A Survey of Compressive Sensing and Applications

Justin Romberg

Georgia Tech, School of ECE

ENS Winter School
January 10, 2012
Lyon, France



Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

@ Physical capabilities of hardware are being stressed,
increasing speed /resolution becoming expensive

» gigahertz+ analog-to-digital conversion
» accelerated MRI
» industrial imaging

@ Deluge of data

» camera arrays and networks, multi-view target databases, streaming
video...

Compressive Sensing: sample smarter, not faster



Classical data acquisition

@ Shannon-Nyquist sampling theorem (Fundamental Theorem of DSP):
“if you sample at twice the bandwidth, you can perfectly reconstruct

Ty
Rl

time space

e Counterpart for “indirect imaging” (MRI, radar):
Resolution is determined by bandwidth



Sense, sample, process...
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sensor “fast” ADC data compression



Compressive sensing (CS)

@ Shannon/Nyquist theorem is pessimistic

» 2xbandwidth is the worst-case sampling rate —
holds uniformly for any bandlimited data

> sparsity /compressibility is irrelevant

» Shannon sampling based on a linear model,
compression based on a nonlinear model

Shannon

@ Compressive sensing
» new sampling theory that leverages compressibility

» key roles played by new uncertainty principles and
randomness

Heisenberg



Compressive sensing
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“compressive” “slow” ADC
sensor

@ Essential idea:
“pre-coding” the signal in analog makes it “easier” to acquire

@ Reduce power consumption, hardware complexity, acquisition time



A simple underdetermined inverse problem

Observe a subset 2 of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10,486 samples, ~ 4% coverage



Minimum energy reconstruction

Reconstruct g* with
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Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g



Total-variation reconstruction

Find an image that

@ Fourier domain: matches observations

@ Spatial domain: has a minimal amount of oscillation
Reconstruct ¢g* by solving:
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original Fourier samples g* = original
perfect reconstruction



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain zq(t) Frequency domain Zy(w)
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Measure M samples S nonzero components
(red circles = samples)



Sampling a superposition of sinusoids
Reconstruct by solving

min ||Z|l;, subjectto x(tn,) =xo(tm), m=1,..., M
x

original g, S = 15 perfect recovery from 30 samples



Numerical recovery curves

@ Resolutions N = 256,512, 1024 (black, blue, red)
@ Signal composed of S randomly selected sinusoids

@ Sample at M randomly selected locations
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@ In practice, perfect recovery occurs when M ~ 25 for N ~ 1000




A nonlinear sampling theorem

Exact Recovery Theorem (Candes, R, Tao, 2004):
@ Unknown Zg is supported on set of size S

@ Select M sample locations {t¢,,} “at random” with
M > Const - Slog N

@ Take time-domain samples (measurements) v, = xo(tm)

@ Solve
min ||Z||g, subjectto z(tm) =Ym, m=1,...,M
X

@ Solution is exactly f with extremely high probability

@ In total-variation/phantom example, S=number of jumps



Graphical intuition for /4
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Acquisition as linear algebra

# samples _ o resolution/
M bandwidth
X
\_Y_} \ y J N
data acquisition
system
L
unknown
signal/image

@ Small number of samples = underdetermined system
Impossible to solve in general

@ If x is sparse and P is diverse, then these systems can be “inverted”



Sparsity /Compressibility
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Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



. inear measurements

@ Instead of samples, take linear measurements of signal /image xg

Y1 = (T0, 1), Y2 = (%0, P2), -..,ym = (To, PK)
y = Pxo

e Equivalent to transform-domain sampling,
{¢m} = basis functions

@ Example: pixels




. inear measurements

@ Instead of samples, take linear measurements of signal /image xg

Y1 = (20, P1), Y2 = (To,P2), -..,Yym = (To0, PK)
y = Pxg

@ Equivalent to transform-domain sampling,
{¢m} = basis functions

@ Example: line integrals (tomography)




. inear measurements

@ Instead of samples, take linear measurements of signal /image xg

Y1 = (20, P1), Y2 = (To,P2), -..,Yym = (To0, PK)
y = Pxg

@ Equivalent to transform-domain sampling,
{¢,} = basis functions

e Example: sinusoids (MRI)




