A Survey of Compressive Sensing and Applications

Justin Romberg

Georgia Tech, School of ECE

ENS Winter School January 10, 2012 Lyon, France

Signal processing trends

DSP: sample first, ask questions later

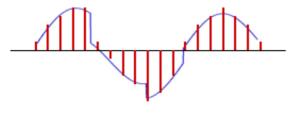
Explosion in sensor technology/ubiquity has caused two trends:

- Physical capabilities of hardware are being stressed, increasing speed/resolution becoming *expensive*
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
- Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...

Compressive Sensing: sample smarter, not faster

Classical data acquisition

 Shannon-Nyquist sampling theorem (Fundamental Theorem of DSP): "if you sample at twice the bandwidth, you can perfectly reconstruct the data"

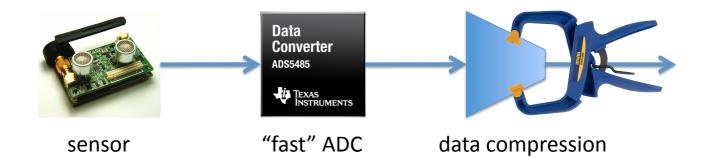


time

space

 Counterpart for "indirect imaging" (MRI, radar): Resolution is determined by bandwidth

Sense, sample, process...



Compressive sensing (CS)

- Shannon/Nyquist theorem is *pessimistic*
 - 2×bandwidth is the worst-case sampling rate holds uniformly for any bandlimited data
 - sparsity/compressibility is irrelevant
 - Shannon sampling based on a linear model, compression based on a nonlinear model

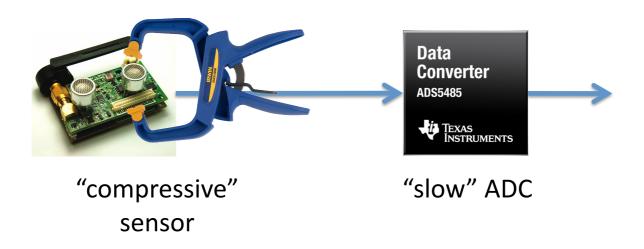
Shannon

• Compressive sensing

- new sampling theory that *leverages compressibility*
- key roles played by new uncertainty principles and randomness

Heisenberg

Compressive sensing



Essential idea:

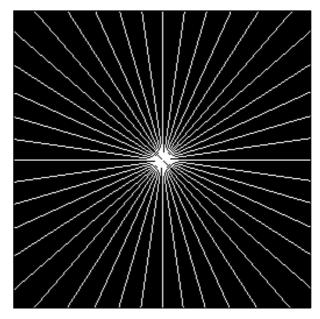
"pre-coding" the signal in analog makes it "easier" to acquire

• Reduce power consumption, hardware complexity, acquisition time

A simple underdetermined inverse problem

Observe a subset Ω of the 2D discrete Fourier plane

phantom (hidden)



white star = sample locations

 $N:=512^2=262,144$ pixel image observations on 22 radial lines, 10,486 samples, $\approx 4\%$ coverage

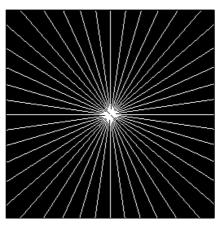
Minimum energy reconstruction

Reconstruct g^* with

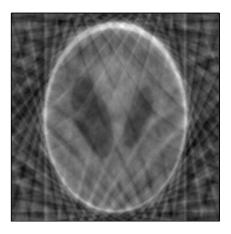
$$\hat{g}^*(\omega_1, \omega_2) = \begin{cases} \hat{f}(\omega_1, \omega_2) & (\omega_1, \omega_2) \in \Omega \\ 0 & (\omega_1, \omega_2) \notin \Omega \end{cases}$$

Set unknown Fourier coeffs to zero, and inverse transform

original



Fourier samples



Total-variation reconstruction

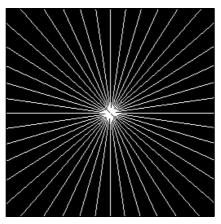
Find an image that

- Fourier domain: *matches observations*
- Spatial domain: has a *minimal amount of oscillation*

Reconstruct g^* by solving:

$$\min_{g} \sum_{i,j} |(\nabla g)_{i,j}| \quad \text{s.t.} \quad \hat{g}(\omega_1, \omega_2) = \hat{f}(\omega_1, \omega_2), \quad (\omega_1, \omega_2) \in \Omega$$

original

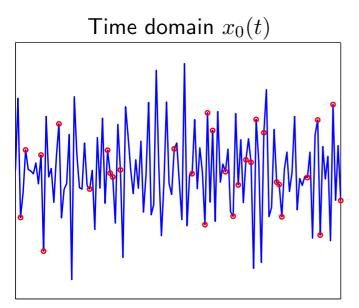


Fourier samples

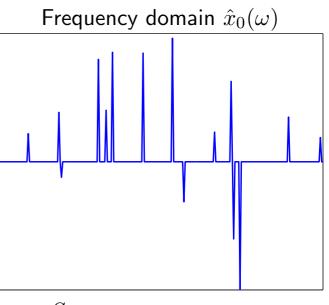
 $g^* = \text{original}$ perfect reconstruction

Sampling a superposition of sinusoids

We take ${\cal M}$ samples of a superposition of ${\cal S}$ sinusoids:



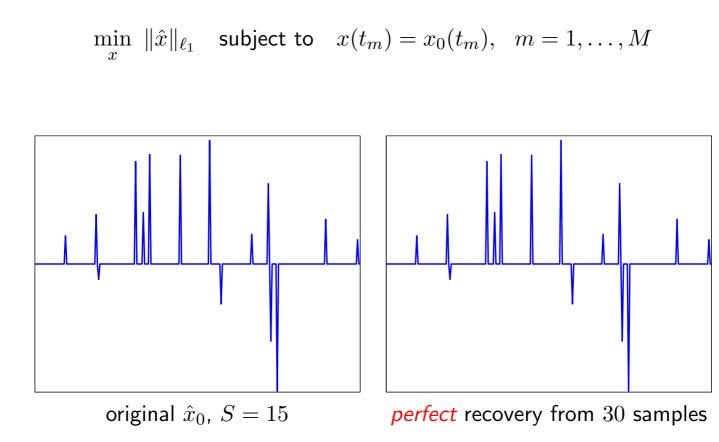
Measure M samples (red circles = samples)



 ${\boldsymbol{S}}$ nonzero components

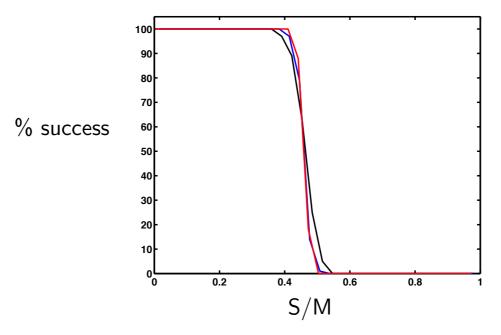
Sampling a superposition of sinusoids

Reconstruct by solving



Numerical recovery curves

- Resolutions N = 256, 512, 1024 (black, blue, red)
- Signal composed of S randomly selected sinusoids
- Sample at M randomly selected locations



 $\bullet\,$ In practice, perfect recovery occurs when $M\approx 2S$ for $N\approx 1000$

A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

- Unknown \hat{x}_0 is supported on set of size S
- Select M sample locations $\{t_m\}$ "at random" with

 $M \geq \text{Const} \cdot S \log N$

• Take time-domain samples (measurements) $y_m = x_0(t_m)$

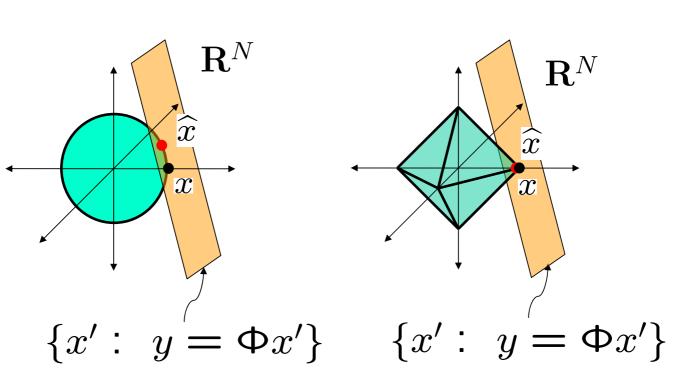
Solve

 $\min_{x} \|\hat{x}\|_{\ell_1} \quad \text{subject to} \quad x(t_m) = y_m, \quad m = 1, \dots, M$

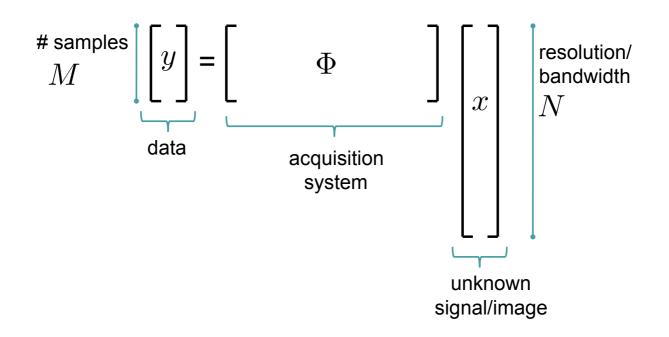
- Solution is *exactly* f with extremely high probability
- In total-variation/phantom example, S=number of jumps

Graphical intuition for ℓ_1

 $\min_{x} \|x\|_{2}$ s.t. $\Phi x = y$ $\min_{x} \|x\|_{1}$ s.t. $\Phi x = y$



Acquisition as linear algebra



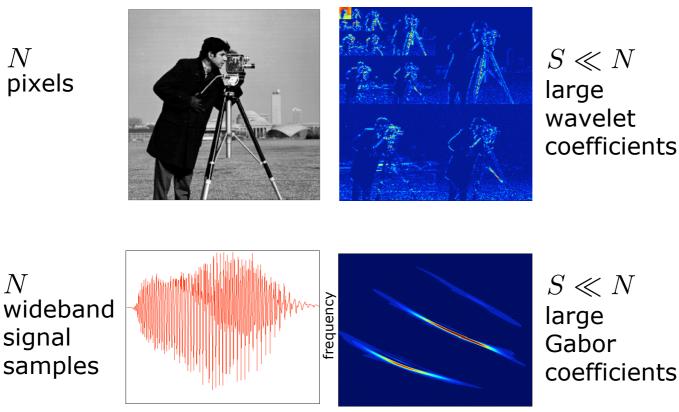
- Small number of samples = underdetermined system Impossible to solve in general
- If x is *sparse* and Φ is *diverse*, then these systems can be "inverted"

Sparsity/Compressibility

Npixels

N

signal



time

Wavelet approximation

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

approximated

rel. error = 0.031

Linear measurements

• Instead of samples, take *linear measurements* of signal/image x_0

$$y_1 = \langle x_0, \phi_1 \rangle, \quad y_2 = \langle x_0, \phi_2 \rangle, \quad \dots, y_M = \langle x_0, \phi_K \rangle$$

 $y = \Phi x_0$

- Equivalent to transform-domain sampling, $\{\phi_m\} =$ basis functions
- Example: pixels

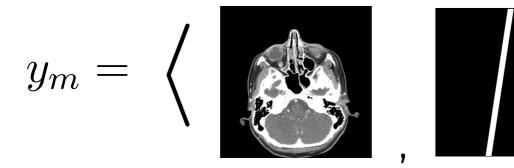
Linear measurements

• Instead of samples, take *linear measurements* of signal/image x_0

$$y_1 = \langle x_0, \phi_1 \rangle, \quad y_2 = \langle x_0, \phi_2 \rangle, \quad \dots, y_M = \langle x_0, \phi_K \rangle$$

 $y = \Phi x_0$

- Equivalent to transform-domain sampling, $\{\phi_m\} =$ basis functions
- Example: line integrals (tomography)



Linear measurements

• Instead of samples, take *linear measurements* of signal/image x_0

$$y_1 = \langle x_0, \phi_1 \rangle, \quad y_2 = \langle x_0, \phi_2 \rangle, \quad \dots, y_M = \langle x_0, \phi_K \rangle$$

 $y = \Phi x_0$

- Equivalent to transform-domain sampling, $\{\phi_m\} =$ basis functions
- Example: sinusoids (MRI)

