Lecture 2. Analytic functions, Runge phenomenon, barycentric interpolation

Outline of lectures (tentative)1• Chebyshev points, interpolants, polynomials, series	 Rootfinding Optimization Quadrature
 Chebyshev series of analytic functions Runge phenomenon (equispaced interpolation) Barycentric interpolation formula 	 Spectral methods for ODEs Chebfun2 (two dimensions) Gaussian elimination as an iterative algorithm

1. Exploring the Chebfun web site and software

2. Chebyshev series of analytic functions [ATAP chap 8]

The following can be proved by contour integrals in x or z (Bernstein 1912).

The Bernstein ellipse E_{ρ} is the image of the circle $|z| = \rho$ under the Joukowski map $x = \frac{1}{2}(z + z^{-1})$.

Theorem 8.1. Chebyshev coefficients of analytic functions. Let a function f analytic in [-1,1] be analytically continuable to the open Bernstein ellipse E_{ρ} , where it satisfies $|f(x)| \leq M$ for some M. Then its Chebyshev coefficients satisfy $|a_0| \leq M$ and

 $|a_k| \le 2M\rho^{-k}, \quad k \ge 1.$ (8.1)

Theorem 8.2. Convergence for analytic functions. If f has the properties of Theorem 8.1, then for each $n \ge 0$ its Chebyshev projections satisfy

$$\|f - f_n\| \le \frac{2M\rho^{-n}}{\rho - 1} \tag{8.2}$$

and its Chebyshev interpolants satisfy

$$||f - p_n|| \le \frac{4M\rho^{-n}}{\rho - 1}$$
. (8.3)

3 Runge phenomenon (equispaced interpolation) [ATAP chaps 13-14]

Since Runge (1900) it has been known that polynomial interpolants in equispaced points diverge exponentially as $n \rightarrow \infty$, even if the function is analytic, and even in exact arithmetic. The explanation involves potential theory, though we will not go into it here. Here is a code for comparing Chebyshev and equispaced points.

```
f = chebfun('tanh(10*x)');
while 1
    n = input('n? ');
    s = linspace(-1,1,n); p1 = chebfun.interp1(s,f(s));
    subplot(1,2,1), plot(p1), title equispaced
    hold on, plot(s,f(s),'.'), hold off
    subplot(1,2,1), plot(p1), title equispaced
    hold on, plot(s,f(s),'.'), hold off
end
s = chebpts(n); p2 = chebfun(f,n);
    subplot(1,2,2), plot(p2), title Chebyshev
    hold on, plot(s,f(s),'.'), hold off
```

4 Barycentric interpolation formula [ATAP chap 5; see also my essay "Six myths...."]

Some obvious algorithms for Chebyshev interpolation are exponentially unstable, like the solution of a linear system of equations involving a Vandermonde matrix. This fact, with the Runge phenomenon, have led to a widespread misconception since the 1950s that high-order polynomial interpolation is dangerous and should be avoided.

In fact, polynomial interpolation in Chebyshev points is perfectly well-behaved if you do it right. Indeed, by the change of variables $x = cos(\theta)$, it is equivalent to trigonometric interpolation in equispaced points, which nobody worries about. A suitable algorithm is the barycentric interpolation formula (Salzer 1972, proved stable by Higham 2004). More generally there is a barycentric formula for any set of interpolation points.

Theorem 5.2. Barycentric interpolation in Chebyshev points. The polynomial interpolant through data $\{f_j\}$ at the Chebyshev points (2.2) is

$$p(x) = \sum_{j=0}^{n} \left. \frac{(-1)^{j} f_{j}}{x - x_{j}} \right| \sum_{j=0}^{n} \left. \frac{(-1)^{j}}{x - x_{j}} \right|,$$
(5.13)

with the special case $p(x) = f_j$ if $x = x_j$. The primes on the summation signs signify that the terms j = 0 and j = n are multiplied by 1/2.