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Introduction

Natural bodies of fluid subject to gravity such as the atmosphere, the oceans and lakes are
characteristically stably stratified. Their density decreases as one goes upwards. When
they are disturbed in any way, internal waves are generated. These motions can explain
several phenomenas, like the temperature fluctuations in the deep ocean or the formation
of clouds in the lee of a mountain. Progress in this field has permitted to solve very
pratical problems in meteorology or in hydraulic engineering.

The solutions for this problem are know for very simple geometries such as cylinders
or ellipses in the inviscid case, and only for a disk in the viscous case. Experimental stud-
ies have shown that viscous effetcs must be taken into account. The boudary-integral
method has been established as a powerful numerical technique for tackling a variety of
problems in science involving partial differential equations. This method involves Green
functions of the flow. Examples can be drawn from the fields of elasticity, electromag-
netism, acoustics, hydraulics or Stokes flows. During my internship, I had to develop this
method for the problem of internal waves, created by oscillating objects. I developed this
technique, both theorically and numerically only for spherical and elliptical geometries.

In the first part, I will introduce the problem of internal waves created by oscillating
objects and remind some fundamental equations. Then in the second part, I will expose
the work I have done to compute the Green functions of the problem, both theorically and
numerically. In the final part, we will see how to use my results for the boundary-integral
method.
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Chapter 1

Fundamental equations

I will begin the report by describing internal gravity waves in stratified fluids and giving
the fundamental equations. All the phenomenas I have studied depend on gravity acting
on small density differences in a non-rotating fluid. The fluid has a density distribution
which varies in the vertical but is constant in horizontal planes: this is a stratified system.

We consider the flow produced by a rigid body that vibrates at the frequency ω, along
the z axis, in an infinite ambient fluid. The fluid will be assumed incompressible and
non-diffusive, this means that

Figure 1.1: Cartoon of the geometry of this problem.

Dρ

Dt
= 0, (1.1)

where D
Dt denotes differentiation following the motion, while the continuity equation in

vector notation is

∇.u = 0, (1.2)

where u = (u, v, w) is the velocity. The Navier-Stokes equation, with the force of gravity
included (with g = (0, 0,−g)) and the x and y axes being in the horizontal plane (as
shown on figure (1)), can be written as:
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ρ
Du
Dt

= ρ

(
∂u
∂t

+ (u.∇u)
)
= −∇p + ρg + µ∇2u. (1.3)

The last term is the result of the molecular viscosity µ, assumed constant here. The
only external force field considered is that of gravity, which exerts a body force ρg per
unit volum on each element of fluid (where ρ is the local density and g is the acceleration
due to gravity). The last term is the result of the viscosity µ, assumed to be constant
here. The nature of the fluid is not important, most of the ideas may be applied to liquids,
in which density variations are due to differences of temperature or concentrations of
solutes, or to gases in which there may be differences of temperature.

We analyse now small disturbances to an equilibrium distribution of density ρ0(z)
in an atmosphere or in an ocean for instance. During my internship, I have considered
that ρ0(z) is a continuously decreasing function of the height z. If p and ρ are expanded
around the values p0 and ρ0 in a reference state of hydrostatic equilibrium (i.e. one sets
p = p0 + p

′
and ρ = ρ0 + ρ

′
) we can rewrite (1.3) as

(1 +
ρ
′

ρ0
)

Du
Dt

= − 1
ρ0
∇p + (1 +

ρ
′

ρ0
)g +

µ

ρ0
∇2u (1.4)

Two approximations for the Navier–Stokes equation must be introduced. The first
simplification is that of linearization, which consists in neglecting the non linear terms
like u ∂u

∂x , compared to the temporal derivation ∂u
∂t . We can do this because we consider

small oscillations. The second approximation is that the density perturbation ρ
′

is small
compared to ρ0.

Using ∇p0 = ρ0g, we obtain the linearized Boussinesq equations for a viscous liquid:

∂u
∂t

= − 1
ρ0
∇p

′
+

ρ
′

ρ0
g +

µ

ρ0
∇2u. (1.5)

The linear form of (1.1) is just

∂ρ
′

∂t
+ w

dρ0

dz
= 0 (1.6)

We will now introduce a quantity in an elementary way. Consider the motion of an
element of fluid displaced a small distance ξ vertically from its equilibrium position in a
stable environment. By using (1.5) and (1.6), we can write the vertical component of the
motion equation as:

∂2ξ

∂t2 =
g
ρ

∂ρ0

∂z
ξ (1.7)

The fluid particle will oscillate in harmonioc motion with the frequency : N = (− g
ρ

∂ρ0
∂z )

1
2 .

This is the frequency is named buoyancy frequency. The corresponding periods 2π
N are typ-

ically a few minutes in the atmosphere and a couple of hours in deep ocean.
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Introducing b = − ρ
′

ρ0
g and the buoyancy frequency N, we can rewrite the Boussinesq

equations as:

∂u
∂t

= − 1
ρ0
∇p

′
+ bez + ν∇2u, (1.8)

∂b
∂t

+ N2w = 0 (1.9)

where ν = µ
ρ0

is the kinematic viscosity. The problem is totally characterized by these
two equations. Where are now going to see how this problem can be formulated using
Green Functions. The computation of these functions are essential to use the boundary-
integral method.
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Chapter 2

Green functions

The Green’s functions are solutions of the continuity equation and the Navier-Stokes
equation with a singular force:

∂u
∂t

= − 1
ρ0
∇p

′
+ bez + ν∇2u + gδ(x− x0) (2.1)

where g is an arbitrary constant vector, x0 is the pole of the source point, x is the
observation point and δ is the three-dimensional delta function.

For simplicity, in the ensuig discussion, I will drop the primes on p, but we should
remember that we are dealing with perturbations around hydrostatic equilibrium.

The Navier-Stokes equation can also be written as:

∂u
∂t

= ∇ · σ + bez + gδ(x− x0), (2.2)

where σ is the stress tensor defined as follows:

σij = −pδij + ν

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.3)

We can write the solution of (2.1) introducing the Green functions G and T, associated
to the velocity field and the stress tensor, as:

ui(x) =
1

8πµ
Gij(x, x0)gj, σik(x) =

1
8π

Tijk(x, x0)gj. (2.4)

Thus, the velocity field u represents the solution due to a concentrated point force of
strength g and located at the point x0. We need the expression of Gij, and the easiest
way to compute these coefficients is to work in the Fourier Space. The complex Fourier
Transform will be definied as

f̂ (k, w) =
1

(2π)3

∫
wholespace

∫
time

f (x, t)ei(ωt−k·x)dxdt (2.5)

The purpose of my calculation is to find, in the Fourier space, the relations ûi = Ĝijgj

and σ̂ik = T̂ijkgj, which will give us Ĝij and T̂ijk. By Inverse Fourier Transform, we will be
able to get Gij and Tijk.
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2.1 Green function for the velocity field

Let’s take the Fourier Transform of (1.9) and (2.1).

−iωb̂ = −N2ŵ (2.6)

−iωû = − 1
ρ0

ikp̂− ν |k|2 û + g + b̂ez. (2.7)

We can eliminate p̂ by dotting (2.7) with ez, and also (2.1) with ·k , remembering that
the continuity equation gives k · u = 0:

−iωŵ = − 1
ρ0

ikz p̂− ν |k|2 ŵ + gz +
N2

iω
ŵ, (2.8)

0 = − 1
ρ0

i |k|2 p̂ + k · g +
N2

iω
kzŵ. (2.9)

We can eliminate p̂ to obtain an equation connecting ŵ and gz:[
−iω |k|2 + ν |k|4 + N2

iω
(k2

z − |k|
2)

]
ŵ = αŵ = −kzk · g + |k|2 gz (2.10)

with α = −iω |k|2 + ν |k|4 + N2

iω (k2
z − |k|

2)
We can do exactly the same thing for û and v̂:

[
−iω |k|2 + ν |k|4

]
û = βû = |k|2 gx − kxk · g− N2kxkz

iωα

(
|k|2 gz − kzk · g

)
(2.11)

[
−iω |k|2 + ν |k|4

]
v̂ = βv̂ = |k|2 gy − kyk · g−

N2kykz

iωα

(
|k|2 gz − kzk · g

)
(2.12)

These three relations can be written as:

û =
1

8πµ
Ĝ(k, ω)g (2.13)

where Ĝ is the Fourier Transform of the Green function:

Ĝ(k, ω) = 8πµ


|k|2−k2

x
β + N2k2

xk2
z

iωαβ − kxky
β +

N2kxkyk2
z

iωαβ − kxkz
β + N2kxkz(k2

z−|k|
2)

iωαβ

− kxky
β +

N2kxkyk2
z

iωαβ

|k|2−k2
y

β +
N2k2

yk2
z

iωαβ − kykz
β +

N2kykz(k2
z−|k|

2)
iωαβ

− kxkz
α − kykz

α
|k|2−k2

z
α



If N=0, i.e. if there is no density gradient, then α = β = −iω |k|2 + ν |k|4.
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2.2 Green function for the stress tensor

The equation (2.9) provides a link between the pressure p and the vertical component of
the velocity w :

p̂ = − N2ρ0

ω|k|2
kzŵ +

ρ0

i |k|2
k · g (2.14)

We can obtain σ̂ij thanks to this relation:

σ̂ij = − p̂δij + iν(k jûi + kiûj) =
N2ρ0

ω|k|2
kzĜzkgkδij −

ρ0

i |k|2
k · gδij +

i
8πµ

(k jĜik + kiĜjk)gk

(2.15)
which finally gives:

T̂ijk(k, ω) = 8π

(
N2ρ0

ω|k|2
kzĜzkδij −

ρ0

i |k|2
kkδij +

i
8π

(k jĜik + kiĜjk)

)
(2.16)

2.3 Calculation of the Green function coefficients for the
velocity field

Taking the Inverse Fourier transform of Ĝ, only for the space dependance, we obtain

Gij(x, ω) =
1

(2π)3

∫
k

Ĝij(kx, ky, kz)eik·(x−x0)d3k =
1

(2π)3

∫
k

Ĝij(kx, ky, kz)eik·x̂d3k (2.17)

where x̂ = x − x0. Because the objet has the circular symmetry, we will make the
variable change: {

kx = κ cos(φ)
ky = κ sin(φ) ,

{
x̂ = r cos(θ)
ŷ = r sin(θ)

(2.18)

We can decompose k as k = kh + kz (where kh = kxex + kyey), and rewrite Gij as:

Gij =
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0

∫ ∞

kz=−∞
Ĝij(kx, ky, kz)eiκr(cos(θ) cos(φ)+sin(θ) sin(φ))eikz ẑκdκdφdkz

=
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0

∫ ∞

kz=−∞
Ĝij(kx, ky, kz)eiκr cos(θ−φ)eikz ẑκdκdφdkz

(2.19)
The variable change will be very useful to compute the integrals, over kz, κ and φ.
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2.3.1 Integration over kz

We can compute by hand all the integrations over kz. Hence, I will develop the compution
method for the first coefficient Gxx. I will first take the case N = 0 to expose the method.
We have:

Gxx =
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0

∫ ∞

kz=−∞

k2
y + k2

z

−iω |k|2 + ν |k|4
eiκr cos(θ−φ)eikz ẑκdκdφdkz (2.20)

To evaluate the integral over kz, we can use the residue theorem. Since the function
(k2

y + k2
z)eikz ẑ has no singularities at any point in the complex plane, the integrand has

singularities only where the denominator −iω |k|2 + ν |k|4 is equal to zero. We have two
possibilities, |k|2 = 0 or |k|2 = iω

ν . The case |k|2 = 0 leads to kz = 0 and k2
h = 0, that is

why we will ignore it. The second equality gives k2
z = iω

ν − |kh|2 = iω
ν − κ2, leading to

two possibilities: kz =
√

iω
ν − |kh|2 or kz = −

√
iω
ν − |kh|2. We need to find the value of

the imaginary part of kz. By posing kz = x + iy, we have:
x2 − y2 = − |kh|2
2xy = ω

ν

x2 + y2 =
√
(ω

ν )
2 + |kh|4

(2.21)

Solving this system, we easily find that the imaginary part of kz =
√

iω
ν − |kh|2 is equal

to
(

1
2

√
ω
ν

2 + |kh|2 + |kh|2
) 1

2

. For kz = −
√

iω
ν − |kh|2, the imaginary part is the opposite.

Supposing that z > 0, we define the contour C that goes along the real line from -a to
a making a semicircle centered at 0 from a to -a. Taking a as an arbitrary great value ,so
that the imaginary part of kz is enclosed within the curve, we obtain that:

Gxx =
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0
2iπres

kz=
√

iω
ν −κ2

(
k2

y + k2
z

−iω |k|2 + ν |k|4
eikz ẑ

)
eiκr cos(θ−φ)κdκdφ

(2.22)
We finally obtain, for ẑ > 0:

Gxx =
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0
2iπ

iω
ν − κ2 cos(φ)2

2iω
√

iω
ν − κ2

e−
√

κ2− iω
ν ẑeiκr cos(θ−φ)κdκdφ (2.23)
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Figure 2.1: Contour C used to apply the residue theorem.

If ẑ < 0, we have to take the solution kz = −
√

iω
ν − |kh|2, and we obtain:

Gxx = − 1
(2π)3

∫ ∞

κ=0

∫ 2π

φ=0
2iπ

iω
ν − κ2 cos(φ)2

2iω
√

iω
ν − κ2

e
√

κ2− iω
ν ẑeiκr cos(θ−φ)κdκdφ (2.24)

In both cases, there are no convergence problems. The only problem is for ẑ = 0. In
this particular case, the integral is divergent. Applying this method to all Gij coefficients,
we can compute all the integrations over kz by hand.

2.3.2 Integration over φ

We will now compute analytically all the integrals over φ. The purpose is to transform
the integrals to recognize Bessel functions. With φ = θ + α and β = α + π

2 we obtain:

∫ 2π

φ=0
eiκrcos(θ−φ)dφ =

∫ 2π

α=0
eiκr cos(α)dα =

∫ π

β=−π
eiκr sin(β)dβ = 2π J0(κr) (2.25)

with J0 the Bessel function of order 0. In the same way, we obtain:

∫ 2π

0
cos(φ)eiκr cos(θ−φ)dφ =

∫ π

−π
(cos(θ) sin(β)− sin(θ) cos(β)eiκr sin(β)dβ

=2i cos(θ)
∫ π

0
sin(β) sin(κr sin(β))dβ− 2 cos(θ)

∫ π

0
cos(β) cos(κr sin(β))dβ

=2iπ cos(θ)J1(κr)
(2.26)

with J1 the Bessel function of order 1.
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Applying this method to all integrals over φ, we finally obtain:

Gxx =
1

(8πω)

∫ ∞

κ=0

κe−
√

κ2− iω
ν |ẑ|√

iω
ν − κ2

(
J0(κr)(

2iω
ν
− κ2) + κ2 J2(κr) cos(2θ)

)
dκ (2.27)

Gxy = Gyx =
sin(2θ)

(8πω)

∫ ∞

κ=0

κ3√
iω
ν − κ2

J2(κr)e−
√

κ2−iω
ν |ẑ|dκ (2.28)

Gxz = Gzx = − cos(θ)
(4πω)

∫ ∞

κ=0
iκ2 J1(κr)e−

√
κ2iω

ν |ẑ|dκ (2.29)

Gyy =
1

(8πω)

∫ ∞

κ=0

κe−
√

κ2− iω
ν |ẑ|√

iω
ν − κ2

(
J0(κr)(

2iω
ν
− κ2)− κ2 J2(κr) cos(2θ)

)
dκ (2.30)

Gyz = Gzy =
− sin(θ)
(4πω)

∫ ∞

κ=0
iκ2 J1(κr)e−

√
κ2− iω

ν |ẑ|dκ (2.31)

Gzz =
1

(4πω)

∫ ∞

κ=0

κ3√
iω
ν − κ2

J0(κr)e−
√

κ2− iω
ν |ẑ|dκ (2.32)

2.3.3 Case N 6= 0

We now take into account the buoyancy frequency N. The Gij coefficients are more com-
plicated, but the strategy for their computation is still the same. I will still use the residue
theorem for the integration over kz. For the part N 6= 0, the integrand has singularities
in the complex plane only where the denominator α.β = (−iω |k|2 + ν |k|4 + N2

iω (k2
z −

|k|2).(−iω |k|2 + ν |k|4) = 0. Solving α = ν |k|4 − iω |k|2 − N2κ2

iω = 0, we find that

|k|20 =
iω+

√
4νκ2N2

iω −ω2

2ν . We will only take this solution among the two possible, because
this one gives us back the good coefficient for N = 0. Writing 1

αβ = a
α + b

β , we finf that

a = −b = iω
κ2N2 . Using the residue theorem for the integration over kz and the same strat-

egy for the integration over φ, we can finally compute all the Gij coefficients. Defining

A(κ) =
√
|k|20 − κ2e−

√
κ2−|k|20|ẑ| and B(κr) =

√
iω
ν − κ2e−

√
κ2− iω

ν |ẑ|, we find:

Gxx = Gxx(N = 0) +
∫ ∞

κ=0

κ3

8π
(J0(κr)− cos(2θ)J2(κr))

(
iA(κr)

2ν |k|20 − iω
− B(κr)

ω

)
dκ

(2.33)
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Gxy = Gyx = Gxy(N = 0) +
∫ ∞

κ=0
κπ2 sin(2θ)J2(κr)

(
B(κr)

ω
− iA(κr)

2ν |k|20 − iω

)
dκ (2.34)

Gxz = Gxz(N = 0) +
∫ ∞

κ=0

iκ2 cos(θ)J1(κr)
8π2

 e−
√

κ2−|k|20|ẑ|

2ν |k|20 − iω
− e−

√
κ2− iω

ν |ẑ|

iω

 dκ (2.35)

Gyy = Gyy(N = 0) +
∫ ∞

κ=0

κ3

8π
(J0(κr) + cos(2θ)J2(κr))

(
iA(κr)

2ν |k|20 − iω
− B(κr)

ω

)
dκ

(2.36)

Gyz = Gyz(N = 0) +
∫ ∞

κ=0

iκ2 sin(θ)J1(κr)
8π2

 e−
√

κ2−|k|20|ẑ|

2ν |k|20 − iω
− e−

√
κ2− iω

ν |ẑ|

iω

 dκ (2.37)

Gzx,Gzy and Gzz are independant of N. We easily see that if N = 0, |k|20 = iω
ν so that

A(κ) = B(κ). We refind all the Gij coefficients for the case N = 0.

2.3.4 Integration over κ

We can’t compute the integrals over κ by hand, so I used Matlab to do the calculations. I
wrote a program in which you can enter a value for x, y, z, ω, ν, and N and the program
gives us all the Gij coefficients. Several results can be deduce from this program.

The first one is that as z become smaller, the Gij coefficients get larger. This is a conse-
quence of the divergence of the integrals in z = 0. Values for the matrix coefficients are
given in the tabular.

z=1 1.10−21

−0.0002 + 0.2555i −0.0000 + 0.0001i 0.0000 + 0.0000i
−0.0000 + 0.0001i −0.0000 + 0.0004i 0.0000 + 0.0000i
−0.0000 + 0.0000i −0.0000 + 0.0000i −0.0000 + 0.0000i


z=0.1 1.102

 0.0364− 6.0781i −1.8483 + 7.2093i 0.0022− 0.0060i
−1.8483 + 7.2093i 0.0077− 0.0606i 0.0022− 0.0060i
0.0012− 0.0047i 0.0012− 0.0047i −0.0006 + 0.0355i


z=0.01 1.109

0.0163− 4.5566i 0.0002− 0.1119i −0.0001− 0.0007i
0.0002− 0.1119i 0.0002− 0.0455i −0.0001− 0.0007i
0.0000− 0.0007i 0.0000− 0.0007i 0.0000− 0.0009i


Table 2.1: Green Function values for different z. All other parameters are equal to 1

The second one is the influence of the frequency ω. As ω become larger, the Gij coeffi-
cients get larger too.
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ω = 1 1.102

 0.0364− 6.0781i −1.8483 + 7.2093i 0.0022− 0.0060i
−1.8483 + 7.2093i 0.0077− 0.0606i 0.0022− 0.0060i
0.0012− 0.0047i 0.0012− 0.0047i −0.0006 + 0.0355i


ω = 10

−0.0295 + 0.0041i 0.0894 + 0.1282i 0.0043 + 0.0020i
0.0894 + 0.1282i −0.0253 + 0.0056i 0.0043 + 0.0020i
0.0043 + 0.0020i 0.0043 + 0.0020i −0.0678− 0.0141i


ω = 104

−0.0003− 0.0010i 0.0001 + 0.0000i −0.0001− 0.0002i
0.0001 + 0.0000i −0.0003− 0.0010i −0.0001− 0.0002i
0.0001− 0.0002i −0.0001− 0.0002i −0.0002− 0.0000i


Table 2.2: Green Function values for different ω, with z = 0.1. All other parameters are
equal to 1

The third one concerns the viscosity. As ν become larger, the Gij coefficients get larger
too. And finally, we can see the influence of the stratification. As N become larger, i.e the
fluid is more and more stratified, the Gij coefficients get larger too.

2.4 Calculation of the Green function coefficients for the
stress tensor

In section 2.2, I have shown that the Fourier Transform of each coefficients for the stress
tensor is:

T̂ijk(k, ω) = 8π

(
N2ρ0

ω|k|2
kzĜzkδij −

ρ0

i |k|2
kkδij +

i
8π

(k jĜik + kiĜjk)

)
(2.38)

To compute the Tijk coefficients, the principle is exactly the same than the one for the
Gij coefficients. For instance, for Txxz, we have:

T̂xxz(k, ω) = 8π

(
N2ρ0

ω|k|2
kzĜzx −

ρ0

i |k|2
kz +

i
4π

kxĜxz

)
(2.39)

Using the residue theorem, we find that the integral∫ ∞

z=−∞
kzĜzxdkz =

∫ ∞

z=−∞

−kxk2
z

−iω |k|2 + ν |k|4
dkz (2.40)

is equal to zero (the integrand has singularities for |k|2=0). The principal value of the
integral over kz of the second term is also equal to zero. Finally, we have:

Txxz =
1

(2π)3

∫ ∞

κ=0

∫ 2π

φ=0

∫ ∞

kz=−∞
2ikxĜxzκdκdφdkz (2.41)
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The integrations over κ and φ are made with the principle I have developed before.
After the numerical integrations over κ for each coefficient, we now have all the coeffi-
cients of G and T. We are now going to see how we can use my results to compute the
velocity at any point.
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Chapter 3

The boundary integral method

3.1 The Lorentz reciprocity relation

Let’s consider u and u’, two solutions of the Navier-Stokes equation, associated to the
stress tensors σ and σ′. The Lorentz reciprocity relation is:

∂

∂xj
(u′iσij − uiσ

′
ij) = 0 (3.1)

This relation is essential to established the boundary-integral equation. The purpose
of my work in this section is to see what becomes this relation for a very general case,
i.e for viscous internal gravity waves, in a fluid in rotation and with a force f. Using the
continuity equation, we easily show that

∂

∂xj
(u′iσij − uiσ

′
ij) = u′i

∂σij

∂xj
− ui

∂σ′ij
∂xj

(3.2)

We have for (ui, σij) and (u′i, σ′ij):

−iωui + εijk f δjzuk =
∂σij

∂xj
+

N2

iω
δizδjzuj + fi (3.3)

−iωu′i + εijk f δjzu′k =
∂σ′ij
∂xj

+
N2

iω
δizδjzu′j + f ′i (3.4)

remembering that b = N2

iω uz. f is the rotation velocity. Multiplying (3.3) by u′i and (3.4)
by ui we obtain by subtraction:

εijk f (δjzuku′i − δjzu′kui) =
∂σij

∂xj
u′i −

∂σ′ij
∂xj

ui +
N2

iω
δizδjz(u′iuj − uiu′j) + fiu′i − f ′i ui (3.5)

This gives after simplifications

∂σij

∂xj
u′i −

∂σ′ij
∂xj

ui = f ′i ui − fiu′i (3.6)
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The result I have found works only if we take -f in the equation (3.4). Indeed, we can’t
simplify the equation (3.5) if the rotation forces have the same signs. Although during my
internship, I have considerated a non-rotating fluid.

3.2 The boundary integral equation

To derive the boundary-integral representation of a viscous flow, we will apply the Lorentz
identity (3.6) that I have shown. We first select a control volume V that is bounded by the
closed surface D, as illustrated on figure (3.1). We should note that D can be composed
of fluid surfaces, or solid surfaces. In addition, we select a point x0 inside V. Using the
divergence theorem to convert the volum integral over V into a surface integral over D,
we obtain

Figure 3.1: A control volume V in the domain of flow

0 =
∫

S
(σiku′i − σ′ikui)nkdS +

∫
V
( fiu′i − f ′i ui)dV (3.7)

To develop an integral equation, we now identify u’ with the flow due to a point force
located at the point x0 by choosing f’ = g’δ(x− x0). We also take f = 0. Remembering
that the solutions are given by u′i =

1
8πµ Gijgj and σ′ik =

1
8π Tijkgj we obtain

0 =
∫

S
(σik

1
8πµ

Gijgj −
1

8π
Tijkgjui)nkdS−

∫
V

gjujδ(x− x0)dV (3.8)

We obtain

uj(x0)gj =
1

8πη

∫
S
(σikGijgj − µTijkgjui)nkdS =

[
1

8πη

∫
S
(σikGij − µTijkui)nkdS

]
gj (3.9)

Eliminating the arbitrary constant vector g we finally obtain

uj(x0) =
1

8πη

∫
S

(
σik(x)Gij(x, x0)− ηTijk(x, x0)ui(x)

)
nkdS(x) (3.10)
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We should note that if the point x0 is located outside of the volume control V we obtain

0 =
∫

S

(
σik(x)Gij(x, x0)− ηTijk(x, x0)ui(x)

)
nkdS(x) (3.11)

It will be convenient to introduce the surface force f = σn and rewrite (3.10) in the
equivalent form

uj(x0) =
1

8πη

∫
S

(
fi(x)Gij(x, x0)− ηTijk(x, x0)ui(x)

)
dS(x) (3.12)

We can finally show that (see the book Boundary integral and singularity methods for
linearized viscous flow ) if the point x0 is located right on the boundary, we have

uj(x0) =
1

4πη

∫
S

(
fi(x)Gij(x, x0)− ηTijk(x, x0)ui(x)

)
dS(x) (3.13)

Thanks to the work I have done, we have a numerical expression for Gij and Tijk. If we
have the expression for the velocity field on the boundary of the body, and the expression
of the surface force f = σ.n, we can compute u(x0) for any point x0. Unfortunately, I
didn’t have the time to compute the expression of u(x0.
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Conclusion

Internal waves in stratified fluids are generated by oscillating objects. The comprehension
of this problem became a challenge for engineers in hydrodynamics, oceanography or
meteorology. Indeed, the atmosphere and the oceans are stratified fluids. During this
internship, I derived a complete solution for the wave field due to a spherical or elliptical
object in an incompressible stratified viscous fluid. I adapted the method for the Stokes
flow exposed in the book Boundary integral and singularity methods for linearized viscous
flow to apply it for the problem of internal waves in stratified fluids. This method, the
boundary-integral method, needs the computation of the Green Functions of the flow.
During these four months, I had to find a way to compute these Functions, both anatically
and then numerically. This work took the major part of the internship, and that is why I
did not have the time to apply the method for concrete situations. The method developed
should now be applied to non-symmetrical objects.
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