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Outline
• What are QSLs?

• What is non-local entanglement?

• How many QSLs are there?

• Are QSLs topological?

• Are QSLs stable?

• What are the differences between quantum and classical 
SLs?

• How could we observe QSLs?

• Where do we look?



What is a QSL?

• The “layman’s” definition: a system of spins 
which is correlated but does not order at 
T=0



What is a QSL?

• The “layman’s” definition: a system of spins 
which is correlated but does not order at 
T=0

• Why we should ask for more:

• This defines what it isn’t!

• This in itself is not interesting!

• It misses the important physics



What is a QSL?

• Let’s call a QSL a ground state of a spin system 
with long range entanglement 

• This means a state which cannot be regarded 
or even approximated as a product state over 
any finite blocks
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What is a QSL?

• Let’s call a QSL a ground state of a spin system 
with long range entanglement 

• This means a state which cannot be regarded 
or even approximated as a product state over 
any finite blocks

• Presence or absence of spin-rotational 
symmetry, and indeed any symmetry, has 
nothing to do with it



What is a QSL?

• Let’s call a QSL a ground state of a spin system 
with long range entanglement 

• This means a state which cannot be regarded 
or even approximated as a product state over 
any finite blocks

• Indeed, you may even have a QSL with 
magnetic order (c.f. Lucile’s talk tomorrow)



RVB States

• Anderson (73): ground states of quantum 
magnets might be approximated by 
superpositions of singlet “valence bonds”

• Valence bond = singlet

+ + … 
Ψ =

|V B� = 1√
2

(| ↑↓� − | ↓↑�)



VB states
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VBS not a spin liquid



VB states
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VBS

Short-
range
RVB

a QSL with an energy gap to break a singlet



VB states
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Short-
range
RVB

Long-
range 
RVB

gapless spin excitations



What is non-local 
entanglement?

• We can say that a state has non-local 
entanglement if it violates the usual scaling 
of entanglement entropy for product or 
mean-field-like states



Entanglement Entropy

• Von Neumann
A

BρB = TrA [ρA⊗B ]

S = −TrB [ρB log ρB ]



Entanglement Entropy

• Von Neumann

• Area law: 

• for any product state (and any gapped GS)

A
BρB = TrA [ρA⊗B ]

S = −TrB [ρB log ρB ]

S ∼ σLd−1

L



Free Fermions

• A Fermi gas is a familiar example of a long-
range entangled state: a product in 
momentum space rather than real space

c1 +c2 +c3 + · · ·

Ψ =
�

k<kF

c†k|0�

=



Entanglement Entropy

• Von Neumann

• Free fermions

• About the largest known entanglement!

A
BρB = TrA [ρA⊗B ]

S = −TrB [ρB log ρB ]

S ∼ σLd−1 logL

D. Gioev+I. Klich, 2006
M.M. Wolf, 2006

L



Topological phases

• A class of states with a gap to all 
excitations which violate the usual scaling 
by having entanglement entropy smaller 
than usual
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Entanglement Entropy

• Von Neumann

• Topological entanglement entropy

• e.g. Stopo = ln(2) for Z2 QSL

A
BρB = TrA [ρA⊗B ]

S = −TrB [ρB log ρB ] L

S2d ∼ σL− Stopo



How many QSLs are 
there?

• A long-range entangled wavefunction is a 
complicated thing!

• Very hard to work directly with all these 
coefficients - is there another way?

+ + … Ψ = c2c1



Gutzwiller 
Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · ·Ψ0 =



Gutzwiller 
Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site

• Projection removes empty and doubly 
occupied sites

Ψ = c1 +c2 +c3 + · · ·

Ψ = PGΨ0



Projected Fermi Sea

• Entanglement entropy of 
projected Fermi sea 
seems to show the same 
behavior!

3

the advantages are detailed in [20]. We benchmarked our
algorithm for three free fermion tight binding problems
on: 1) A one dimensional chain of L = 200 sites with LA

up to 100 sites, 2) An 18×18 square lattice with the linear
size LA up to 7 sites. 3) A honeycomb (graphene) lat-
tice with Dirac dispersion. We find very good agreement
with the exact results [20] that were calculated using the
correlation matrix technique [21].
Gutzwiller Projected Spin Liquid Wavefunctions: Next

we calculate Renyi entropy for the problems of our ac-
tual interest namely projected Fermi liquid wave func-
tions which are considered good ansatz for ground states
of critical spin-liquids. We analyze two different classes
of critical spin-liquids: states that at the slave-particle
mean-field level have a full Fermi surface of spinons and
those with only nodal fermions. For a triangular lat-
tice with uniform hopping trr′ = t one obtains a Fermi
surface of spinons at the mean-field level while for a
square-lattice with π flux through every plaquette (i.e.
Π!trr′ = −1) one obtains nodal Dirac fermions. We also
study the projected wave function on square lattice with
uniform hopping (and no flux).
The wave-functions for these spin-liquids are con-

structed by starting with a system of spin-1/2 fermionic
spinons frα hopping on a finite lattice of size L1 × L2
at half-filling with a mean field Hamiltonian:HMF =
∑

rr′

[

−trr′f †
rσfr′σ + h.c.

]

. The spin wave-function is
given by |φ〉 = PG|φ〉MF where |φ〉MF is the ground
state of HMF and the Gutzwiller projector PG =
∏

i (1− ni↑ni↓) ensures exactly one fermion per site. The
sign-structure of the projected wave-function depends
markedly on the underlying lattice. For a bipartite lattice
with trr′ non-zero and real only for the opposite sublat-
tices, one can prove that the wave-function satisfies the
Marshall sign rule[20]. Thus, for a bipartite lattice, one
only needs to calculate 〈SwapA,mod〉 since 〈SwapA,sign〉
trivially equals unity. The projected wave-function for
the square lattice with and without π-flux (as well as that
for the one-dimensional Haldane-Shastry state) satisfies
the Marshall’s sign rule while that for the triangular lat-
tice doesn’t. We discuss these three cases separately. The
one dimensional case was previously discussed in [22].
Triangular lattice: As mentioned above the mean-field

ansatz describes a spin-liquid with spinons hopping on a
triangular lattice. We consider a lattice with total size
18× 18 on a torus and the region A of square geometry
with linear size LA upto 8 sites. We find a clear signa-
ture of LA logLA scaling in Renyi entropy (Fig. 1). This
is rather striking since the wave-function is a spin wave-
function and therefore could also be written in terms of
hard-core bosons. This result strongly suggests the pres-
ence of an underlying spinon Fermi surface. In fact the
coefficient of the LA logLA term is rather similar before
and after projection. This observation may be rational-
ized by picturing a two dimensional Fermi surface as a
collection of many independent one dimensional systems

FIG. 1: Renyi entropy data for projected and unprojected
Fermi sea state on the triangular lattice of size 18 × 18 with
LA = 1 . . . 8. Note, projection barely modifies the slope,
pointing to a Fermi surface surviving in the spin wavefunc-
tion. We also separately plot S2,sign and S2,mod (as defined
in the text) for the projected state, the former dominates at
larger sizes.

in momentum space, each giving rise to a logL contri-
bution. Gutzwiller projection then just removes a single
charge degree of freedom.
It is interesting to compare the contribution to S2

from S2,sign ≡ − log(
〈

SwapA,sign

〉

) and S2,mod ≡
− log(

〈

SwapA,mod

〉

) separately. Numerically, S2,sign ap-
pears to be responsible for the logarithmic violation of
the area law (Fig. 1). This suggests that the sign struc-
ture of the wavefunction is crucial at least in this case.
The area-law violation of the Renyi entropy for

Gutzwiller projected wave-functions substantiates the
theoretical expectation that an underlying Fermi surface
is present in the spin wavefunction.
Square lattice with π flux : The mean-field ansatz con-

sists of spinons with Dirac dispersion around two nodes,
say, (π/2,π/2) and (π/2,−π/2) (the locations of the
nodes depend on the gauge one uses to enforce the π
flux). The projected wave-function has been proposed in
the past as the ground state of an algebraic spin liquid.
The algebraic spin-liquid is believed to be describable by
a strongly coupled conformal field theory of Dirac spinons
coupled to a non-compact SU(2) gauge field [6, 11]. Be-
cause of this the algebraic spin-liquid has algebraically
decaying spin-spin correlations. We verify this explicitly
for the projected wavefunction using Variational Monte
Carlo on a 36×36 lattice [20]. This state is different from
that in Ref. [23], where Majorana fermions are coupled
to a discrete Z2 gauge field making them effectively free
at low energies, in contrast to our critical state.
Square lattice being bipartite, the projected wavefunc-

Yi Zhang et al, 2011

Ψ = PG



Slave particles
• Gutzwiller-type variational wavefunction 

uses a reference Hamiltonian

• Project

• The fermions are “slave” particles

Href =
�

ij

�
tijc

†
iαcjα + h.c. + ∆ijc

†
i↑c

†
j↓ + h.c.

�

|Ψvar� =
�

i

P̂ni=1|Ψref �

�Si = c†iα
�σαβ

2 ciβ



Gauge theory

• Such variational wavefunctions are 
approximate representations of ground 
states of an associated field theory

• This field theory consists of spinons 
coupled to fluctuating gauge fields

• Different QSLs are characterized at the 
most basic level by different gauge groups: 
Z2, U(1), ...



The “landscape”

• The number of distinct QSL  phases is huge

• e.g. X.G. Wen has classified hundreds of 
different QSL states all with the same 
symmetry on the square lattice (and this is 
not a complete list!)



Are QSLs topological?

• Depends what you mean by topological!

• The simplest QSLs are “topological phases”

• A gap to excitations, having non-trivial 
statistics and fractional charges 

• Ground state degeneracy depending on 
sample topology

• Others have various gapless excitations



Classes of QSLs

• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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Are QSLs stable?

• Many QSLs are known to be stable to all 
perturbations, even those which break all 
possible symmetries

• This includes all topological phases in 2 
and 3 dimensions and some gapless QSLs 
including U(1) states in 3 dimensions

• For some others stability is less clear and 
may require some symmetry



Are QSLs stable?

• Some QSLs are also stable to three 
dimensional coupling (topological QSLs, etc.) 
or are intrinsically 3D (U(1) QSL) and stable

• Others (especially 2d gapless QSLs) are 
unstable to 3D ordering



Loop picture

• Crudely, these phases are stable because 
“ends” of “strings” are costly and do not 
modify long-distance physics if “cut” strings 
are short



What are the differences between 
classical and quantum SLs?

• A QSL is a ground state: one wavefunction, 
while a CSL is a thermal mixture of many 
states

• A QSL is a distinct stable phase, while a 
CSL requires fine tuned degeneracy of 
infinitely many states

• Quantum spin liquids have non-local 
entanglement!



How could we observe 
QSLs?

• Some signatures apply to all QSLs

• long-range entanglement (hard to 
measure!)

• fractional S=1/2 “spinons” (not S=1 
“triplons” like in VBS states)

• Most depend upon the particular QSL

• e.g. measurements of spinon Fermi 
surface or low T thermal transport



Seeing Spinons
• A proof of principle: 1d spinons have been 

observed in several materials by neutron 
scattering

• Basic idea

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1 leads to a sharp peak

at ω=ε(k)



Seeing Spinons
• A proof of principle: 1d spinons have been 

observed in several materials by neutron 
scattering

• Basic idea

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak 
with ω=ε(k’)

+ε(k-k’)



Cs2CuCl4

• “Power law” fits well to free spinon result
• Fit determines normalization

R. Coldea

Oleg Starykh Masanori 
Kohno



Where do we look?

• This might be the most important question 
- but mostly the subject of another talk!

• Recent years have seen a lot of progress 
experimentally for signs of QSLs

• mostly this has come from searching 
“natural” candidates with highly 
geometrically frustrated lattices



Is this the landscape ?



Is this the landscape?



An Oasis?

γ-ZnCu3(OH)6Cl2
Cu3V2O7(OH)2·2H2O

BaCu3V2O3(OH)2Ba3CuSb2O9

Na4Ir3O8

Ba2YMoO6

Yb2Ti2O7

Monoclinic, C2/m 

a = 10.607!, b = 5.864!, c = 7.214! 

! = 94.90° 

2.94! 

3.03!  Cu1 – Cu2 

Cu2 – Cu2 

Cu2+ 

V5+ 

O2- 

!Cu2–Cu1–Cu2 = 57.87 

!Cu1–Cu2–Cu2 = 61.06 

•!Good two dimensionality 

•!No disorder between Cu2+ and V5+ ions 

•!Difference between J1 and J2 may be smaller than 20 % 

Ref.) M. A. Lafontaine et al., JSSC85, 220 (1990);  Z. Hiroi et al., JPSJ70, 3377 (2001). 

triangular kagome 3D

κ-(ET)2Cu2(CN)3

EtMe3Sb[Pd(dmit)2]2



Theoretical searches

• Theory has been, until recently, mostly 
limited to uncontrolled approaches or very 
small systems

• The most influential method has been 
variational Gutzwiller approach, which can 
at least differentiate distinct QSLs

• Relatively few material-specific predictions 
of QSLs (but see pyrochlore talks 
tomorrow)



2d DMRG

• Recent progress in DMRG promises 
controlled, unbiased, study of fairly realistic 
potential 2d QSL materials
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C〉, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
〈C|"Si|C〉 = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)

0 0.05 0.1 0.15 0.2
1/c

-0.44

-0.435

-0.43
E/

sit
e

2D (est.)

Torus

DMRG

MERA

Upper Bound

Cylinder

Series (HVBC)
DMRG, Cyl, Odd
DMRG, Cyl, Even
DMRG, Torus (Jiang...)
Lanczos, Torus

FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the

S. Yan et al, 2010
Z2 QSL on 

kagome lattice



Parity effect

• On long cylinders, Z2 QSL becomes weakly 
dimerized 1d state when the circumference is 
odd, with D ~ exp(-Ly/ξ)
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 0.0
-0.15

-0.03
0.03

FIG. 6: Ground state energy patterns for a YC10 (top) and
a YC9-2 cylinder. The colors of the triangles, and their in-
tensities, indicate the deviation of the sum of the spin-spin
correlations on the three bonds forming the triangle from 3e0,
where we take e0 = −0.219.

lattice spacings. Unlike the HVBC, this diamond VBC
evolves smoothly into the spin liquid without any phase
transition as one changes the strengths of the exchanges
appropriately to favor it (we call this “pinning it”). For
the even cylinders on which this diamond VBC does fit,
this is very useful, as it allows a careful production of the
spin liquid, by approaching it in a controlled and smooth
fashion from this diamond VBC.
This diamond pattern was essential in extracting our

most accurate ground state energy estimate for YC12.
Applying the pinning pattern of the lower panel of Fig.
5 reduces the entanglement of the resulting state, allow-
ing us to obtain more accurate energies. The pinning
applies an equal number of positive and negative terms,
so the energy dependence on the pinning coefficient η
has no linear term near η = 0 for the uniform spin liq-
uid. After verifying this on several cylinders and de-
termining that a nearly pure quadratic behavior held
for η ≤ 0.02, we extrapolated E(η) using the simple
formula E(0) = 4/3E(0.01) − 1/3E(0.02). This proce-
dure reduced our energy uncertainty for YC12 by a fac-
tor of about 5. (The standard approach of simply ex-
trapolating to zero truncation error at zero pinning gave
−0.4375(14).)
The infinitely long cylinders may be viewed as one-

dimensional systems with a unit cell containing multi-
ple spins. For those “even” cylinders that are com-
patible with the diamond VBC, this unit cell contains
an even number of spins (e.g., for YC8 it contains 12
spins). In these cases the ground state of the infinite
cylinder appears to be nondegenerate and gapped. But
for the “odd” cylinders that are not compatible with
the diamond VBC, the unit cell contains an odd num-
ber of spins, and the Lieb-Schultz-Mattis theorem says
the ground state must be degenerate.28 We find that the
ground states on these odd cylinders weakly break trans-

0 0.05 0.1 0.15 0.2
1/c

0

0.05

0.1

0.15

0.2

G
ap

YCn-2
YC6, YC10
Even

Triplet

Singlet

FIG. 7: Spin triplet (solid symbols) and singlet (hollow sym-
bols) gaps for various cylinders with circumferences c.

lational invariance, spontaneously doubling the unit cell,
and this produces a pair of degenerate ground states, still
with a gap to higher excited singlet states. The symme-
try breaking is in a “striped” pattern that is shown in
Fig. 6. For YC6 and YC10 the stripes run around the
circumference, while for the other odd spiral cylinders
the stripes are spirals.

VI. GAPS

To explore the low-lying excited states on our cylinders
we use the following DMRG procedure: first target only
one state, and sweep enough to obtain a high-accuracy
ground state. Then restrict the range of bonds which
are updated in the DMRG sweeps to the central half of
the sample, and now target the two lowest-energy states,
again sweeping to high accuracy, but keeping the end re-
gions of the samples locally in the ground state. This re-
stricted sweeping prevents the low-lying excitations from
being bound to the ends of the sample. This technique is
particularly important for obtaining the singlet gap. For
the triplet gap, we can also apply magnetic fields on the
ends to prevent any edge excitations from appearing and
hiding the bulk gap. For the triplet, we can also target
both states together, one with total Sz = 0 and the other
with Sz = 1, or run the two states separately. These dif-
ferent approaches allowed for fairly independent checks
on the results; in addition, we also varied the lengths and
how quickly the number of states kept was increased. The
results for these gaps are presented in Table I. Getting
gaps is more demanding than getting ground state ener-
gies, so our gap estimates do not go to as wide cylinders
as do our ground state estimates.
Our gap results for the singlet and triplet gaps differ

in an interesting way from what is known about the gaps
from exact diagonalization.25,29

We believe that we have found good evidence for a
nonzero singlet gap of about 0.04 or 0.05 in the 2D sys-
tem. This is quite different from the exact diagonaliza-
tion results, where there are many lower-lying singlets,

3 5 7 9
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S. Yan et al (2010) H.-C. Jiang et al (2011)
kagome Heisenberg J1-J2 model



Origin of parity effect

Virtual vison pairs 
encircling cylinder lead 

to dimerization

ϕa(y + Ly) = (−1)aLyϕa(y)

ψVBS = (ϕ2 + iϕ1)
2



Conclusions

• Quantum spin liquids are entirely new 
states of matter with remarkable long-
range quantum structure

• New materials, more detailed theory, and 
hard work seem finally to be exposing 
them to experimental study


