
A good reference for the material in this section is Boyd and Van-
denberghe’s Convex Optimization.

Descent methods for unconstrained
optimization

Let us consider the general problem of minimizing an uncon-
strained function f (z) : Rn → R

min
z∈Rn

f (z)

where f (z) is convex and twice differentiable in every direction.
This means that f (·) has a gradient vector ∇f (z) and Hessian
matrix ∇2f (z) defined at every point z:

∇f (z) =


∂f
∂z1
∂f
∂z2...
∂f
∂zN

 ∇2f (x) =


∂2f
∂z21

∂2f
∂z1∂z2

· · · ∂2f
∂z1∂zn

∂2f
∂z1∂z2

∂2f
∂z22

· · · ∂2f
∂z2∂zn

...
∂2f

∂z1∂zn

∂2f
∂z2∂zn

· · · ∂2f
∂z2n


Since f (z) is convex, the Hessian∇2f (z) is always positive-definite:

vT [∇2f (z)]v > 0 for all v ∈ Rn.

A necessary and sufficient condition for z? to be the solution to
this program is that

∇f (z?) = 0

(i.e. the gradient/derivative is equal to zero at z?). We will search
for such a point iteratively, starting at an initial guess x(0), then
moving to z(1), z(2), etc. until ...

In general, we move from z(k) to z(k+1) by first choosing a direction
∆(k) in which to move, and then setting

z(k+1) = z(k) + α(k)∆(k)

1

Notes by J. Romberg – January 12, 2012 – 17:26

for some appropriate choice of stepsize α(k). Usually, α(k) is chosen
adaptively using a line search along the direction ∆(k) looking for
the stepsize which decreases f (·) by a certain amount. Choosing

∆(k) = −∇f (z(k))

means that we are moving in the direction of “steepest descent” at
each iteration. (This is also called the “gradient descent method”).

Newton’s method

We have seen how solving a unconstrained quadratic problem of
the form

min
z∈Rn

bTz +
1

2
zTHz

corresponds to solving a system of equations — the solution to
the above is z? = −H−1b. Newton’s method minimizes a general
function

min
z∈Rn

f (z)

by forming a sequence of quadratic approximations to f , and solv-
ing these using known methods for linear systems. In particular,
at a fixed point z0, we make the Taylor approximation

f (z0 + v) ≈ f (z0) +∇f (z0)
Tv +

1

2
vT∇2f (z0)v. (1)

We choose the direction that minimizes the expression — if the
current iterate is z(k), we take

b = −∇f (z(k))

H = ∇2f (z(k))

and solve for
∆(k) = H−1b. (2)

2

Notes by J. Romberg – January 12, 2012 – 17:26

Since the Hessian H is positive definite, we can solve this subprob-
lem using conjugate gradients.

Another interpretation of the Newton iteration is that it is lin-
earizing the optimality condition. Since f is convex and smooth,
we know that a necessary and sufficient condition for z? to be a
minimizer is ∇f (z?) = 0. If we are at iterate z(k), we can use (1)
to get

∇vf (z(k) + v) ≈ ∇zf (z(k)) +∇2f (z(k))v,

and of course setting the above equal to zero results in the Newton
step (2).

(Newton decrement to guarantee ε-optimality...)

Self-concordant functions

There is a special class of functions, called self-concordant func-
tions, that are particularly well-suited for Newton’s method, both
in theory and in practice.

A self-concordant (convex) function f (t) : R→ R obeys

|f ′′′(t)| ≤ 2f ′′(t)3/2. (3)

The constant 2 above is somewhat arbitrary — the important
thing above is that the magnitude of the third derivative is being
bounded at every point by the second derivative (recall that if f
is convex, the second derivative is always positive). Of course, all
linear and quadratic functions are self-concordant.

There is one more important example which we will use below:
f (t) = − log(t). Since f ′′(t) = t−2 and f ′′′(t) = −2/t3, we see
that (3) holds with equality. It should also not be hard to see
that − log(at + b) for all a, b ∈ R is also self-concordant. Finally,
the sum of two (or more) self-concordant functions is also self-
concordant.

3

Notes by J. Romberg – January 12, 2012 – 17:26

For functions on Rn, we simply say f is self-concordant if (3)
holds along every line. Self-concordant functions have the very
nice property that at any point z, we can get bounds on all of the
derivatives (uniform over t) of h(t) = f (z + tv) for any direction
v — these bounds can be leveraged to get lower bounds on the
f (z+ tv) itself. This, in turn, let’s you know how close to optimal
a certain point is. Precisely, we know that

f (z)− f (z?) ≤ λ(z),

where λ(z) is called the Newton decrement:

λ(z) =
√
∇f (z)T (∇2f (z))−1∇f (z).

Notice that λ(z) is easy to compute once we have calculated the
Newton step direction (2).

This bound on the suboptimality of any given point can be use
to derive convergence guarantees for Newton’s method on self-
concordant functions. There is a number γ < 1/4 (which itself
depends on the particular way in which the line search at each
iteration is being performed) such that the number of iterations
for f (z(k)) to be within ε of f (z?) can be upper bounded by

f (z(0))− f (z?)

γ
+ log2 log2(1/ε).

The log2 log2(1/ε) can be bounded by a constant (say 6) for all
intents and purposes.

Constrained optimization

Let us consider the general problem of minimizing a (smooth, con-
vex) functional f0(z) with inequality constraints

min
z∈Rn

f0(z) subject to fi(z) ≤ 0, i = 1, . . . ,m. (4)

4

Notes by J. Romberg – January 12, 2012 – 17:26

There are some essential ideas from duality theory for convex op-
timization which will help us understand the solution of this pro-
gram.

We define the Lagrange function for the constrained optimization
program above as follows:

L(z, λ) = f0(z) +
m∑
i=1

λifi(z), where λi ≥ 0 for all i.

It is a fact that ẑ is a solution to (4) if there exists λ = {λi}mi=1

with λ≥0 such that

∇zL(z, λ) = ∇f0(z) +
m∑
i=1

λi∇fi(z) = 0.

It is also an easy fact that if Z is the set of feasible vectors

Z = {z ∈ Rn : fi(z) ≤ 0 i = 1, . . . ,m},

then for any fixed set of Lagrange multipliers λi ≥ 0

min
z∈Z

L(z, λ) ≤ min
z∈Z

f0(z) = f0(ẑ).

This simply follows from the fact that for feasible z and positive
λi,

m∑
i=1

λifi(z) ≤ 0.

But now the quantity minz∈Z L(z, λ) serves as a lower bound for
the optimal value of our optimization program — of course, differ-
ent values of λ will give us different lower bounds. The function

g(λ) = min
z∈Z

L(z, λ)

is called the Lagrange dual function for the problem (4).

5

Notes by J. Romberg – January 12, 2012 – 17:26

Log-barrier methods

There is a general method for solving (4) by transforming it into
a series of unconstrained problems. First, suppose that I−(u) is a
perfect “barrier function”

I−(u) =

{
0 u ≤ 0

∞ u > 0
.

Then we could re-write the constrained program as

min
z∈Rn

f0(z) +
m∑
i=1

I−(fi(z)). (5)

The solutions to (5) ad (4) do indeed coincide, but the problem
is that the functional in (5) is not smooth enough (i.e. not twice
differentiable) to apply Newtons method. This is addressed by
approximating the barrier function with a smooth function.

Instead of the sharp barrier function above, we might use a log
barrier:

Î−(u) = −1

τ
log(−u).

Notice that Î−(u) → ∞ as u → 0 from the left (u < 0). We can

think of Î−(u) as an approximation to the sharp barrier I−(u), this
approximation gets better for larger τ :

−1

τ
log(−u)→ I−(u) as τ →∞.

Below, we see −1
τ

log(−u) plotted for τ = 1/2, 1, 2, and 5 (the
blue, red, green, and magenta lines, respectively):

6

Notes by J. Romberg – January 12, 2012 – 17:26

−3 −2.5 −2 −1.5 −1 −0.5 0
−4

−2

0

2

4

6

8

10

12

So we can approximate the unconstrained program in (4) by the
unconstrained program

min
z∈Rn

f0(z)− 1

τ

m∑
i=1

log(−fi(z)). (6)

The basic idea is to solve this for a particular value of τ using
Newton’s method, then increase τ , and then solve again. To apply
Newton’s method, we will need the gradient and the Hessian of

b(z) = −
m∑
i=1

log(−fi(z)).

They can be computed using the chain rule; the results are:

∇b(z) = −
m∑
i=1

1

fi(z)
∇fi(z) (7)

∇2b(z) =
m∑
i=1

1

fi(z)2
∇fi(z)∇fi(z)T −

m∑
i=1

1

fi(z)
∇2fi(z). (8)

Also, it is a fact that if f (z) is self-concordant, then f (z) +
(1/τ)b(z) is also self-concordant, and we have an analytic bound
on the number of Newton steps required to converge to a certain
precision.

After solving (6) for a particular value of τ , we can actually guar-
antee that the current solution is close to being optimal to the

7

Notes by J. Romberg – January 12, 2012 – 17:26

constrained problem (4). Let zτ be the solution to (6). We know
that it must be the case that

0 = ∇f0(zτ) +
1

τ
∇b(zτ)

= ∇f0(zτ)−
1

τ

m∑
i=1

1

fi(zτ)
∇fi(zτ)

= ∇f0(zτ) +
m∑
i=1

λτi∇fi(zτ),

where

λτi =
−1

τfi(zτ)
> 0.

The above also tells us that the Lagrange function:

L(z, λ) = f0(z) +
m∑
i=1

λifi(z)

is also minimized at zτ :

min
z∈Z

L(z, λτ) = f0(z
τ) +

m∑
i=1

λτi fi(z
τ).

Thus, we know that

f0(z
τ) +

m∑
i=1

λτi fi(z
τ) ≤ f0(ẑ),

which means

f0(z
τ)− f0(ẑ) ≤ −

m∑
i=1

λτi fiz(τ)

=
m∑
i=1

1

τ

=
m

τ
.

8

Notes by J. Romberg – January 12, 2012 – 17:26

So the solution to (6) is within m/τ of optimal.

One inference we can make from this discussion is that if we solve
(6) once with τ = m/ε:

min
z

f0(z)− ε

m

m∑
i=1

log(−fi(z)),

then the solution of the above will be within ε of the solution to
(4). The problem, though, is that if ε is small (which we want it to
be), the sides of the barrier function are very steep and the middle
is flat, which causes a number of practical problems.

Instead, we start with a small value of τ (usually τ = 1), solve (6),
increase τ , then repeat. The idea is that for large values of τ , the
solution will not move much a τ increases, which means each step
will take only a small number of Newton iterations.

Here is the log barrier method:
Start with a feasible zstart, τ = τ0, a tolerance ε > 0, and a pa-
rameter µ

1. Solve (6) using zstart as the starting point. Call the solution
ẑ.

2. If m/τ < ε, then stop, returning ẑ.

3. Otherwise, set zstart = ẑ and τ = µτ and goto 1.

Thanks to our bound on how closely the solution to (6) matches
that of (4), we can predict the number of steps the log barrier
method will need in advance. After the kth step, the current log
barrier solution should be within m/(µkτ0) of the optimal value of
(4). Thus for a desired accuracy of ε, we will need

total barrier steps =

⌈
log(m/(ετ0))

log µ

⌉
.

Some comments on choosing these parameters:

9

Notes by J. Romberg – January 12, 2012 – 17:26

• The overall performance of the program is robust to the
choice of µ. Smaller values of µ mean that there will be
more barrier iterations, but Newton’s algorithm (to solve
the barrier problem) will converge more quickly, basically
because its starting point will be better. Larger values of µ
mean that there will be fewer barrier iterations, but New-
ton’s method will take longer to solve each subproblem. In
practice, µ = 10 or 20 seems to work for many problems.

• The value of τ0 can make a difference. We would like to use
as large a value as possible, but we do not want to make the
initial problem too hard. In practice, choosing a τ0 on the
order of m/f (zstart) seems to work.

10

Notes by J. Romberg – January 12, 2012 – 17:26

Example: `1 minimization with quadratic
constraints

Consider the problem

min
x∈RN

‖x‖1 subject to ‖Φx− y‖2 ≤ ε.

Solving this problem directly is problematic, since the functional
‖x‖1 is not smooth. But by adding some dummy variables, we
can convert this into a smooth program:

min
u,x∈RN

N∑
n=1

u[n] subject to x− u ≤ 0,

−x− u ≤ 0,
1

2

(
‖Φx− y‖22 − ε2

)
≤ 0.

We can align the notation with the discussion in previous sections
of these notes by taking

z =

[
x
u

]
.

We now have a (smooth, convex) optimization program with n =
2N variables and m = 2N + 1 inequality constraints — 2N of
these are linear constraints, and the last one is conic. Define the
functions

fu1 = x− u, fu2 = −x− u, fε =
1

2

(
‖Φx− y‖22 − ε2

)
,

and notice that fu1 and fu2 are N -vectors with each entry only
dependent on one value in x and one value in u, while fε is a
scalar that depends on every entry in x. At a fixed point (x, u),

11

Notes by J. Romberg – January 12, 2012 – 17:26

let r = Φx− y. Then for a given τ , we can write the Newton step
(as in (2)) for (6) (using (7) and (8)) as[
Σ11 − f−1ε ATA + f−2ε ATrrTA Σ12

Σ12 Σ11

] [
∆x
∆u

]
=

[
f−1u1
− f−1u2

+ f−1ε ATr
−τ1− f−1u1

− f−1u2

]
:=

[
w1

w2

]
where

Σ11 = F−2u1
+ F−2u2

Σ12 = −F−2u1
+ F−2u2

,

and F−1u1
is a diagonal matrix with f−1u along the diagonal (and

similarly for F−1u2
).

12

Notes by J. Romberg – January 12, 2012 – 17:26

Complementary slackness and the KKT
conditions

We have used three different programs to discuss a general convex
optimization program;
the primal

min
z

f (z) subject to fi(z) ≤ 0, i = 1, . . . ,m,

the Lagrange function

L(z, λ) = f (z) +
m∑
i=1

λifi(z), λi ≥ 0,

and the Lagrange dual

g(λ) = min
z∈Z

L(z, λ) = min
z∈Z

(
f (z) +

m∑
i=1

λifi(z)

)
.

We have seen that

g(λ) ≤ f (z) for all λi ≥ 0, and feasible z, fi(z) ≤ 0.

Thus we always have

max
λ≥0

g(λ) ≤ min
z

f (z) subject to fi(z) ≤ 0, i = 1, . . . ,m

Under mild conditions, the solutions of these programs are equal.
If the primal is minimized at z? and the dual is maximized at λ?,
we have

f (z?) = g(λ?).

But since

g(λ?) = min
z∈Z

(
f (z) +

m∑
i=1

λ?ifi(z)

)
≤ f (z?)+

m∑
i=1

λ?ifi(z
?) ≤ f (z?),

13

Notes by J. Romberg – January 12, 2012 – 17:26

it must be the case that

f (z?) +
m∑
i=1

λ?ifi(z
?) = f (z?),

meaning that
m∑
i=1

λ?ifi(z
?) = 0.

Since λ?i ≥ 0 and fi(z
?) ≤ 0, this means that

λ?i > 0⇒ fi(z
?) = 0

fi(z
?) < 0⇒ λ?i = 0,

or more succinctly

λ?ifi(z
?) = 0 for all i = 1, 2, . . . ,m.

This gives us the final piece of the puzzle we need to state the
Karesh-Kuhn-Tucker conditions for optimality. Any solution z? to
the primal and solution λ? to the dual will obey

fi(z
?) ≤ 0, i = 1, . . . ,m (primal feasibility)

λ?i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ?ifi(z
?) = 0, i = 1, . . . ,m (complementary slackness)

∇f (z?) +
m∑
i=1

λ?i∇fi(z?) = 0.

These conditions are also sufficient.

The moral of the story is you can reduce any convex optimization
program to solving a system of (nonlinear) equations in z and
λ. In fact, there is a whole suite of techniques call primal-dual
algorithms which try to do this directly (again, using Newton’s
method iteratively to linearize the equations, then solve).

14

Notes by J. Romberg – January 12, 2012 – 17:26

