

Quantum Spin Liquids: answers to questions

Leon Balents, KITP

Natal, Dec. 2011

Collaborators

Lucile Savary

Kate Ross

Bruce Gaulin

Shigeki Onoda

SungBin Lee

Hong-Chen Jiang

Outline

- What are QSLs?
- What is non-local entanglement?
- How many QSLs are there?
- Are QSLs topological?
- Are QSLs stable?
- What are the differences between quantum and classical SLs?
- How could we observe QSLs?
- Where do we look?

 The "layman's" definition: a system of spins which is correlated but does not order at T=0

- The "layman's" definition: a system of spins which is correlated but does not order at T=0
- Why we should ask for more:
 - This defines what it isn't!
 - This in itself is not interesting!
 - It misses the important physics

- Let's call a QSL a ground state of a spin system with long range entanglement
- This means a state which cannot be regarded or even approximated as a product state over any finite blocks

- Let's call a QSL a ground state of a spin system with long range entanglement
- This means a state which cannot be regarded or even approximated as a product state over any finite blocks
- Presence or absence of spin-rotational symmetry, and indeed *any* symmetry, has nothing to do with it

- Let's call a QSL a ground state of a spin system with long range entanglement
- This means a state which cannot be regarded or even approximated as a product state over any finite blocks
- Indeed, you may even have a QSL with magnetic order (c.f. Lucile's talk tomorrow)

RVB States

 Anderson (73): ground states of quantum magnets might be approximated by superpositions of singlet "valence bonds"

• Valence bond = singlet

$$|VB\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)$$

VB states

not a spin liquid

VBS

VB states

a QSL with an energy gap to break a singlet

VB states

gapless spin excitations

What is non-local entanglement?

 We can say that a state has non-local entanglement if it violates the usual scaling of entanglement entropy for product or mean-field-like states

Entanglement Entropy

• Von Neumann

 $\rho_B = \operatorname{Tr}_A \left[\rho_{A \otimes B} \right]$

 $S = -\mathrm{Tr}_B \left[\rho_B \log \rho_B\right]$

Entanglement Entropy

• Von Neumann $\rho_B = \operatorname{Tr}_A \left[\rho_{A \otimes B} \right]$ $S = -\operatorname{Tr}_B \left[\rho_B \log \rho_B \right]$

- Area law: $S \sim \sigma L^{d-1}$
 - for any product state (and any gapped GS)

Free Fermions

• A Fermi gas is a familiar example of a longrange entangled state: a product in momentum space rather than real space

$$\Psi = \prod_{k < k_F} c_k^{\dagger} |0\rangle$$

Entanglement Entropy

• Von Neumann $\rho_B = \operatorname{Tr}_A \left[\rho_{A \otimes B} \right]$ $S = -\operatorname{Tr}_B \left[\rho_B \log \rho_B \right]$

D. Gioev+I. Klich, 2006 M.M. Wolf, 2006

• Free fermions $S \sim \sigma L^{d-1} \log L$

About the largest known entanglement!

Topological phases

 A class of states with a gap to all excitations which violate the usual scaling by having entanglement entropy smaller than usual

Entanglement Entropy

• Von Neumann

 $\rho_B = \operatorname{Tr}_A \left[\rho_{A \otimes B} \right]$

 $S = -\mathrm{Tr}_B \left[\rho_B \log \rho_B\right]$

$$S_{2d} \sim \sigma L - S_{\text{topo}}$$

• Topological entanglement entropy

• e.g.
$$S_{topo} = ln(2)$$
 for $Z_2 QSL$

How many QSLs are there?

• A long-range entangled wavefunction is a complicated thing!

• Very hard to work directly with all these coefficients - is there another way?

Gutzwiller Construction

 Construct QSL state from free fermi gas with spin, with I fermion per site (S=0)

Gutzwiller Construction

 Construct QSL state from free fermi gas with spin, with I fermion per site

Projected Fermi Sea

 Entanglement entropy of projected Fermi sea seems to show the same behavior!

Yi Zhang et al, 2011

Slave particles

 Gutzwiller-type variational wavefunction uses a reference Hamiltonian

$$H_{ref} = \sum_{ij} \left[t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + \text{h.c.} + \Delta_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} + \text{h.c.} \right]$$

• Project

$$|\Psi_{var}\rangle = \prod_{i} \hat{P}_{n_i=1} |\Psi_{ref}\rangle$$

• The fermions are "slave" particles

$$\vec{S}_i = c_{i\alpha}^{\dagger} \frac{\vec{\sigma}_{\alpha\beta}}{2} c_{i\beta}$$

Gauge theory

- Such variational wavefunctions are approximate representations of ground states of an associated field theory
- This field theory consists of spinons coupled to fluctuating gauge fields
- Different QSLs are characterized at the most basic level by different gauge groups: Z₂, U(1), ...

- The number of distinct QSL phases is huge
 - e.g. X.G. Wen has classified hundreds of different QSL states all with the same symmetry on the square lattice (and this is not a complete list!)

Are QSLs topological?

- Depends what you mean by topological!
- The simplest QSLs are "topological phases"
 - A gap to excitations, having non-trivial statistics and fractional charges
 - Ground state degeneracy depending on sample topology
- Others have various gapless excitations

Classes of QSLs

- Topological QSLs
 - full gap
- U(I) QSL
 - gapless emergent "photon"
- Algebraic QSLs
 - Relativistic CFT (power-laws)
- Spinon Fermi surface QSL

+ ...

Are QSLs stable?

- Many QSLs are known to be stable to all perturbations, even those which break all possible symmetries
 - This includes all topological phases in 2 and 3 dimensions and some gapless QSLs including U(1) states in 3 dimensions
- For some others stability is less clear and may require some symmetry

Are QSLs stable?

- Some QSLs are also stable to three dimensional coupling (topological QSLs, etc.) or are intrinsically 3D (U(I) QSL) and stable
- Others (especially 2d gapless QSLs) are unstable to 3D ordering

Loop picture

 Crudely, these phases are stable because "ends" of "strings" are costly and do not modify long-distance physics if "cut" strings are short

A picture of our vacuum

A string-net theory of light and electrons

What are the differences between classical and quantum SLs?

- A QSL is a ground state: one wavefunction, while a CSL is a thermal mixture of many states
- A QSL is a distinct stable phase, while a CSL requires fine tuned degeneracy of infinitely many states
- Quantum spin liquids have non-local entanglement!

How could we observe QSLs?

- Some signatures apply to all QSLs
 - long-range entanglement (hard to measure!)
 - fractional S=1/2 "spinons" (not S=1 "triplons" like in VBS states)
- Most depend upon the particular QSL
 - e.g. measurements of spinon Fermi surface or low T thermal transport

Seeing Spinons

 A proof of principle: I d spinons have been observed in several materials by neutron scattering

Seeing Spinons

- A proof of principle: I d spinons have been observed in several materials by neutron scattering
- Basic idea

Oleg Starykh

Masanori Kohno

- "Power law" fits well to free spinon result
 - Fit determines normalization

Where do we look?

- This might be the most important question
 but mostly the subject of another talk!
- Recent years have seen a lot of progress experimentally for signs of QSLs
 - mostly this has come from searching "natural" candidates with highly geometrically frustrated lattices

Is this the landscape ?

Is this the landscape?

An Oasis?

Theoretical searches

- Theory has been, until recently, mostly limited to uncontrolled approaches or very small systems
- The most influential method has been variational Gutzwiller approach, which can at least differentiate distinct QSLs
- Relatively few material-specific predictions of QSLs (but see pyrochlore talks tomorrow)

2d DMRG

 Recent progress in DMRG promises controlled, unbiased, study of fairly realistic potential 2d QSL materials

Parity effect

On long cylinders, Z₂ QSL becomes weakly dimerized Id state when the circumference is odd, with D ~ exp(-L_y/ξ)

S.Yan *et al* (2010) kagome Heisenberg

H.-C. Jiang et al (2011) J1-J2 model

Origin of parity effect

Virtual vison pairs encircling cylinder lead to dimerization

$$\varphi_a(y+L_y) = (-1)^{aL_y}\varphi_a(y)$$

$$\psi_{\rm VBS} = (\varphi_2 + i\varphi_1)^2$$

Conclusions

- Quantum spin liquids are entirely new states of matter with remarkable long-range quantum structure
- New materials, more detailed theory, and hard work seem finally to be exposing them to experimental study