
Chapter 12

Lagrangian Relaxation

This chapter is mostly inspired by Chapter 16 of [1].
In the previous chapters, we have succeeded to find efficient algorithms to solve several

important problems such as SHORTHEST PATHS, NETWORK FLOWS. But, as we have seen,
most of practical graph or network problems are N P -complete and hard to solve. In such a
case, it may be interesting to solve a simplified problem to obtain approximations or bounds
on the initial hardest problem. Consider the following optimization problem where f : Rn → R
and S ⊆ Rn:

Minimize f (x)
subject to x ∈ S

A relaxation of the above problem has the following form:

Minimize fR(x)
subject to x ∈ SR

where fR : Rn → R is such that fR(x) ≤ f (x) for any x ∈ S and S ⊆ SR. It is clear that the
optimal solution f ∗R of the relaxation is a lower bound of the optimal solution of the initial
problem. In previous section, the considered problems are such that S = X ∩ {0,1}n where
X ⊆ Rn (or X ⊆Qn) and the fractional relaxation corresponds to consider fR = f and SR = X .

A large number of these problems have an underlying network structure. The idea of the
Lagrangian Relaxation is to try to use the underlying network structure of these problems in or-
der to use these efficient algorithms. The Lagrangian Relaxation is a method of decomposition:
the constraints S = S1 ∪ S2 of the problems are separated into two groups, namely the‘easy’
constraints S1 and the‘hard’ constraints S2. The hard constraints are then removed, i.e., SR = S1
and transferred into the objective function, i.e., fR depends on f and S2.

Since SR is a set of‘easy’ constraints, it will be possible to solve the relaxation problem.
Moreover, the interest of the Lagrangian relaxation is that, in some cases, the optimal solution
of the relaxed problem actually gives the optimal solution of the initial problem.

We first illustrate the method on a classical example.
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12.1 Constrained Shortest Path.
Consider a digraph D = (V,E) with a source s and a sink t. To each arc e ∈ E, we associate two
values: ce the cost of the arc and and te the time necessary to take the arc. See Figure 12.1-(a)
where s = v1 and t = v6.. The CONSTRAINED SHORTEST PATH problem consists in finding
an (s, t)-path of minimum cost, under the additional constraint that the path requires at most T
units of time to traverse. Such problems arises frequently in practice since in many contexts a
company (e.g. a package delivery firm) wants to provide its services at the lowest possible cost
and yet ensure a certain level of service to its customers (as embodied in the time restriction).
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Figure 12.1: (a) An instance of CONSTRAINED SHORTEST PATH, and (b) its Lagrangian re-
laxation for µ = 2. Next to each arc e appears the pair (ce, te) in (a) and the value ce + µte in
(b).

CONSTRAINED SHORTEST PATH can be formulated as the following integer linear pro-
gramme, with x the indicator vector of the path.

Minimize ∑e∈E cexe
subject to

∑
e entering v

xe − ∑
e leaving v

xe =






−1 if v = s
+1 if v = t
0 for all v ∈V \{s, t}

∑
e∈E

texe ≤ T

xe ∈ {0,1} ∀e ∈ E

(12.1)

(12.1) can clearly be decomposed into a classical (and easily solvable) shortest path problem
plus an extra ‘time’ constraint. The idea of the Lagrangian Relaxation is to include this extra
constraint as a penalty in the objective function.
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More precisely, let µ > 0 and consider the following integer linear programme.

Minimize ∑e∈E cexe −µ(T −∑e∈E texe)
subject to

∑
e entering v

xe − ∑
e leaving v

xe =






−1 if v = s
+1 if v = t
0 for all v ∈V \{s, t}

xe ∈ {0,1} ∀e ∈ E

(12.2)

The programme (12.2) is equivalent to finding a shortest (s, t)-path in D with the modified
cost function cµ = c+ t. See Figure 12.1-(b).

Minimize ∑e∈E(ce +µ · te)xe
subject to

∑
e entering v

xe − ∑
e leaving v

xe =






−1 if v = s
+1 if v = t
0 for all v ∈V \{s, t}

xe ∈ {0,1} ∀e ∈ E

Therefore, µ> 0 being fixed, (12.2) can be easily solved. Let opt∗µ be the value of an optimal
solution of (12.2) and let P∗

µ be a path that achieves this solution. Now, let us informally describe
how we can obtain the value opt∗ of an optimal solution of (12.1).

First, note that any feasible solution of (12.1) is an (s, t)-path P such that ∑e∈E(P) te ≤ T .
Therefore, because µ > 0, any feasible solution P has a cost cµ(P) in (12.2) that is no larger than
its cost c(P) in (12.1). In particular,

opt∗µ ≤ cµ(P∗)≤ c(P∗) = opt∗

for any µ > 0, where P∗ is a feasible solution of (12.1) achieving the optimal value opt∗. That
is, the optimal solution of (12.2) provides a lower bound on the optimal value of (12.1).

Let us consider the example of Figure 12.1-(a) for T = 10.
First, let us set µ = 0. P∗

0 is the path (v1,v2,v4,v6) with cost opt∗0 = c(P∗
0 ) = 3. However, this

path is not feasible in the initial problem. Therefore, the relaxation with µ = 0 only provides
that 3 ≤ opt∗.

For µ = 1, we get P∗
1 = (v1,v2,v5,v6) and opt∗1 = c(P∗

1 ) = 20−µ ·T = 10. Again, this path
is not feasible in the initial problem. However, we got a better lower bound: 10 ≤ opt∗.

For µ = 2 (see Figure 12.1-(b)),two paths achieve the optimal value opt∗2 = 15 ≤ opt∗. But,
one of them, namely P∗

2 = (v1,v3,v2,v5,v6) is such that ∑e∈E(P∗
2 )

te = T . Therefore, P∗
2 is a

feasible solution of (12.1). Moreover, 15 = c(P∗
2 ) ≥ opt∗ ≥ c2(P∗

2 ) = 15. Hence, we have
solved (12.1).

In this example, we have shown that choosing the ‘good’ value of µ allows to obtain the
optimal solution of the initial problem. In the sequels, we show how to choose a value of µ that
will provide a ‘good’ lower bound for the initial problem and we show that, in some cases, it
actually leads to the optimal solution.
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12.2 The Lagrangian Relaxation Technique
In this section, we formally define the Lagrangian dual of an optimization problem and show
that the solution of the Lagrangian dual provides a lower (resp., upper) bound of the initial min-
imization (resp., maximization) problem. Moreover, in the case of (convex) linear programmes,
the optimal solution of the Lagrangian dual coincides with the optimal solution of the initial
problem. Also, the bound obtained thanks to the Lagrangian relaxation is at least as good as the
one obtained from fractional relaxation.

12.2.1 Lagrangian dual
Consider the following integer linear programme:

Minimize cT x
subject to

Ax = b
x ∈ X

(12.3)

The Lagrangian relaxation procedure uses the idea of relaxing the explicit linear constraints
by bringing them into the objective function with associated vector µ called the Lagrange mul-
tiplier. We refer to the resulting problem

Minimize cT x+µT (Ax−b)
subject to

x ∈ X
(12.4)

as the Lagrangian relaxation or Lagrangian subproblem or the original problem (12.3), and we
refer to the function

L(µ) = min{cT x+µT (Ax−b) | x ∈ X},
as the Lagrangian function.

Lemma 12.1 (Lagrangian Bounding Principle). For any Lagrangian multiplier µ, the value
L(µ) of the Lagrangian function is a lower bound on the optimal objective function value z∗ of
the original problem (12.3).

Proof. Since Ax = b for every feasible solution x of 12.3, for any Lagrangian multiplier µ,
z∗ = min{cT x | Ax = b,x ∈ X}= min{cT x+µT (Ax−b) | Ax = b,x ∈ X}. Since removing the
constraints Ax = b from the second formulation cannot lead to an increase in the value of the
objective function (the value might decrease), z∗ ≥ min{cT x+µT (Ax−b) | x ∈ X}= L(µ).

12.2.2 Bounds and optimality certificates
To obtain the sharpest possible lower bound, we would need to solve the following optimization
problem

L∗ = max
µ

L(µ) (12.5)
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which we refer to as the Lagrangian Dual problem associated with the original optimization
problem (12.3). The Lagrangian Bounding Principle has the following immediate implication.

Property 12.2 (Weak duality). The optimal solution L∗ of the Lagrangian dual (12.5) is a lower
bound on the value z∗ of an optimal solution of (12.3), i.e., L∗ ≤ z∗.

Proof. For any Lagrangian multiplier µ and for any feasible solution x of Problem 12.3, we
have

L(µ)≤ L∗ ≤ cT x.

Corollary 12.3 (Optimality test). Let µ be a Lagrangian multiplier.
If x is a feasible solution of (12.3) satisfying L(µ) = cT x. Then

• L(µ) is the optimal value of the Lagrangian dual, i.e., L∗ = L(µ), and

• x is an optimal solution of the primal (12.3).

As indicated by the previous property and its corollary, the Lagrangian Bounding Principle
immediately implies one advantage of the Lagrangian relaxation approach. It provides a certifi-
cate for guaranteeing that a given solution to the primal (12.3) is optimal. Indeed, in the next
subsection, we describe a method to compute the optimal solution L∗ of the Lagrangian dual.

Even if L(µ)< cT x, having the lower bound permits us to state a bound on how far a given
solution is from optimality: If (cT x−L(µ))/L(µ)≤ 0.05, for example, we know that the value
of the feasible solution x is no more than 5% from optimality. This type of bound is very
useful in practice. It permits us to assess the degree of sub-optimality of given solutions and
it permits us to terminate our search for an optimal solution when we have a solution which is
close enough to optimality for our purposes.

Inequality constraints

In (12.3), the‘hard’ constraints are all equalities. In practice, problems are described using
inequalities. Consider the following optimization problem:

Minimize cT x
subject to

Ax ≤ b
x ∈ X

(12.6)

In that case, we consider only Lagrangian multipliers with positive coefficients. The Lagrangian
dual is

L∗ = max
µ≥0

L(µ) (12.7)

In this setting, the Lagrangian Bounding Principle and the weak duality property (12.2) are
still valid. However, a vector x may not be an optimal solution of the primal problem even if
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x is feasible for the primal problem and if x achieves the optimal solution of the Lagrangian
dual L∗ = L(µ) for some µ ≥ 0. The optimality test (Corollary ) may however be adapted in the
following way:

Property 12.4. If L(µ) is achieved by a vector x such that

• x is a feasible solution of (12.6), and moreover

• x satisfies the complementary slackness condition µT (Ax−b) = 0,

then, L(µ) is the optimal value of the Lagrangian dual (12.7) and x is an optimal solution of the
primal (12.6).

12.2.3 Linear Programming
All results presented above do not depend on the kind of considered optimization problem.
More precisely, previously, the set X defining the‘easy’ constraints is arbitrary. We know focus
on the linear programming case. More precisely, let us consider the following problem:

Minimize cT x
subject to

Ax = b
Dx ≥ q
x ≥ 0

(12.8)

Recall that the corresponding dual problem is (see Section 9.3.2):

Maximize bT y+qT z
subject to

AT y+DT z ≤ c
y2 ≥ 0

(12.9)

For any vector µ, we set the Lagrangian function as

L(µ) = min{cT x+µT (Ax−b) | Dx ≥ q,x ≥ 0}. (12.10)

Theorem 12.5. Let (P) be any linear programme such as Problem 12.8. The optimal value
L∗ = maxµ L(µ) of the Lagrangian dual of (P) coincides with the optimal value opt∗ of (P).

Proof. Let x∗ be a vector achieving the optimal value opt∗ of (12.8) and let (y∗,z∗) be an
optimal solution of the dual 12.9. Then AT y∗+DT z∗−c ≥ 0. Moreover, by the complementary
slackness conditions (Theorem 9.11):

• (AT y∗+DT z∗ − c)x∗ = 0

•
�y∗

z∗
���A

D
�
x∗ −

�b
q
��

= z∗(Dx∗ −q) = 0
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Set µ = −y∗, we have L(−y∗) = min{cT x− (y∗)T (Ax−b) | Dx ≥ q,x ≥ 0}. That is, any
vector achieves L(−y∗) if and only if it achieves the optimal value of the following linear
programme:

Minimize (cT − (y∗)T A)x subject to Dx ≥ q and x ≥ 0. (12.11)

The corresponding dual problem is

Maximize qT z subject to DT z ≤ c−AT y∗ and z ≥ 0. (12.12)

Therefore, the complementary slackness conditions implies that if there is a feasible solution x̃
to (12.11) and a feasible solution z̃ feasible to (12.12) such that

• z̃(Dx̃−q) = 0, and

• (DT z̃− c+AT y∗)x̃ = 0,

then x̃ is an optimal solution of (12.11).
Since setting x̃ = x∗ and z̃ = z∗ satisfies the complementary slackness conditions, x∗ is an

optimal solution to (12.11).
Thus, L(−y∗) = cT x∗+ µT (Ax∗ −b) = cT x∗ = opt∗. The result follows Corollary 12.2.2.

Theorem 12.6. Let X be a finite set in Rn and let H (X) its convex hull. Then, the Lagrangian
dual of

Minimize cT x subject to Ax = b and x ∈ X}

has the same optimal value as

Minimize cT x subject to Ax = b and x ∈ H (X)}.

Proof. Let L(µ) = min{cT x + µ(Ax − b) | x ∈ X}. It is equivalent to L(µ) = min{cT x +
µ(Ax−b) | x ∈ H (X)} because the optimal values of the second formulation are reached at
some extreme points of the polytope H (X) and that any vertex of H (X) belongs to X .

Therefore, the solution of the Lagrangian dual of the initial problem equals the solution of
the Lagrangian dual of

Minimize cT x subject to Ax = b and x ∈ H (X)}.

The convex hull of a finite number of points can be defined as the intersection of a finite
family of half-spaces, i.e., by a finite number of inequalities. Therefore, applying Theorem 12.5
to

Minimize cT x subject to Ax = b and x ∈ H (X)},

we get that its optimal value and the one of its Lagrangian dual coincide.

Theorem 12.7. Let (ILP) be an integer linear programme. Then the bound achieved by a La-
grangian relaxation of (ILP) is at least as good as the optimal value of its fractional relaxation.
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Proof. Consider the integer linear programme (ILP):

Minimize cT x subject to Ax = b and x ∈ X ∩Zn

where X is convex since it is defined by linear inequalities. By Theorem 12.6, its Lagrangian
relaxation has the same solution as (LR):

Minimize cT x subject to Ax = b and x ∈ H (X ∩Zn).

Since the convex hull H = H (X ∩Zn) of X ∩Zn is such that H ⊆ X , we get that the solution of
(LR) is not better than the one of (LP):

Minimize cT x subject to Ax = b and x ∈ X ,

the fractional relaxation of (ILP). Hence, opt(LP)≤ opt(LR)≤ opt(ILP).

12.2.4 Solving the Lagrangian dual
In this subsection, we describe a method to approximate the Lagrangian dual

L∗ = max
µ

L(µ) (12.13)

of the Lagrangian function which relaxes the constraints Ax = b, that is

L(µ) = min{cT x+µT (Ax−b) | x ∈ X}.

Recall that the principle of the Lagrangian relaxation is to include the‘hard’ constraints
into the objective function. In other words, optimizing a linear function over X is assumed to
be‘easy’. Therefore, µ being fixed, we can compute the value of L(µ) and an corresponding
optimal solution x ∈ X .

Note that the Lagrangian function is the lower envelope of the set of hyperplanes { cT x+
µT (Ax−b) | x ∈ X }. Therefore, L(µ) is a concave function. Say differently, it is equivalent
to solve the following linear programme:

Maximize w
subject to

w ≤ cT x+µT (Ax−b) x ∈ X , µ ∈ Rn

Generally the number of constraints of such a programme is exponential, so we use a gra-
dient descent method to compute a value as close as desired to the Lagrangian dual. More
precisely, given a concave function f : Rn → R, a vector g is a subgradient of f at x if, for any
y ∈ Rn, f (y) ≤ f (x)+ gT (y− x). The function f is differentiable in x if and only if f admits
a unique subgradient in x. If L were differentiable, we would use the gradient descent method
to converge toward the optimal value. However, in our case, L is not everywhere differentiable
because it is a piecewise linear function. So we compute a sequence of (µk)k∈N such that L(µk)
converges to the optimal solution, using the following subgradient method.
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Algorithm 12.1 (Subgradient method).

0. Set k = 0 and choose µ0 ∈ Rn ;

1. Compute L(µk) and a vector xk ∈ X where it is achieved;

2. Choose a subgradient gk = Axk −b of the function L at µk;

3. If gk = 0, then stop, the optimal solution is L(µk)

4. Compute µk+1 = µk +θT
k .gk where θk is the stepsize at this step.

5. Increment k and go to Step 2.

In practice, the formula to calculate the stepsize is θk =
UB−L(µk)
||Axk−b||2 where UB is an upper

bound on the optimal solution we want to compute.

In the case when the constraints of the initial programme that we relax were Ax ≤ b, then
the method must be slightly modified such that µk ≥ 0 for any k ≥ 0. For this purpose, at Step
4., the ith coordinate of µk+1 is taken as the maximum between 0 and the ith coordinate of
µk +θT

k .gk.

In all cases, the number k of iterations depends on the desired accuracy of the result.

12.3 Applications

12.3.1 Travelling Salesman Problem

Let D = (V,E) be an arc-weighted complete digraph, i.e., for any u,v ∈ V there are both the
arcs (u,v) and (v,u) and there is a cost function c : E → R. The cost of a (directed) cycle is
the sum of the cost of its arcs. The TRAVELLING SALESMAN problem is to find a minimum-
cost (directed) cycle passing exactly once through all vertices. This problem is a well known
N P -hard problem.

A first way to formulate this problem as an integer linear programme is the following, where
the variable xe ∈ {0,1} indicates if the arc e belongs to the cycle or not.
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Minimize ∑
e∈E

c(e)xe

subject to
∑

e entering v

xe = 1 for all v ∈V

∑
e leaving v

xe = 1 for all v ∈V

∑
e∈E(S)

xe ≤ |S|−1 for all S ⊆V

xe ∈ {0,1} for all e ∈ E

(12.14)

The first two sets of constraints and the integrity constraint ensure that the solution is a
disjoint union of cycles covering all vertices exactly once, thats is a cycle factor. So, if the third
set of constraints is omitted, this programme solves the minimum-cost cycle-factor problem.
The minimum cycle-factor problem consists in finding a cycle factor of a digraph D = (V,E)
with minimum cost. This problem can be solved in polynomial time since it is equivalent to
solve a minimum-cost perfect matching problem. Indeed, consider the bipartite graph G with
vertex set {v−,v+ | v ∈V} in which there is an edge v−u+ of cost c(vu) for each arc (v,u) ∈ E.
There is a one-to-one correspondence between the perfect matchings of G and the cycle-factors
of D.

A possibility would be to relax the third set of constraints and include it in the objective
funcction, but the resulting objective function would be a sum of an exponential number of
terms, which is not convenient. We shall now see how to replace the third set of constraints by
some other, so that Lagraangian relaxation is practically possible.

The third set of constraints ensures we have only one cycle. In other words, it ensures the
connectivity of the solution. We now give a new linear programming formulation of TRAVEL-
LING SALESMAN in which this set of constraints is replaced by two others guaranteeing the
connectivity of any feasible solutions. The first of this two new sets of constraints ensures that
there is a flow from some vertex s ∈ V to all other vertices. The second forces this flow to use
the arcs of the solution, so that any feasible solution must be connected.
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Minimize ∑
e∈E

c(e)xe

subject to
∑

e entering v

xe = 1 for all v ∈V

∑
e leaving v

xe = 1 for all v ∈V

∑
e entering s

fe − ∑
e leaving s

fe =−(n−1)

∑
e entering s

fe − ∑
e leaving s

fe = 1 for all v ∈V \{s}

fe ≤ (n−1)xe ∀e ∈ E

xe ∈ {0,1} for all e ∈ E

Using this formulation and relaxing the constraint fe ≤ (n−1)xe, the problem is equivalent
to solving separately a flow problem and a minimum cycle-factor problem.
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