An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

Justin Romberg

Georgia Tech, School of ECE

ENS Winter School January 9, 2012 Lyon, France

Applied and Computational Harmonic Analysis

- Signal/image f(t) in the time/spatial domain
- ullet Decompose f as a superposition of atoms

$$f(t) = \sum_i \alpha_i \psi_i(t)$$

$$\psi_i = \text{basis functions}$$

$$\alpha_i = \text{expansion coefficients in } \psi\text{-domain}$$

• Classical example: Fourier series $\psi_i = \text{complex sinusoids}$ $\alpha_i = \text{Fourier coefficients}$

• Modern example: wavelets $\psi_i =$ "little waves" $\alpha_i =$ wavelet coefficients

More exotic example: curvelets (rhore later)

Taking images apart and putting them back together

• Frame operators $\Psi, \tilde{\Psi}$ map images to sequences and back Two sequences of functions: $\{\psi_i(t)\}, \{\tilde{\psi}(t)\}$ Analysis (inner products):

$$\alpha = \tilde{\Psi}[f], \qquad \alpha_i = \langle \tilde{\psi}_i, f \rangle$$

Synthesis (superposition):

$$f = \Psi^*[\alpha], \qquad f = \sum_i \alpha_i \psi_i(t)$$

• If $\{\psi_i(t)\}$ is an orthobasis, then

$$\begin{split} &\|\alpha\|_{\ell_2}^2 = \|f\|_{L_2}^2 \qquad \text{(Parseval)} \\ &\sum_i \alpha_i \beta_i = \int f(t) g(t) \ dt \qquad \text{(where } \beta = \tilde{\Psi}[g]\text{)} \\ &\psi_i(t) = \tilde{\psi}_i(t) \end{split}$$

- i.e. all sizes and angles are preserved
- Overcomplete tight frames have similar properties

ACHA

- ACHA Mission: construct "good representations" for "signals/images" of interest
- Examples of "signals/images" of interest
 - Classical: signal/image is "bandlimited" or "low-pass"
 - ▶ Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
 - Cutting-edge: 2D image is smooth between smooth edge contours
- Properties of "good representations"
 - sparsifies signals/images of interest
 - ▶ can be computed using fast algorithms (O(N) or O(N log N) — think of the FFT)

Example: The discrete cosine transform (DCT)

• For an image f(t,s) on $[0,1]^2$, we have

$$\psi_{\ell,m}(t,s) = 2\lambda_{\ell}\lambda_m \cdot \cos(\pi\ell t)\cos(\pi ms), \quad \lambda_{\ell} = \begin{cases} 1/\sqrt{2} & \ell = 0\\ 1 & \text{otherwise} \end{cases}$$

- Closely related to 2D Fourier series/DFT, the DCT is real, and implicitly does symmetric extension
- Can be taken on the whole image, or blockwise (JPEG)

Take 1% of "low pass" coefficients, set the rest to zero

approximated

rel. error = 0.075

Take 1% of "low pass" coefficients, set the rest to zero

approximated

rel. error = 0.075

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

approximated

rel. error = 0.057

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

approximated

rel. error = 0.057

Wavelets

$$f(t) = \sum_{j,k} \alpha_{j,k} \psi_{j,k}(t)$$

- ullet Multiscale: indexed by scale j and location k
- Local: $\psi_{i,k}$ analyzes/represents an interval of size $\sim 2^{-j}$
- Vanishing moments: in regions where f is polynomial, $\alpha_{i,k}=0$

2D wavelet transform

=

.

- Sparse: few large coeffs, many small coeffs
- Important wavelets cluster along edges

Scale = 4, 16384:1

 $rel.\ error=0.29$

Scale = 5, 4096:1

 $rel.\ error=0.22$

Scale = 6, 1024:1

 $rel.\ error = 0.16$

Scale = 7, 256:1

rel. error = 0.12

Scale = 8, 64:1

rel. error = 0.07

Scale = 9, 16:1

rel. error = 0.04

 $\mathsf{Scale} = \mathsf{10}, \, \mathsf{4:1}$

rel. error = 0.02

Image approximation using wavelets

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

approximated

rel. error = 0.031

DCT/wavelets comparison

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

Linear approximation

ullet Linear S-term approximation: keep S coefficients in fixed locations

$$f_S(t) = \sum_{m=1}^{S} \alpha_m \psi_m(t)$$

- projection onto fixed subspace
- lowpass filtering, principle components, etc.
- Fast coefficient decay ⇒ good approximation

$$|\alpha_m| \lesssim m^{-r} \quad \Rightarrow \quad ||f - f_S||_2^2 \lesssim S^{-2r+1}$$

• Take f(t) periodic, d-times continuously differentiable, Ψ = Fourier series:

$$||f - f_S||_2^2 \lesssim S^{-2d}$$

The smoother the function, the better the approximation Something similar is true for wavelets ...

Nonlinear approximation

ullet Nonlinear S-term approximation: keep S largest coefficients

$$f_S(t) = \sum_{\gamma \in \Gamma_S} \alpha_\gamma \psi_\gamma(t), \qquad \Gamma_S = ext{locations of } S ext{ largest } |\alpha_m|$$

ullet Fast decay of sorted coefficients \Rightarrow good approximation

$$|\alpha|_{(m)} \lesssim m^{-r} \Rightarrow \|f - f_S\|_2^2 \lesssim S^{-2r+1}$$

 $|\alpha|_{(m)}=m$ th largest coefficient

Linear v. nonlinear approximation

• For f(t) uniformly smooth with d "derivatives"

S-term approx. error

Fourier, linear	S^{-2d+1}
Fourier, nonlinear	S^{-2d+1}
wavelets, linear	S^{-2d+1}
wavelets, nonlinear	S^{-2d+1}

• For f(t) piecewise smooth

S-term approx. error

Fourier, linear	S^{-1}
Fourier, nonlinear	S^{-1}
wavelets, linear	S^{-1}
wavelets, nonlinear	S^{-2d+1}

Nonlinear wavelet approximations adapt to singularities

Wavelet adaptation

Approximation curves

Approximating Pau with S-terms...

wavelet nonlinear, DCT nonlinear, DCT linear

Approximation comparison

The ACHA paradigm

Sparse representations yield algorithms for (among other things)

- compression,
- estimation in the presence of noise ("denoising"),
- inverse problems (e.g. tomography),
- acquisition (compressed sensing)

that are

- fast,
- relatively simple,
- and produce (nearly) optimal results

Transform-domain image coding

- Sparse representation = good compression
 Why? Because there are fewer things to code
- Basic, "stylized" image coder
 - 1 Transform image into sparse basis
 - ② Quantize

 Most of the xform coefficients are ≈ 0
 - \Rightarrow they require very few bits to encode
 - Oecoder: simply apply inverse transform to quantized coeffs

Image compression

- Classical example: JPEG (1980s)
 - standard implemented on every digital camera
 - representation = Local Fourier discrete cosine transform on each 8 × 8 block
- Modern example: JPEG2000 (1990s)
 - representation = wavelets
 Wavelets are much sparser for images with edges
 - ▶ about a factor of 2 better than JPEG in practice half the space for the same quality image

JPEG vs. JPEG2000

Visual comparison at 0.25 bits per pixel (\approx 100:1 compression)

JPEG2000

(Images from David Taubman, University of New South Wales)

Sparse transform coding is asymptotically optimal

Donoho, Cohen, Daubechies, DeVore, Vetterli, and others ...

- The statement "transform coding in a sparse basis is a smart thing to do" can be made mathematically precise
- ullet Class of images ${\cal C}$
- Representation $\{\psi_i\}$ (orthobasis) such that

$$|\alpha|_{(n)} \lesssim n^{-r}$$

for all $f \in \mathcal{C}$ ($|\alpha|_{(n)}$ is the nth largest transform coefficient)

- Simple transform coding: transform, quantize (throwing most coeffs away)
- $\ell(\epsilon) =$ length of code (# bits) that guarantees the error $< \epsilon$ for all $f \in \mathcal{C}$ (worst case)
- To within log factors

$$\ell(\epsilon) \simeq \epsilon^{-1/\gamma}, \qquad \gamma = r - 1/2$$

• For piecewise smooth signals and $\{\psi_i\}$ = wavelets, no coder can do fundamentally better

Statistical estimation setup

$$y(t) = f(t) + \sigma z(t)$$

- y: data
- f: object we wish to recover
- z: stochastic error; assume z_t i.i.d. N(0,1)
- σ : noise level
- ullet The quality of an estimate \tilde{f} is given by its risk (expected mean-square-error)

$$MSE(\tilde{f}, f) = E \|\tilde{f} - f\|_2^2$$

Transform domain model

$$y = f + \sigma z$$

Orthobasis $\{\psi_i\}$:

- ullet z_i Gaussian white noise sequence
- \bullet σ noise level
- $\alpha_i = \langle f, \psi_i \rangle$ coordinates of f

Classical estimation example

ullet Classical model: signal of interest f is lowpass

- Observable frequencies: $0 \le \omega \le \Omega$
- $\hat{f}(\omega)$ is nonzero only for $\omega \leq B$

Classical estimation example

• Add noise: y = f + z

Observation error: $E\|y-f\|_2^2 = E\|\hat{y}-\hat{f}\|_2^2 = \Omega \cdot \sigma^2$

• Noise is spread out over entire spectrum

Classical estimation example

 \bullet Optimal recovery algorithm: lowpass filter ("kill" all $\hat{y}(\omega)$ for $\omega>B)$

ullet Only the lowpass noise affects the estimate, a savings of $(B/\Omega)^2$

Modern estimation example

- Model: signal is piecewise smooth
- Signal is sparse in the wavelet domain

- ullet Again, the $lpha_{j,k}$ are concentrated on a small set
- This set is signal dependent (and unknown a priori)
 ⇒ we don't know where to "filter"

Ideal estimation

$$y_i = \alpha_i + \sigma z_i, \quad y \sim \text{Normal}(\alpha, \sigma^2 I)$$

- Suppose an "oracle" tells us which coefficients are above the noise level
- Form the oracle estimate

$$\tilde{\alpha_i}^{\text{orc}} = \begin{cases} y_i, & \text{if } |\alpha_i| > \sigma \\ 0, & \text{if } |\alpha_i| \le \sigma \end{cases}$$

keep the observed coefficients above the noise level, ignore the rest

Oracle Risk:

$$E\|\tilde{\alpha_i}^{\text{orc}} - \alpha\|_2^2 = \sum_i \min(\alpha_i^2, \sigma^2)$$

Ideal estimation

- Transform coefficients α
 - ▶ Total length N = 64
 - # nonzero components = 10
 - # components above the noise level S=6

Interpretation

$$\mathrm{MSE}(\tilde{\alpha}^{\mathrm{orc}},\alpha) = \sum_{i} \min(\alpha_{i}^{2},\sigma^{2})$$

- Rearrange the coefficients in decreasing order $|\alpha|_{(1)}^2 \ge |\alpha|_{(2)}^2 \ge \ldots \ge |\alpha|_{(N)}^2$
- S: number of those α_i 's s.t. $\alpha_i^2 \geq \sigma^2$

$$\begin{split} MSE(\tilde{\alpha}^{\mathrm{orc}}, \alpha) &= \sum_{i > S} |\alpha|_{(i)}^2 \ + \ S \cdot \sigma^2 \\ &= \ \|\alpha - \alpha_S\|_2^2 \ + \ S \cdot \sigma^2 \\ &= \ \operatorname{Approx} \mathsf{Error} \ + \ \mathsf{Number} \ \mathsf{of} \ \mathsf{terms} \times \mathsf{noise} \ \mathsf{level} \\ &= \ \mathit{Bias}^2 \ + \ \mathit{Variance} \end{split}$$

- The sparser the signal,
 - the better the approximation error (lower bias), and
 - the fewer # terms above the noise level (lower variance)
- Can we estimate as well without the oracle?

Denoising by thresholding

Hard-thresholding ("keep or kill")

$$\tilde{\alpha}_i = \begin{cases} y_i, & |y_i| \ge \lambda \\ 0, & |y_i| < \lambda \end{cases}$$

Soft-thresholding ("shrinkage")

$$\tilde{\alpha}_i = \begin{cases} y_i - \lambda, & y_i \ge \lambda \\ 0, & -\lambda < y_i < \lambda \\ y_i + \lambda, & y_i \le -\lambda \end{cases}$$

- ullet Take λ a little bigger than σ
- \bullet Working assumption: whatever is above λ is signal, whatever is below is noise

Denoising by thresholding

- Thresholding performs (almost) as well as the oracle estimator!
- Donoho and Johnstone: Form estimate $\tilde{\alpha}^t$ using threshold $\lambda = \sigma \sqrt{2\log N}$,

$$MSE(\tilde{\alpha}^t, \alpha) := E \|\tilde{\alpha}^t - \alpha\|_2^2 \le (2 \log N + 1) \cdot (\sigma^2 + \sum_i \min(\alpha_i^2, \sigma^2))$$

- ullet Thresholding comes within a \log factor of the oracle performance
- \bullet The $(2\log N+1)$ factor is the price we pay for not knowing the locations of the important coeffs
- Thresholding is simple and effective
- Sparsity ⇒ good estimation

Recall: Modern estimation example

• Signal is piecewise smooth, and sparse in the wavelet domain

Thresholding wavelets

• Denoise (estimate) by soft thresholding

Denoising the Phantom

Error = 25.0

Error = 42.6

Error = 11.0

Linear inverse problems

$$y(u) = (Kf)(u) + z(u), \quad u = {\sf measurement\ variable/index}$$

- f(t) object of interest
- K linear operator, indirect measurements

$$(Kf)(u) = \int k(u,t)f(t) dt$$

Examples:

- Convolution ("blurring")
- Radon (Tomography)
- Abel
- $z = \mathsf{noise}$
- III-posed: $f = K^{-1}y$ not well defined

Solving inverse problems using the SVD

$$K = U\Lambda V^T$$

$$U = \operatorname{col}(u_1, \dots, u_n), \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \quad V = \operatorname{col}(v_1, \dots, v_n)$$

- $m{U} = {
 m orthobasis}$ for the measurement space, $V = {
 m orthobasis}$ for the signal space
- Rewrite action of operator in terms of these bases:

$$y(\nu) = (Kf)(\nu) \Leftrightarrow \langle u_{\nu}, y \rangle = \lambda_{\nu} \langle v_{\nu}, f \rangle$$

• The inverse operator is also natural:

$$\langle v_{\nu}, f \rangle = \lambda_{\nu}^{-1} \langle u_{\nu}, y \rangle, \qquad f = V \begin{pmatrix} \lambda_{1}^{-1} \langle u_{1}, y \rangle \\ \lambda_{2}^{-1} \langle u_{2}, y \rangle \\ \vdots \end{pmatrix}$$

• But in general, $\lambda_v \to 0$, making this unstable

Deconvolution

• Measure $y = Kf + \sigma z$, where K is a convolution operator

convolution kernel

observed y(t)

• Singular basis: U = V = Fourier transform

 $\{\lambda_{\nu}\}$

+ noise =

+ noise =

Regularization

Reproducing formula

$$f = \sum_{\nu} \lambda_{\nu}^{-1} \langle u_{\nu}, Kf \rangle v_{\nu}$$

Noisy observations

$$y = Kf + \sigma z \quad \Leftrightarrow \quad \langle u_{\nu}, y \rangle = \langle u_{\nu}, Kf \rangle + \sigma \hat{z}_{\nu}$$

 \bullet Multiply by damping factors w_{ν} to reconstruct from observations y

$$\tilde{f} = \sum_{\nu} w_{\nu} \lambda_{\nu}^{-1} \langle u_{\nu}, y \rangle v_{\nu}$$

want $w_{\nu} \approx 0$ when λ_{ν}^{-1} is large (to keep the noise from exploding)

• If spectral density $\theta^2_{\nu}=|\langle f,v_{\nu}\rangle|^2$ is known, the MSE optimal weights are

$$w_{\nu} = \frac{\theta_{\nu}^2}{\theta_{\nu}^2 + \sigma^2} = \frac{\text{signal power}}{\text{signal power} + \text{noise power}}$$

This is the Wiener Filter

Ideal damping

• In the SVD domain:

$$y_
u= heta_
u+\sigma_
u z_
u$$
 $y_
u=\langle u_
u,y
angle, \quad heta_
u=\langle f,v_
u
angle, \quad \sigma_
u=\sigma/\lambda_
u, \quad z_
u\sim {\sf iid}$ Gaussian

- \bullet Again, suppose an oracle tells us which of the θ_{ν} are above the noise level
- Oracle "keep or kill" window (minimizes MSE)

$$w_{\nu} = \begin{cases} 1 & |\theta_{\nu}| > \sigma_{\nu} \\ 0 & \text{otherwise} \end{cases}$$

Take $\tilde{\theta}_{\nu} = w_{\nu} y_{\nu}$ (thresholding)

ullet Since V is an isometry, oracle risk is

$$E\|f - \tilde{f}\|_2^2 = E\|\theta - \tilde{\theta}\|_2^2 = \sum_{\nu} \min(\theta_{\nu}^2, \sigma_{\nu}^2)$$

Interpretation

$$\begin{split} MSE &=& \sum_{\nu} \min(\theta_{\nu}^2, \sigma_{\nu}^2) \\ &=& \sum_{\nu: |\theta_{\nu}| \lambda_{\nu} \leq \sigma} \theta_{\nu}^2 + \sum_{\nu: |\theta_{\nu}| \lambda_{\nu} > \sigma} \frac{\sigma^2}{\lambda^2} \\ &=& \operatorname{Bias}^2 + \operatorname{Variance} \end{split}$$

- Again, concentration of the $\theta_{\nu}:=\langle f,v_{\nu}\rangle$ on a small set is critical for good performance
- ullet But the $v_{
 u}$ are determined only by the operator K !

Typical Situation

- Convolutions, Radon inversion (tomography)
- $(v_{\nu}) \sim \text{sinusoids}$
- f has discontinuities (earth, brain, ...)
- SVD basis is not a good representation for our signal
- Fortunately, we can find a representation that is simultaneously
 - almost an SVD
 - A sparse decomposition for object we are interested in

Example: Power-law convolution operators

 \bullet K= convolution operator with Fourier spectrum $\sim \omega^{-1}$

ullet Wavelets have dyadic (in scale j) support in Fourier domain

 \bullet Spectrum of K is almost constant (within a factor of 2) over each subband

The Wavelet-Vaguelette decomposition (WVD)

Donoho, 1995

- Wavelet basis $\{\psi_{j,k}\}$ sparsifies piecewise smooth signals
- Vaguelette dual basis $u_{i,k}$ satisfies

$$\langle f, \psi_{j,k} \rangle = 2^{j/2} \langle u_{j,k}, Kf \rangle$$

(basis for the measurement space)

• For power-law K, vaguelettes \approx orthogonal, and \approx wavelets

 Wavelet-Vaguelette decomposition is almost an SVD for Fourier power-law operators

Deconvolution using the WVD

- Observe $y=Kf+\sigma z$, $K=1/|\omega|$ power-law operator, z= iid Gaussian noise
- \bullet Expand y in vaguelette basis

$$v_{j,k} = \langle u_{j,k}, y \rangle$$

almost orthonormal, so noise in new basis is \approx independent

Soft-threshold

$$\tilde{v}_{j,k} = \begin{cases} v_{j,k} - \gamma \operatorname{sign}(v_{j,k}) & |v_{j,k}| > \gamma_j \\ 0 & |v_{j,k}| \le \gamma_j \end{cases}$$

for $\gamma_i \sim 2^{j/2} \sigma$

• Weighted reconstruction in the wavelet basis

$$\tilde{f}(t) = \sum_{j,k} 2^{j/2} \tilde{v}_{j,k} \psi_{j,k}(t)$$

Deconvolution example

• Measure $y = Kf + \sigma z$, where K is $1/|\omega|$

signal f(t)

convolution kernel

observed y(t)

Wiener Filter recovery

Later this week: Acquisition (Compressed Sensing)

Wavelets and geometry

- Wavelet basis functions are isotropic
 - ⇒ they cannot adapt to *geometrical structure*
- Curvelets offer a more refined scaling concept...

Curvelets

Candes and Donoho, 1999-2004

New multiscale pyramid:

- Multiscale
- Multi-orientations
- Parabolic scaling (anisotropy)

width \approx length²

Curvelets in the spatial domain

Curvelets parameterized by scale, location, and orientation

Example curvelets

Curvelet tiling in the frequency domain

Piecewise-smooth approximation

- ullet Image fragment: C^2 smooth regions separated by C^2 contours
- Fourier approximation

$$||f - f_S||_2^2 \lesssim S^{-1/2}$$

Wavelet approximation

$$||f - f_S||_2^2 \lesssim S^{-1}$$

Curvelet approximation

$$||f - f_S||_2^2 \lesssim S^{-2} \log^3 S$$

(within \log factor of optimal)

Application: Curvelet denoising I

Zoom-in on piece of phantom

Application: Curvelet denoising II

Zoom-in on piece of Lena

curvelet thresholding

Summary

- Having a sparse representation plays a fundamental role in how well we can
 - compress
 - denoise
 - restore

signals and images

- The above were accomplished with relatively simple algorithms (in practice, we use similar ideas + a bag a tricks)
- Better representation (e.g. curvelets) → better results
- Wednesday and Friday:
 We will see how sparsity can play a role in data acquisition