal x. In particular,

σ2
1‖x‖2

2 ≤
N−1∑
k=0

|〈ψk, x〉|2 ≤ σ2
N‖x‖2

2

m
σ2

1‖x‖2
2 ≤ ‖α‖2

2 ≤ σ2
N‖x‖2

2,

where σ1 is the smallest singular value of the analysis operator
matrix Ψ and σN is its largest singular value.

To extend these ideas to infinite dimensions, we need to use the
language of linear operators in place of matrices (which introduces
a few interesting complications). Before doing this, we will take a
first look at overcomplete expansions.
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Overcomplete frames in RN

A sequence of vector ψ0, ψ1, . . . , ψM in RN are a frame if there is
no x ∈ RN , x 6= 0 that is orthogonal to all of the ψk. This means
that the sequence of inner products

α0

α1
...

αM−1

 =


〈x, ψ0〉
〈x, ψ1〉

...
〈x, ψM−1〉

 .
will be unique for every different x. The difference between a basis
and a frame is that we allow M ≥ N , and so the number of inner
product coefficients in α can exceed the number of entries in x.
If we again stack up the (transposed) ψk as rows in an M × N
matrix Ψ,

Ψ =


—– ψ∗0 —–
—– ψ∗1 —–

... ... ...
—– ψ∗M−1 —–

 ,
this means that Ψ is overdetermined and has no null space (and
hence has full column-rank). Of course, Ψ does not have an inverse,
so we must take a little more caution with the reproducing formula.

Since the M × N matrix Ψ has full column rank, we know that
the N×N matrix Ψ∗Ψ is invertible. The reproducing formula can
then comes from

x = (Ψ∗Ψ)−1Ψ∗Ψx.

Now define the synthesis basis vectors ψ̃k as the columns of the
pseudo-inverse (Ψ∗Ψ)−1Ψ∗:

ψ̃k = (Ψ∗Ψ)−1ψk.

Then the reproducing formula is almost identical as the above
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(except now we are using M ≥ N vectors to build up x):

x[n] =
M−1∑
k=0

〈x, ψk〉ψ̃k[n].

We have the same relationship as above between the energy in the
coefficients α = Ψx and the signal x:

σ2
1‖x‖2

2 ≤
M−1∑
k=0

|〈ψk, x〉|2 ≤ σ2
N‖x‖2

2

m
σ2

1‖x‖2
2 ≤ ‖α‖2

2 ≤ σ2
N‖x‖2

2,

where now σ1 is the smallest singular value of the analysis oper-
ator matrix Ψ and σN is its largest singular value (i.e. σ2

N is the
largest eigenvalue of the symmetric positive-definite matrix Ψ∗Ψ).
If the columns of Ψ are orthogonal and all have the same energy
A, then Ψ∗Ψ = A · Identity and we have a Parseval relation

〈Ψx,Ψy〉 = 〈x,Ψ∗Ψy〉 = A〈x, y〉

and so
M−1∑
k=0

|〈x, ψk〉|2 = ‖Ψx‖2
2 = A‖x‖2

2.

Moral: A frame can be overcomplete and still obey a
Parseval relation.

17

Notes by J. Romberg – January 9, 2012 – 2:48



Example: Mercedes-Benz frame in R2

Let’s start with the simplest possible example of a tight frame for
H = R2:

ψ1 =

[
0
1

]
, ψ2 =

[√
3/2
−1/2

]
, ψ3 =

[
−
√

3/2
−1/2

]
.

Sketch it here:

The associated frame operator is the 3× 2 matrix

Ψ =

 0 1√
3/2 −1/2

−
√

3/2 −1/2

 .
Thus

Ψ∗Ψ =

and so

≤ ‖Ψx‖2
2 ≤

and
A = B =

18

Notes by J. Romberg – January 9, 2012 – 2:48



Example: Unions of orthobases in RN Suppose our se-
quence {ψγ} is a union of sequences, each of which is an orthoba-
sis:

{ψ1
γ1
}γ1∈Γ1

∪ {ψ2
γ2
}γ2∈Γ2

∪ · · · ∪ {ψLγL}γL∈ΓK

Then

‖Ψx‖2
2 =

∑
γ1∈Γ1

|〈x, ψ1
γ1
〉|2 +

∑
γ2∈Γ2

|〈x, ψ2
γ2
〉|2 + · · · +

∑
γL∈ΓL

|〈x, ψLγL〉|
2

= L‖x‖2
2
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