Problem 1: Write an interval bisection routine. Your program should take as parameters a function handle, the search domain \(x \), and a tolerance \(TOL \). What are the results you get for the function \(f(x) = \sin x - \cos x \) with \(x = [-10, +10] \) and \(TOL = 0.0001 \)?

Problem 2: Write an interval Newton routine. Your program should take as parameters a function handle and a search domain \(x \). Make sure the search stops when two successive enclosures are identical. What are the results you get for the function \(f(x) = \sin(\cos(x - 3)) \) with the search domains \(x_1 = [1, 2] \), \(x_2 = [1.5, 2.5] \), and \(x_3 = [2, 3] \)?

Problem 3: Combine the ideas from the two previous problems and write a hybrid bisection/interval Newton routine. It should bisect the search domain into subintervals \(x_k \) until either \(\text{diam}(x_k) \leq TOL \), or \(0 \notin f'(x_k) \). In the latter case the subinterval should undergo an interval Newton search. Your program should prompt the user for the search domain \(x \), and a tolerance \(TOL \). What are the results you get for the function \(f(x) = \sin(\cos(x - 3)) \) with the search domain \(x = [-10, 10] \), and \(TOL = 0.001 \)?

Problem 4: Write an interval optimizer. You may choose to use any or all of the midpoint, monotonicity, or convexity checks. Your program should take as parameters a function handle, a search domain \(x \), and a tolerance \(TOL \). What are the results you get for the function

\[
 f(x) = x^2 - \frac{1}{2} e^{-a(x - \frac{1}{2})^2}
\]

with \(a = 10000 \), \(x = [-10, +10] \) and \(TOL = 10^{-10} \)?

Problem 5: Write a uniform-step, interval integrator. Your program should take as parameters a function handle, the domain of integration \(x \), and a the number of subdomains \(N \). What results do you get for the function \(f(x) = e^x \sin x \) over the domain \(x = [-2, +2] \). and using \(N = 10, 100, 1000 \)?

Problem 6: (Only if you have time!) Make the integrator above adaptive.