
The cosine-I transform

The cosine-I transform is an alternative to Fourier series; it is an
expansion in an orthobasis for functions on [0, 1] (or any interval on
the real line) where the basis functions look like sinusoids. There
are two main differences that make it more attractive than Fourier
series for certain applications:

1. the basis functions and the expansion coefficients are real-
valued;

2. the basis functions have different symmetries.

Definition. The cosine-I basis functions for t ∈ [0, 1] are

ψk(t) =

{
1 k = 0√

2 cos(πkt) k > 0
. (1)

It is easy to check that the basis functions are orthonormal:

〈ψj, ψk〉 =

{
1 j = k

0 j 6= k
.

The question is whether or not they are complete; that is, can we
build up any function on [0, 1] as a linear combination of the {ψk}.
The completeness of cosine-I can be argued as follows. Let x(t)
be an arbitrary real-valued function on [0, 1]. Let x̃(t) be its sym-
metric extension on [−1, 1]

x̃(t) =

{
x(−t) −1 ≤ t ≤ 0

x(t) 0 ≤ t ≤ 1

We can write the Fourier series (in cos/sin) form of x̃(t) as

x̃(t) = α0 +
∞∑
k=1

αk cos(πkt) +
∞∑
k=1

βk sin(πkt)

1

Notes by J. Romberg – January 8, 2012 – 16:47

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(t) symmetric extension x̃ for cosine-I

(the interval has a length of 2, so the harmonics are
0, π, 2π, 3π, . . .), where

αk =
1

2

∫ 1

−1

x̃(t) cos(πkt) dt, βk =
1

2

∫ 1

−1

x̃(t) sin(πkt) dt.

Since x̃(t) is even, and sin(πkt) is odd, βk = 0 for all k ≥ 1. Thus

x̃(t) = α0 +
∞∑
k=1

αk cos(πkt).

Since x(t) is just the part of x̃(t) on [0, 1], we can also write

x(t) = α0 +
∞∑
k=1

αk cos(πkt),

and so any function on [0, 1] can be written as a linear combinations
of the ψk in (1) (the factor of

√
2 is there just to make the basis

functions normalized).

Of course, the construction above is easily extended to an arbitrary
interval [T1, T2] with length L = T2 − T1. In this case, we simply
take

ψk(t) =


1√
L

k = 0√
2
L

cos
(
πk
(
t−T1
L

))
k > 0

.

2

Notes by J. Romberg – January 8, 2012 – 16:47

The discrete cosine transform (DCT)

The discrete version of the cosine-I transform is call the DCT:
Definition: The DCT basis functions for RN are

ψk[n] =


√

1
N

k = 0√
2
N

cos
(
πk
N

(
n + 1

2

))
k = 1, . . . , N − 1

, n = 0, 1, . . . , N−1.

(2)

The DCT maps a real-valued vector in RN to another real-valued
vector in RN , and can be computed efficiently using the fast Fourier
transform (FFT). Note that

cos

(
kπ

N

(
n +

1

2

))
= Re

{
e−jkπ/2Ne−jkπn/N

}
,

and so if x[n] is real-valued

∑
n

x[n] cos

(
kπ

N

(
n +

1

2

))
= Re

{
e−jkπ/2N

∑
n

x[n]e−jkπn/N
}
.

Thus in MATLAB, to take the DCT of x, we could use

fx2 = fft(x, 2*N);

dx = (1/sqrt(N)) * [1; sqrt(2)*ones(N-1,1)] .* ...

real(fx2(1:N) .* exp(-1i*pi*(0:N-1)’/(2*N)));

This is just meant as an illustration, as there are more efficient
ways of doing this than the above (and MATLAB has a nice built-
in dct function).

3

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

The cosine-I and DCT for 2D images

Just as for Fourier series and the discrete Fourier transform, we
can leverage the 1D cosine-I basis and the DCT into separable
bases for 2D images.

Definition. Let {ψk(t)}k≥0 be the cosine-I basis in (1). Set

ψ2D
k1,k2

(s, t) = ψk1(s)ψk2(t).

Then {ψ2D
k1,k2

(s, t)}k1,k2∈N is an orthonormal basis for L2([0, 1]2)

This is just a particular instance of a general fact. It is straight-
forward to argue (you can do so at home) that if {ψγ(t)}γ∈Γ is
an orthonormal basis for L2([0, 1]), then {ψγ1(s)ψγ2(t)}γ1,γ2∈Γ is an
orthonormal basis for L2([0, 1]2).

The DCT extends to 2D in the same way.

Definition. Let {ψk[n]}0≤k≤N−1 be the DCT basis in (2). Set

ψ2D
j,k [m,n] = ψj[m]ψk[n].

Then {ψ2D
j,k [m,n]}0≤j,k≤N−1 is an orthonormal basis for RN × RN .

5

Notes by J. Romberg – January 8, 2012 – 16:47

The 64 DCT basis functions for N = 8 are shown below:

j
→

k →
ψj,k[m,n] for j, k = 0, . . . , 7

2D DCT coefficients are indexed by two integers, and so are nat-
urally arranged on a grid as well:

α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1
...

αN−1,0 αN−1,1 · · · αN−1,N−1

6

Notes by J. Romberg – January 8, 2012 – 16:47

The DCT in image and video compression

The DCT is basis of the popular JPEG image compression stan-
dard. The central idea is that while energy in a picture is dis-
tributed more or less evenly throughout, in the DCT transform
domain it tends to be concentrated at low frequencies.

JPEG compression work roughly as follows:

1. Divide the image into 8× 8 blocks of pixels

2. Take a DCT within each block

3. Quantize the coefficients — the rough effect of this is to keep
the larger coefficients and remove the samller ones

4. Bitstream (losslessly) encode the result.

There are some details we are leaving out here, probably the most
important of which is how the three different color bands are dealt
with, but the above outlines the essential ideas.

The basic idea is that while the energy within an 8 × 8 block of
pixels tends to be more or less evenly distributed, the DCT con-
centrates this energy onto a relatively small number of transform
coefficients. Moreover, the significant coefficients tend to be at
the same place in the transform domain (low spatial frequencies).

849 850 851 852 853 854 855 856

297

298

299

300

301

302

303

304
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

8× 8 block 2D DCT coeffs ordering

7

Notes by J. Romberg – January 8, 2012 – 16:47

To get a rough feel for how closely this model matches reality,
let’s look at a simple example. Here we have an original image
2048× 2048, and a zoom into a 256× 256 piece of the image:

original

900 950 1000 1050 1100

250

300

350

400

450

Here is the same piece after using 1 of the 64 coefficients per block
(1/64 ≈ 1.6%), 3/64 ≈ 4.6% of the coefficients, and 10/64 ≈
15/62%:

1.6%

900 950 1000 1050 1100

250

300

350

400

450

4.6%

900 950 1000 1050 1100

250

300

350

400

450

14.6%

900 950 1000 1050 1100

250

300

350

400

450

1/64 3/64 10/64

So the “low frequency” heuristic appears to be a good one.

JPEG does not just “keep or kill” coefficients in this manner, it
quantizes them using a fixed quantization mask. Here is a common
example:

8

Notes by J. Romberg – January 8, 2012 – 16:47

The quantization simply maps αj,k → α̃j,k using

α̃j,k = Qj,k · round

(
αj,k
Qj,k

)
You can see that the coefficients at low frequencies (upper left) are
being treated much more gently than those at higher frequencies
(lower right).

Video compression

The DCT also plays a fundamental role in video compression (e.g.
MPEG, H.264, etc.), but in a slightly different way. Video codecs
are complicated, but here is essentially what they do:

1. Estimate, describe, and quantize the motion in between
frames.

2. Use the motion estimate to “predict” the next frame.

3. Use the (block-based) DCT to code the residual.

9

Notes by J. Romberg – January 8, 2012 – 16:47

Cosine-IV transform

The cosine-IV transform is similar to cosine-I in that it is a basis of
cosines at equally spaced frequencies (half harmonics). However,
the frequencies used are offset to give the basis functions different
symmetries — even at the left end point and odd at the right.

Definition. The cosine-IV basis functions for t ∈ [0, 1] are

ψk(t) =
√

2 cos

((
k +

1

2

)
πt

)
, k = 0, 1, 2, (3)

It is again an easy exercise to check that the basis functions are
orthonormal. The completeness of the basis set can be argued in a
similar manner to the cosine-I, but with a different symmetric ex-
tension of the signal. Let x(t) be an arbitrary real-valued function
on [0, 1]. Let x̃(t) be an extension defined on [−2, 2] as follows:

x̃(t) =


x(t) t ∈ [0, 1]

x(−t) t ∈ [−1, 0]

−x(2− t) t ∈ (1, 2]

−x(2 + t) t ∈ [−2,−1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x(t) symmetric extension x̃ for cosine-IV

10

Notes by J. Romberg – January 8, 2012 – 16:47

The Fourier series (in cos/sin form) of x̃(t) is

x̃(t) = α0 +
∞∑
k=1

αk cos

(
πkt

2

)
+

∞∑
k=1

βk sin

(
πkt

2

)
.

The extended signal x̃(t) has support size 4, so the frequencies
above are space 2π/4 = π/2 apart. Since x̃(t) is symmetric around
zero, all of the βk are again equal to zero. However, because x̃(t)
has odd symmetry around ±1, αk = 0 for k even. Thus

x̃(t) =
∑
k≥1
k odd

αk cos

(
πkt

2

)

=
∑
k≥0

αk cos

((
k +

1

2

)
πt

)
.

And since x(t) is just the part of x̃(t) on [0, 1], we have the same
expansion

x(t) =
∑
k≥0

αk cos

((
k +

1

2

)
πt

)
.

Again, the construction is easily extended to any interval [T1, T2].
With L = T2 − T1,

ψk(t) =

√
2

L
cos

((
k +

1

2

)
π

(
t− T1

L

))
, k = 0, 1, 2, . . .

is an orthonormal basis for L2([T1, T2]).

11

Notes by J. Romberg – January 8, 2012 – 16:47

Lapped Orthogonal Transforms

12

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Notes by J. Romberg – January 8, 2012 – 16:47

Plots of the LOT basis functions, single window, first 16 frequen-
cies:

LOT of a modulated pulse:

0 500 1000 1500 2000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

900 950 1000 1050 1100 1150 1200 1250 1300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

ω

0 10 20 30 40 50

0

1

2

3

4

5

6

7

pulse zoom grid of LOT coefficients

25

Notes by J. Romberg – January 8, 2012 – 16:47

