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Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

Physical capabilities of hardware are being stressed,
increasing speed/resolution becoming expensive

� gigahertz+ analog-to-digital conversion
� accelerated MRI
� industrial imaging

Deluge of data
� camera arrays and networks, multi-view target databases, streaming

video...

Compressive Sensing: sample smarter, not faster



Classical data acquisition

Shannon-Nyquist sampling theorem (Fundamental Theorem of DSP):
“if you sample at twice the bandwidth, you can perfectly reconstruct
the data”

time space

Counterpart for “indirect imaging” (MRI, radar):
Resolution is determined by bandwidth



Sense, sample, process...
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Compressive sensing (CS)

Shannon/Nyquist theorem is pessimistic
� 2×bandwidth is the worst-case sampling rate —

holds uniformly for any bandlimited data

� sparsity/compressibility is irrelevant

� Shannon sampling based on a linear model,
compression based on a nonlinear model

Compressive sensing
� new sampling theory that leverages compressibility

� key roles played by new uncertainty principles and
randomness

Shannon

Heisenberg



Compressive sensing
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Essential idea:
“pre-coding” the signal in analog makes it “easier” to acquire

Reduce power consumption, hardware complexity, acquisition time



A simple underdetermined inverse problem

Observe a subset Ω of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N := 5122 = 262, 144 pixel image
observations on 22 radial lines, 10, 486 samples, ≈ 4% coverage



Minimum energy reconstruction

Reconstruct g∗ with

ĝ∗(ω1, ω2) =

�
f̂(ω1, ω2) (ω1, ω2) ∈ Ω

0 (ω1, ω2) �∈ Ω

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g∗



Total-variation reconstruction

Find an image that
Fourier domain: matches observations
Spatial domain: has a minimal amount of oscillation

Reconstruct g∗ by solving:

min
g

�

i,j

|(∇g)i,j | s.t. ĝ(ω1, ω2) = f̂(ω1, ω2), (ω1, ω2) ∈ Ω

original Fourier samples g∗ = original
perfect reconstruction



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain x0(t) Frequency domain x̂0(ω)

Measure M samples S nonzero components
(red circles = samples)



Sampling a superposition of sinusoids

Reconstruct by solving

min
x

�x̂��1 subject to x(tm) = x0(tm), m = 1, . . . ,M

original x̂0, S = 15 perfect recovery from 30 samples



Numerical recovery curves

Resolutions N = 256, 512, 1024 (black, blue, red)

Signal composed of S randomly selected sinusoids

Sample at M randomly selected locations

% success
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In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000



A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

Unknown x̂0 is supported on set of size S

Select M sample locations {tm} “at random” with

M ≥ Const · S logN

Take time-domain samples (measurements) ym = x0(tm)

Solve

min
x

�x̂��1 subject to x(tm) = ym, m = 1, . . . ,M

Solution is exactly f with extremely high probability

In total-variation/phantom example, S=number of jumps



Graphical intuition for �1
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Acquisition as linear algebra

= 
resolution/ 
bandwidth 

# samples 

data 

unknown 
signal/image 

acquisition 
system 

Small number of samples = underdetermined system
Impossible to solve in general

If x is sparse and Φ is diverse, then these systems can be “inverted”



Sparsity/Compressibility
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Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



Linear measurements

Instead of samples, take linear measurements of signal/image x0

y1 = �x0, φ1�, y2 = �x0, φ2�, . . . , yM = �x0, φK�

y = Φx0

Equivalent to transform-domain sampling,
{φm} = basis functions

Example: pixels

ym = �
,

�
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