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Applied and Computational Harmonic Analysis

Signal/image f(t) in the time/spatial domain

Decompose f as a superposition of atoms
F(8) =" cuthi(t)
i

1p; = basis functions

«; = expansion coefficients in ¢-domain

Classical example: Fourier series

1p; = complex sinusoids

«; = Fourier coefficients /\/\/\/\/\
Modern example: wavelets

; = "little waves”

«; = wavelet coefficients ‘JA/\——

@ More exotic example: curvelets (moretater}




Taking images apart and putting them back together

o Frame operators U, ¥ map images to sequences and back
Two sequences of functions: {v;(¢)}, {(t)}
Analysis (inner products):

a = V[f], a; = (i, f)

Synthesis (superposition):
F=al,  f=> aihi(t)

o If {;(t)} is an orthobasis, then

lalZ, = I£1,  (Parseval)
S aidi = [ gty dt (where 5= Blg)
bi(t) = ¥i(t)

i.e. all sizes and angles are preserved
@ Overcomplete tight frames have similar properties



ACHA

@ ACHA Mission: construct “good representations” for
“signals/images” of interest
e Examples of “signals/images” of interest

» Classical: signal/image is “bandlimited” or “low-pass”
» Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
» Cutting-edge: 2D image is smooth between smooth edge contours

@ Properties of “good representations”

» sparsifies signals/images of interest
» can be computed using fast algorithms
(O(N) or O(N log N) — think of the FFT)



Example: The discrete cosine transform (DCT)

e For an image f(t,s) on [0, 1]?, we have

1/vV2 £=0

Yom(t, ) = 2 e\, - cos(mlt) cos(mms), Ag = _
’ 1 otherwise

@ Closely related to 2D Fourier series/DFT,
the DCT is real, and implicitly does symmetric extension

@ Can be taken on the whole image, or blockwise (JPEG)



Image approximation using DCT

Take 1% of “low pass’ coefficients, set the rest to zero

original

approximated

rel. error = 0.075



Image approximation using DCT

Take 1% of “low pass”’ coefficients, set the rest to zero

original approximated

rel. error = 0.075



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original

approximated

rel. error = 0.057



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057



Wavelets

ft) = Z vk k(1)
ik

@ Multiscale: indexed by scale j and location k&

o Local: 9; analyzes/represents an interval of size ~ 277

@ Vanishing moments: in regions where f is polynomial, a; =0

Yk

A

AN

L

piecewise poly f

wavelet coeffs «; i,




2D wavelet transform

ot

@ Sparse: few large coeffs, many small coeffs

@ Important wavelets cluster along edges



Multiscale approximations

Scale = 4, 16384:1

rel. error = 0.29



Multiscale approximations

Scale = 5, 4096:1

rel. error = 0.22



Multiscale approximations

Scale = 6, 1024:1

rel. error = 0.16



Multiscale approximations

Scale = 7, 256:1

rel. error = 0.12



Multiscale approximations

Scale = 8, 64:1

rel. error = 0.07



Multiscale approximations

Scale =9, 16:1

rel. error = 0.04



Multiscale approximations

Scale = 10, 4:1

rel. error = 0.02



Image approximation using wavelets

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



DCT /wavelets comparison

Take 1% of largest coefficients, set the rest to zero (adaptive)

DCT wavelets

rel. error = 0.057 rel. error = 0.031



Linear approximation

@ Linear S-term approximation: keep S coefficients in fixed locations

S
Fs() = omihm(t)
m=1
> projection onto fixed subspace
> lowpass filtering, principle components, etc.

o Fast coefficient decay = good approximation
om| Sm™" = |If = fsl3 S 8T

e Take f(t) periodic, d-times continuously differentiable,
W= Fourier series:

If = fsll3 < s~

The smoother the function, the better the approximation
Something similar is true for wavelets ...



Nonlinear approximation

@ Nonlinear S-term approximation: keep S largest coefficients

fs(t) = Z ay1hy(t), I's = locations of S largest |a,|
v€l's

o Fast decay of sorted coefficients = good approximation
- 2 —2r41
almy S m™" = |f-fslz <SS

|| (m) = mth largest coefficient



Linear v. nonlinear approximation

e For f(t) uniformly smooth with d “derivatives”

S-term approx. error

Fourier, linear S—2d+1
Fourier, nonlinear S—2d+1
wavelets, linear S—2d+]
wavelets, nonlinear S—2d+1

e For f(t) piecewise smooth

S-term approx. error

Fourier, linear S—1
Fourier, nonlinear S—1

wavelets, linear S-1
wavelets, nonlinear S—2d+1

Nonlinear wavelet approximations adapt to singularities



Wavelet adaptation

piecewise polynomial f(t)

wavelet coeffs o j,




Approximation curves

Approximating Pau with S-terms...
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Approximation comparison

original DCT linear (.075)
. ]

DCT nonlinear (.057) wavelet nonlinear (.031)




The ACHA paradigm

Sparse representations yield algorithms for (among other things)
© compression,
@ estimation in the presence of noise ( “denoising”),
@ inverse problems (e.g. tomography),
@ acquisition (compressed sensing)
that are
o fast,
o relatively simple,

e and produce (nearly) optimal results



Compression



Transform-domain image coding

@ Sparse representation = good compression
Why? Because there are fewer things to code

@ Basic, “stylized” image coder
@ Transform image into sparse basis
@ Quantize
Most of the xform coefficients are =~ 0
= they require very few bits to encode
© Decoder: simply apply inverse transform to quantized coeffs



Image compression

o Classical example: JPEG (1980s)
» standard implemented on every digital camera

> representation = Local Fourier
discrete cosine transform on each 8 x 8 block

@ Modern example: JPEG2000 (1990s)
> representation = wavelets
Wavelets are much sparser for images with edges
» about a factor of 2 better than JPEG in practice
half the space for the same quality image



JPEG vs. JPEG2000

Visual comparison at 0.25 bits per pixel (= 100:1 compression)

JPEG _ JPEG2000

(Images from David Taubman, University of New South Wales)



Sparse transform coding is asymptotically optimal

Donoho, Cohen, Daubechies, DeVore, Vetterli, and others ...

The statement “transform coding in a sparse basis is a smart thing to
do” can be made mathematically precise

Class of images C

Representation {t;} (orthobasis) such that

’a‘(n) S nt

~

forall f € C  (|af(,) is the nth largest transform coefficient)
Simple transform coding: transform, quantize (throwing most coeffs
away)

{(€) = length of code (# bits) that guarantees the error < ¢ for all
f € C (worst case)

To within log factors

Ue) < e/, y=r—1/2

For piecewise smooth signals and {v;} = wavelets,
no coder can do fundamentally better



Statistical Estimation



Statistical estimation setup

y(t) = f(t) +oz(t)

e y: data

e f: object we wish to recover

@ z: stochastic error; assume z; i.i.d. N(0,1)
@ o: noise level

@ The quality of an estimate f is given by its risk
(expected mean-square-error)

MSE(f, f) = E|lf - fI3



Transform domain model

y=f+oz
Orthobasis {1;}:
<Za wl>

Zi

Vi = (6%} +
@ z; Gaussian white noise sequence
@ o noise level

e «; = (f,v;) coordinates of f



Classical estimation example

o Classical model: signal of interest f is lowpass

time domain Fourier domain
F@)

NN

@ Observable frequenc1es: 0<w<

» )

o f(w) is nonzero only for w < B



Classical estimation example

@ Add noise: y = f+ 2

time domain Fourier domain
) J(w)

‘!/A\ /W** ,V/\\w' . M“W’m
A\ e B Q

Observation error:  Elly — fl2=E|lj— fl2 =Q 02

@ Noise is spread out over entire spectrum




Classical estimation example

e Optimal recovery algorithm: lowpass filter (“kill" all §(w) for w > B)

f (@)

J(w)
m‘s@%‘. m o
B Q
Rec

Original error covered error

Elj—fl3 =90 E||f - flI3=B-0o

@ Only the lowpass noise affects the estimate, a savings of (B/Q)?



Modern estimation example

@ Model: signal is piecewise smooth

@ Signal is sparse in the wavelet domain

time domain f(t) wavelet domain o

] I | |

(Nima

t— 7.k —
@ Again, the o are concentrated on a small set

e This set is signal dependent (and unknown a priori)
= we don't know where to “filter”



Ideal estimation

yi = o; + 0z, y ~ Normal(«, UQI)

@ Suppose an “oracle” tells us which coefficients are above the noise
level

@ Form the oracle estimate

~ orc Yi, if |al| >0
Q; .
0, if |04,-] <o

keep the observed coefficients above the noise level, ignore the rest

@ Oracle Risk:
E||l@° - af3 =) _min(a}, 0?)
i



Ideal estimation

@ Transform coefficients «

» Total length N =64
» # nonzero components = 10
> # components above the noise level S =6

original coeffs « noisy coeffs y oracle estimate Qo
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Interpretation

MSE(a°, min(
Z

@ Rearrange the coefficients in decreasing order
2 2 2
oy 2 leliy = - = lefiy)

@ S: number of those a;'s s.t. a? > o2

MSE(@™,a) = Y laffy + S-0°
>S5
= fla—asl3 + S-0°
= Approx Error + Number of terms x noise level
= Bias® + Variance
@ The sparser the signal,

> the better the approximation error (lower bias), and
> the fewer # terms above the noise level (lower variance)

@ Can we estimate as well without the oracle?



Denoising by thresholding

e Hard-thresholding ( “keep or kill")

N {yz‘, lyil > A

o =
0, \yz\ <A
@ Soft-thresholding ( “shrinkage”)
a; = 0, A< Y < A
it A v <A
o Take A a little bigger than o

@ Working assumption: whatever is above X is signal, whatever is below
is noise



Denoising by thresholding

@ Thresholding performs (almost) as well as the oracle estimator!

@ Donoho and Johnstone:
Form estimate &' using threshold A\ = o/2log N,

MSE(&', @) := E[|6' — a3 < (2log N + 1) - (¢ + ) _min(a7,0?))

@ Thresholding comes within a log factor of the oracle performance

@ The (2log N + 1) factor is the price we pay for not knowing the
locations of the important coeffs

@ Thresholding is simple and effective

@ Sparsity = good estimation



Recall: Modern estimation example

@ Signal is piecewise smooth, and sparse in the wavelet domain

time domain f(?) wavelet domain o
I | I i | l ! |
et

t— 7,k —
noisy signal y(t) noisy wavelet coeffs

t— 7,k —



Thresholding wavelets

@ Denoise (estimate) by soft thresholding

noisy signal noisy wavelet coeffs
t— ik —
recovered signal recovered wavelet coeffs




Denoising the Phantom

noisy lowpass filtered wavelet thresholding, A = 30

Error = 25.0 Error = 42.6 Error = 11.0




Inverse Problems



Linear inverse problems

y(u) = (K f)(u) + z(u), wu = measurement variable/index

e f(t) object of interest

@ K linear operator, indirect measurements

(K F)(u) = / K, ) (1) dt

Examples:

» Convolution (“blurring”)
» Radon (Tomography)
> Abel

@ 2z = noise

o lll-posed: f = K~y not well defined



Solving inverse problems using the SVD

K =UAVT

U=col(uy,...,uy), A=diag(A,...,\n), V =col(vy,...

@ U = orthobasis for the measurement space,
V' = orthobasis for the signal space

@ Rewrite action of operator in terms of these bases:
y(w) = (K@)  (ny) = A0, f)
@ The inverse operator is also natural:
AL
1 1<U1, y>
<U1/a f> = )\;1<Uu,y>, f =V >‘2_ <U2,y>

@ But in general, A\, — 0, making this unstable

,Un)



Deconvolution

@ Measure y = K f 4+ 0z, where K is a convolution operator

signal f(t) convolution kernel observed y(t)

® + noise =

@ Singular basis: U = V = Fourier transform
{<61/7f>} {)‘V} {<hu7y>}

X + noise =




Regularization

@ Reproducing formula

f= ZA (w,, K f)v

@ Noisy observations
y=Kf+oz < (u,y) = u,Kf)+oz

@ Multiply by damping factors w, to reconstruct from observations y
Z wy A ulla UV

want w, ~ 0 when \;! is large (to keep the noise from exploding)
o If spectral density 62 = |(f,v,)|? is known, the MSE optimal weights

are _
02 sighal power

02 + o2 signal power + noise power
This is the Wiener Filter

wy =



|deal damping

@ In the SVD domain:
Yy = 91/ +ouzy

yy = (uy,y), 6, ={(f,v,), o,=0/\, 2z, ~ iid Gaussian

@ Again, suppose an oracle tells us which of the 8, are above the noise
level

@ Oracle “keep or kill" window (minimizes MSE)

{1 6,| > o,
w, =

0 otherwise

Take 0, = w, Y, (thresholding)

@ Since V is an isometry, oracle risk is

E|f = flI3=E6 - 6l3 =) min(8;,07)



Interpretation

MSE = Z min(#?2, o2)

2

DI D

v:|6u| A <o v:|0y | A >0

= Bias® + Variance

@ Again, concentration of the 6, := (f,v,) on a small set is critical for
good performance

@ But the v, are determined only by the operator K !



Typical Situation

Convolutions, Radon inversion (tomography)
(vy) ~ sinusoids

f has discontinuities (earth, brain, ...)

SVD basis is not a good representation for our signal

Fortunately, we can find a representation that is simultaneously

» almost an SVD
» A sparse decomposition for object we are interested in



Example: Power-law convolution operators

e K = convolution operator with Fourier spectrum ~ w™!

k(w) ()

v

[\1
\. 1/2
NUERL 1/8
: \§
| o

o Wavelets have dyadic (in scale j) support in Fourier domain
M’M(‘”)‘

Jj=1

| 0
@ Spectrum of K is almost constant (within a factor of 2) over each
subband



The Wavelet-Vaguelette decomposition (WVD)

Donoho, 1995

® Wavelet basis {1 1} sparsifies piecewise smooth signals
@ Vaguelette dual basis u; satisfies

(f i) = 207 (ujpe, K f)

(basis for the measurement space)
@ For power-law K, vaguelettes =~ orthogonal, and &~ wavelets

wavelet vaguelette

o Wavelet-Vaguelette decomposition is almost an SVD for Fourier
power-law operators



Deconvolution using the WVD
@ Observe y=Kf+oz,
K = 1/|w| power-law operator, z = iid Gaussian noise
@ Expand y in vaguelette basis
Uik = (Uj ks )

almost orthonormal, so noise in new basis is =~ independent
@ Soft-threshold

G = | Vi T vsien(uik) vkl >
]7 -
0 Vil <

for v; ~ 21/2¢
@ Weighted reconstruction in the wavelet basis

F) =205 (0)

ak



Deconvolution example

@ Measure y = K f + 0z, where K is 1/|w|

signal f(t) convolution kernel observed y(t)

® + noise =

WVD recovery Wiener Filter recovery




Later this week: Acquisition
(Compressed Sensing)



Curvelets



Wavelets and geometry

@ Wavelet basis functions are isotropic
= they cannot adapt to geometrical structure

@ Curvelets offer a more refined scaling concept...



Curvelets

Candes and Donoho, 1999-2004

New multiscale pyramid:
o Multiscale
o Multi-orientations
@ Parabolic scaling (anisotropy)

width ~ length?



Curvelets in the spatial domain
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Curvelets parameterized by scale, location, and orientation




Example curvelets




Curvelet tiling in the frequency domain

wavelet
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Piecewise-smooth approximation

o Image fragment: C2 smooth regions separated by C? contours

@ Fourier approximation
If =1l < 5712
@ Wavelet approximation
If=fsl3 < 57
@ Curvelet approximation
If = Fsl3 S S7%log’S

(within log factor of optimal)



Application: Curvelet denoising |

Zoom-in on piece of phantom

noisy wavelet thresholding  curvelet thresholding




Application: Curvelet denoising Il

Zoom-in on piece of Lena

wavelet thresholding curvelet thresholding




Summary

@ Having a sparse representation plays a fundamental role in how well
we can

> compress
» denoise
> restore

signals and images

@ The above were accomplished with relatively simple algorithms
(in practice, we use similar ideas + a bag a tricks)

@ Better representation (e.g. curvelets) — better results

@ Wednesday and Friday:
We will see how sparsity can play a role in data acquisition



