
Chapter 10

Polynomiality of Linear Programming

In the previous section, we presented the Simplex Method. This method turns out to be very
efficient for solving linear programmes in practice. While it is known that Gaussian elimination
can be implemented in polynomial time, the number of pivot rules used throughout the Simplex
Method may be exponential. More precisely, Klee and Minty gave an example of a linear
programme such that the Simplex Method goes through each of the 2n extreme points of the
corresponding polytope [5].

In this chapter, we survey two methods for solving linear programmes in polynomial time.
On the one hand, the Ellipsoid Method [4, 2] is not competitive with the Simplex Method
in practice but it has important theoretical side-effects. On the other hand, the Interior Point
Methods compete with the Simplex Method in practice.

First of all, we define the input size of a linear programme. Recall that an integer i ∈ Z can
be encoded using < i >= �log2 (|i|+1)�+1 bits. For a rational number r = p/q ∈Q, the size
of r is < r >=< p > + < q >. Similarly, any rational matrix can be encoded using < A >=
∑m

i=1 ∑n
j=1 < ai, j > bits. Also, multiplying two integers a and b runs in time O(< a >+< b >).

In what follows, we consider the linear programme L defined by:

Maximize cT x
Subject to: Ax ≤ b

x ≥ 0
(10.1)

We restrict ourselves to the case when A ∈ Qm×n, b ∈ Qm and c ∈ Qn have rational coeffi-
cients. Therefore, the input size of L is < L >=< A >+< b >+< c >. In other words, < L >
is a polynomial in n,m and < B > where B is the largest coefficient in A,b and c.

The two methods presented in this chapter are polynomial in < L >. It is a long-standing
open problem to know whether linear programming is strongly polynomial, i.e., whether there
exists an algorithm that solves a linear programme in time polynomial in n and m.

The interest of the Ellipsoid Method comes from the fact that, in particular cases, it works
independently from the number m of constraints. More precisely, if we are given a separation
oracle that, given a vector x, answers that x satisfies Ax≤ b or returns an inequality not satisfied
by x, then the Ellipsoid Method works in time polynomial in n and < B >.
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10.1 The Ellipsoid Method
The Ellipsoid Method has been proposed in the 70’s by Shor, Judin and Nemirovski for solving
some non-linear optimization problems. In 1979, Khachyian [4] showed how to use it for
solving linear programmes.

10.1.1 Optimization versus feasibility
We first recall (or state) some definitions and results of linear algebra.

A convex set C ⊆ Rn is such that for all x,y ∈ C and for all 0 ≤ λ ≤ 1, λx+(1−λ)y ∈ C.
An half space H is a (convex) set {x ∈ Rn | cT x ≤ δ} with c ∈ Rn, δ ∈ R. A closed convex set
is the intersection of a family of half spaces. A polyhedron K is a closed convex set that is the
intersection of a finite family of half spaces, i.e., K = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm.
A polytope is the convex hull of a finite set X ⊆ Rn, i.e., {x ∈ Rn : ∑λixi, ∑i λi ≤ 1,xi ∈ X}.

Theorem 10.1. A set is polytope if and only if it is a bounded polyhedron.

Given A ∈Rm×n and b ∈Rm, the system of inequalities Ax ≤ b is feasible if there is x ∈Rn

that satisfies it, i.e., if the polyhedron {x ∈ Rn : Ax ≤ b} is not empty. We say that the system
is bounded if there is R ∈ R such that the set of solutions of the system is included in a ball of
radius ≤ R in Rn.

The Ellispoid Method aims at deciding whether a polytope is not empty and, if possible, at
finding some vector in it. We first show that it is sufficient to solve linear programmes. In other
words, the next theorem shows that solving a linear programme can be reduced to the feasibility
of a system of linear inequalities.

Theorem 10.2. If it can be decided in polynomial time whether a system of linear inequalities
is feasible, then linear programmes can be solved in polynomial time.

Proof. Consider the linear programme L described in 10.1. By the Duality Theorem (Theo-
rem 9.10), L admits an optimal solution if and only if the system {x ≥ 0, y ≥ 0, Ax ≤ b,ATy ≥
c,cx ≥ bTy} is feasible and bounded, i.e., it is a non-empty polytope.

Previous Theorem shows that the set P of optimal vector-solutions of {maxcT x : Ax ≤
b, x ≥ 0} is a polytope (possibly empty) in Rn. Moreover, given x ∈ Rn, deciding if x ∈ P can
be done in polynomial time. It is sufficient to check alternatively each constraint and if all of
them are satisfied, to use the complementary slackness conditions to check the optimality.

Therefore, from now on, we focus on the feasibility of the bounded system

Ax ≤ b
A ∈Qm×n,b ∈Qm (10.2)

which represents the polytope of the optimal solutions of a linear programme.
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10.1.2 The method
In this section, we describe the Ellipsoid Method. Given a polytope K and V ∈R, this method
either returns a vector x ∈ K or states that K has volume less than V .

Definitions and notations

A matrix A ∈ Rm×n is positive definite if and only if xT Ax > 0 for any x ∈ Rn \{0}, or equiv-
alently, A = QT diag(λ1, · · · ,λn)Q where Q ∈ Rn×n is an orthogonal matrix and λi > 0 for
any i ≤ n. Another equivalent definition is that A is positive definite if A = BT B where B is
triangular with positive diagonal elements.

The unit ball B(0,1) is {x ∈ Rn : ||x||≤ 1} with volume Vn.
An ellipsoid, denoted by ε(M,c), is the image of B(0,1) under a linear map t : Rn →

Rn such that t(x) = Mx + c where M ∈ Rn×n is an invertible matrix and c ∈ Rn. That is,
ε(M,c) = {x ∈Rn : ||M−1x−M−1c||≤ 1}. Alternatively, the ellipsoid ε(M,c) can be defined
as {x ∈ Rn : (x− c)T N(x− c)≤ 1} where N is the positive definite matrix (M−1)T M−1.

Proposition 10.3. The volume vol(ε(M,c)) of ε(M,c) is |det(M)|.Vn.

The Ellipsoid Method.

Let K = {x ∈Rn : Ax ≤ b} be a polytope with A ∈Rm×n, b ∈Rm, and let V ∈R. Assume we
are given M0 ∈Rn×n and c0 ∈Rn such that K ⊆ ε0(M0,c0). The Ellipsoid Method proceeds as
follows.

Algorithm 10.1 (Ellipsoid Method).

1. Set k := 0. Note that K ⊆ εk(Mk,ck);

2. If vol(εk(Mk,ck))< V , then stop;

3. Otherwise, if ck ∈ K , then return ck;

4. Else let aT
i x ≤ bi be an inequality defining K , i.e., aT

i is a row of A, such that aT
i ck > bi;

Find an ellipsoid εk+1(Mk+1,ck+1) with volume at most ≤ e−
1

2(n+1) · vol(εk(Mk,ck)) such
that

εk(Mk,ck)∩{x ∈ Rn | aT
i x ≤ aT

i ck}⊆ εk+1(Mk+1,ck+1);

5. k := k+1 and go to step 2.

Theorem 10.4. The Ellipsoid Method computes a point in K or asserts that vol(K )< V in at
most 2 ·n · ln vol(ε0(M0,c0))

V
iterations.
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Proof. After k iterations, vol(εk+1(Mk+1,ck+1)/vol(ε0(M0,c0)) ≤ e−
k

2(n+1) . Since we stop as
soon as vol(εk+1(Mk+1,ck+1)< V , there are at most 2 ·n · ln vol(ε0(M0,c0))

V
iterations.

Discussion about the complexity and separation oracle.

Let K be the rational polytope defined in (10.2). Let B be the largest absolute value of the
coefficients of A and b. We now show that the Ellipsoid Method can be implemented in time
polynomial in < K >, i.e., in n,m and B.

Here, we first discuss the main steps of the proof, the technical results needed for this pur-
pose are postponed in next subsection.

(i) First, a lower bound V on the volume of K must be computed. Theorem 10.5 defines
such a V in the case K is full dimensional. Moreover, V is only exponential in n and B.

Otherwise, there is a first difficulty. Theorem 10.5 shows that there is t > 0, such that K

is empty if and only if K � = {x ∈Rn : Ax ≤ b+ t} is empty, where < t > is polynomial
in n,B and t ∈ Rm is the vector with all coordinates equal to ε. Moreover, K � is full
dimensional (see Exercise 10.3).

Therefore, the Ellipsoid Method actually applies on the polytope K �. If K � is empty, then
K is empty as well. Otherwise, the Ellipsoid Method returns x� ∈ K � and the solution x�
is rounded to a solution x ∈ K . We do not detail this latter operation in this note.

(ii) Then, an initial ellipsoid ε0(M0,c0) containing K is required. Theorem 10.6 describes
how to define it in such a way that < ε0(M0,c0) > is polynomial in n and B. Moreover,
its volume is only exponential in n and B.

(iii) The crucial step of the Ellipsoid Method is Step 4. Theorem 10.8 proves that the desired
ellipsoid εk+1(Mk+1,ck+1) always exists. Moreover, it can be computed from εk(Mk,ck)
and the vector ai, with a number of operations that is polynomial in < εk(Mk,ck) > and
< ai >.

Another technicality appears here. Indeed, following Theorem 10.8, some square-roots
are needed when defining εk+1(Mk+1,ck+1). Therefore, its encoding might not be polyno-
mial in < εk(Mk,ck)> and < ai >. It is actually possible to ensure that εk+1(Mk+1,ck+1)
satisfies the desired properties and can be encoded polynomially in < εk(Mk,ck) > and
< ai >. We do not give more details in this note.

Since, by (ii), < ε0(M0,c0) > is polynomial in n and B, therefore, for any k > 0, <
εk(Mk,ck)> and the computation of the ellipsoid are polynomial in n and B.

(iv) Now, using (iii) and Proposition 10.3, Step 2 is clearly polynomial in n and B because V

and vol(ε0(M0,c0)) are only exponential in n and B.

(v) Finally, let us consider the following question, that must be dne in Step 3 and 4. Given
a system K = {x ∈Qn : Ax ≤ b} with A ∈Qm×n, b ∈Qm and a vector c ∈Qn, decide
if c ∈ K or return an index i ≤ m such that aT

i c > bi. Clearly, this can be decided in
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time polynomial in m,n and B (the largest absolute value of the coefficients) by simply
checking the m row inequalities one by one.

The above discussion proves that the Ellipsoid Method runs in time polynomial in m,n and
B. Moreover, note that, m appears in the complexity only when solving the question of (v)
(Steps 3 and 4). The main interest of the Ellipsoid Method is the following: if we are given an
oracle for answering the question of (v) independently of m, then the Ellipsoid Method runs in
time polynomial in n and B (independently of m). Furthermore, it is not necessary to explicitly
know all constraints (see Exercise 10.4).

10.1.3 Complexity of the Ellipsoid Method

In this section, we formally state (and prove some of) the theorems used in the analysis of the
Ellipsoid Method we did above.

In the following, for any x ∈ Rn, x(i) denotes the ith coordinate of x.

Initialization: finding the lower bound

The next theorem allows to find a lower bound for the volume of the considered polytope, if it
is not empty.

Theorem 10.5. Let K = {x ∈ Rn : Ax ≤ b} be a polytope and let B be the largest absolute
value of the coefficients of A and b.

• If K is full dimensional, then its volume is at least 1/(nB)3n2
;

• Let t = 1/((n+1).(nB)n) and let K � = {x ∈ Rn : Ax ≤ b+ t} where t is the vector with
all components equal to t. Then, K � is full dimensional and is non-empty if and only if K

is non-empty.

Proof. We sketch the proof.
If K is full dimensional, let us consider v0, · · · ,vn ∈K such that the simplex defined by these

n vectors spans Rn. The volume of this simplex is lower bounded by 1
n! ·|det

�
1 1 · · · 1
v0 v1 · · · vn

�
|.

Using Cramer’s formula and the Hadamard inequality, the denominator of this volume can be
upper bounded and then the result holds.

If K � is empty then K is clearly empty. Now, assume that K is empty. Farkas’ Lemma
states that {x : Ax ≤ b} is empty iff there is λ ∈ Rm

≥0 such that λT A = 0 and λT b = −1. By
Cramer’s formula and Hadamard’s inequality, λ can be chosen such that λi ≤ (n ·B)n. Taking
t = 1/((n+ 1)(b ·B)n), we get that λT (b+ t) < 0. Therefore, the same λ satisfies the Farkas’
conditions for K � which is not feasible.



164 CHAPTER 10. POLYNOMIALITY OF LINEAR PROGRAMMING

Initialization: finding the initial ellipsoid

The next theorem allows to define the initial ellipsoid ε0(A0,a0).

Theorem 10.6. Let K = {x ∈ Rn : Ax ≤ b} be a polytope and let B be the largest absolute
value of the coefficients of A and b. Then K is contained into the ball B(0,nnBn).

Proof. The extreme points of a convex set are those points of it that are not a linear combination
of any other vectors in this convex set. Equivalently, an extreme point of K is determined as
the unique solution v of a linear system A�x = b� where A�x ≤ b� is a subsystem of Ax ≤ b and
A� is non-singular.

By Cramer’s rule, the ith coordinate of such a solution v is vi = det(A�
i)/det(A�) where A�

i
is the matrix obtained from A� by replacing its ith column by the vector b. Hadamard’s inequal-
ity states that |det(M)| ≤ Πn

i=1||mi|| for any M ∈ Rn×n with columns mi, i ≤ n. Therefore,
|det(A)|, |det(A�)|, |det(A�

i)| and |vi| are all upper bounded by nn/2Bn.
Hence, any extreme point of K lies in {x ∈Rn : ||x||≤ nn/2Bn}. To conclude it is sufficient

to recall that a polytope equals the convex hull of its extreme points.

Computing the next ellipsoid containing K (Step 4)

Lemma 10.7. The half-unit ball B1/2 = {x ∈Rn | ||x||≤ 1,x(1)≥ 0} is contained in the ellip-

soid E = ε(A,b) with volume at most Vn · e
− 1

2(n+1) where A = diag
�

n
n+1 ,

�
n2

n2−1 , · · · ,
�

n2

n2−1

�

and b = (1/(n+1),0, · · · ,0).

Proof. First, E = {x ∈ Rn | ||A−1x−A−1b||2 = (n+1
n )2(x(1)− 1

n+1)
2 + n2−1

n2 ∑n
i=2 x(i)2 ≤ 1}.

Let y ∈ B1/2, we show that y ∈ E and then B1/2 ⊆ E.

(n+1
n )2(y(1)− 1

n+1)
2 + n2−1

n2 ∑n
i=2 y(i)2

= 2n+2
n2 y(1)(y(1)−1)+ 1

n2 +
n2−1

n2 ∑n
i=2 y(i)2

≤ 1
n2 +

n2−1
n2 ≤ 1

Moreover, the volume of E is |det(A)| ·Vn and det(A) = n
n+1(

n2

n2−1)
(n−1)/2. Using the fact that

1+ x ≤ ex, we obtain that det(A)≤ e−1/(n+1)e(n−1)/(2(n2−1)) = e−
1

2(n+1) .

Theorem 10.8. The half-ellipsoid ε(A,a)∩{x ∈Rn | cT x ≤ cT a} is contained in the ellipsoid
ε(A�,a�) where

a� = a− 1
n+1

b and A� =
n2

n2 −1
(A− 2

n+1
bbT ) where b = Ac/

√
cTAc

Moreover, the ratio vol(ε(A�,a�))/vol(ε(A,a))≤ e−1/(2(n+1)).
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Proof. This follows from the fact that the half-ellipsoid is the image of the half-unit ball under a
linear transformation and from Lemma 10.7. Also, the ratio of the volumes of the two ellipsoids
is invariant under the linear transformation.

Note that the square root in the definition of ε(A�,a�) implies that this ellipsoid may not be
computed exactly. Nevertheless, it can be modified so that the intermediate results are rounded
using a number of bits that is polynomial in < K >. A suitable choice of the rounding constants
ensures that the obtained rational ellipsoid still contains K .

10.1.4 Examples of separation oracle
In this section, we show that, in some case, an explicit description of all the (exponential)
constraints is not necessary to decide if a solution is feasible or not. In such cases, the Ellipsoid
Method implies a complexity independent of the number of constraints.

Maximum Weight matching Problem

Edmonds shown that the convex hull of the matchings of a graph G = (V,E) is given by

∑
e∈E(S)

xe ≤
|S|−1

2
S ⊂V, |S| odd

∑
v∈e

xe ≤ 1 v ∈V

xe ≥ 0 e ∈ E

While there is an exponential number of constraints, it is possible to check if a vertex x
is a realizable solution of the above system in time polynomial in n. Therefore, the ellipsoid
method ensures that the maximum weight matching problem can be solved in time polynomial
in n (independent of m).

Let x ≥ 0. Let us present a separation oracle used to decide if it belongs to the above
polytope. W.l.o.g., we may assume that V is even (otherwise, we may add an extra vertex). Let
sv = 1−∑v∈e xe for all v ∈V . Note that,

∑
e∈E(S)

xe ≤
|S|−1

2
⇔ ∑

v∈S
sv + ∑

e∈E(S)
xe ≥ 1

Let H = (V ∪ {r},E � = E ∪ {(r,v) | v ∈ V}) be the graph with vertex-set V plus one extra
universal vertex r. For any e ∈ E �, the capacity we of e is xe if e ∈ E and equals sv if e = (r,v).
In H, we have

∑
v∈S

sv + ∑
e∈E(S)

xe ≥ 1 ⇔ ∑
e∈δH(S)

we ≥ 1
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Therefore, x is feasible if and only if there is no odd set S in H such that the cut (S,V (H)\S)
has capacity strictly less than 1. This can be solved polynomially as a subcase of the minimum
T -odd cut problem.

10.2 Interior Points Methods
The Interior Points Methods is a family of methods with the same approach. They consists in
walking through the interior of the set of feasible solutions (while the simplex method walks
along the boundary of this the polytope from extreme point to extreme point, and the Ellipsoid
Method encircles this polytope).

Among those Interior Points Methods, Karamakar [3] proposed an algorithm and proved
that it solves linear programmes in polynomial time.

It is important to know that Interior Points Methods typically outperforms the Simplex
Method on very large problems.

10.3 Exercises
Exercise 10.1. Prove Theorem 10.1.

Exercise 10.2. Prove Theorem 10.3

Exercise 10.3. Let P = {x ∈Rn : Ax ≤ b} be a polyhedron and t > 0. Let t ∈Rm be the vector
with all coordinates equal to t. Shows that {x ∈ Rn : Ax ≤ b+ t} is full dimensional.

Exercise 10.4. Minimum cost arborescence. Let D be a directed graph on n vertices each arc
a of which has weight ca and let r ∈V (D). Consider the following problem:

Minimize ∑a∈A(D) caxa

Subject to: ∑a∈δ−(S) xa ≥ 1 ∀S ⊆V (D)\{r}
xa ≥ 0 ∀a ∈ A(D)

Give an algorithm that decides whether x ∈ Rn is a feasible solution or returns a certificate
S ⊆V (D)\{r} that x is not feasible, in time polynomial in n. Conclusion?
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