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Experimental motivation

Hexagonal Heisenberg InCuy/3V;,303 —  short-range AF order T < 50K




e BisMnsO12(NO3) — S = 3/2 honeycomb frustrated Heisenberg no
magnetic order down to 0.4 K

e Family of compounds BaMy(XOy4)s with M = Co,Ni and X = P, As
—  frustrated honeycomb lattices with spin S = 1/2 for Co and S =1
for Ni

e Spin-Gap System Na3CusSbOg — Distorted J; — J3 honeycomb under
debate



Hubbard-honeycomb at half-filling
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Z. Y. Meng et al, Nature 2010
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Dimer-dimer correlations
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Compared to the half-filled Hubbard J; ~ t?/U, Jo ~ t*/U?

Higher orders (J3, plaquette, etc.) are O(a?)

Motivation

From experiments: Study of the frustrated Heisenberg on honeycomb

From theory: How to get disorder in a pure spin system on honeycomb

Is it possible or does one need doubly occupied states?



The model
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Classical phase diagram (Lhuillier et al)
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Neel phase : Colinear phase




Quantum J; — J> (Mulder et ol 2010, Mattsson-Frojdh PRB 1994 )

Clasically: Néel — degenerate spiral at Jy/J; = 1/6

In the quantum case: Néel (Baskaran et al) — to

From bond operators for Jo/J; = 1/4
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The method: Schwinger bosons

Spin operators at each site are replaced by two species of bosons via:

St = bl.bzy

Sz = b;¢bfT

. 1

Sz = §(b;beT—b;¢bf¢)

Which is a faithful representation of the SU(2) algebra if one takes into
account the constraint

25 = b;Tbng+b;¢b£¢
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The spin-spin interaction can be written as

Sf : Sg —. Bj;» Bf,g . —A;,gAf,g

)

where Az ;7 and B;g are the SU(2) invariants defined as

Af,g = %Zo_bf,aby",—a

1
T = T .
Bf,g -9 E :bf,abyaff

z.g intersite coherent hopping of Schwinger bosons
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Advantages

Fluctuations can be included leading to interesting QFT's
Only one constraint for a generic S
Possible generalization to Sp(/N) adapted for a large N expansion

Combine large S and N

For ordered regions, MF provides already a good approximation.
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SBMFT procedure

Given J5/J; — classical values of the MF parameters —

e —> solve the constraint equation — )\(()O‘)

e — compute the energy — new values for the MF parameters

e — repeated until the energy and the MF parameters converge.

After convergence — compute the energy, spin-spin correlations and the

gap of the excitations.
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Results

Phase diagram in 1/5

classical b
critical
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Thermodynamic limit from systems up to 3200 sites
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Evolution of the quasiparticle gap from SBMFT
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Spin-Spin correlation function vs distance X in the zig-zag direction.
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Néel LRO for 0 < J5/J; < 0.55 and SRO for 0.55 < Jy/J; < 0.6
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Ground state energy per unit cell as a function of the frustration for 32 sites
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Antiferromagnetic mean field parameters A vs. Jy/J; (SBMFT (top) vs
ED (bottom))
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Discontinuity around J2/J; = 0.6 —
first order phase transition between

Collinear LRO and Néel SRO

This discontinuous behavior i1s not a
finite size effect

The same occurs for the ferromagnetic
parameters B

19



Nature of the disordered phase?

Columnar Plaquette Staggered
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Possible candidates are

Phase diagram
Albuquerque ¢t ol PRB 2011)
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Magnetization around the quantum disordered region

Two regions seem to emerge: plateaux at {0,1/3,2/3} and {0,1/2}
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Classical spins in a magnetic field for J; =0

h = 0:

e Classically: Néel for Jo < J1/6 to infinite IC spiral states for Jo > J1/6

e Jo = J1/2 separates two different spirals

e Special degeneracy since the Hamiltonian can be written as a sum of the form

J1 92 1
H = ct — S, — —h-S
Ce+42(v J1 v)

\Y

+— Z( ——h SA>

Hence the GS's satisfy

on every A and V
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Fluctuations

e Mulder et al in PRB 2010

Quantum fluctuations select some directions (spiral OBD) — Valence bond
solid (?) "nematic”

T restores the SU(2) symmetry, but the discrete rotational symmetry of the
lattice remains broken

Transition to the PM phase in the universality class of the classical three-state

Potts (clock) model in 2D
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e Albuquerque et alin PRB 2011

Js = 0: Néel — plaquette — collinear magnetically ordered
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What happens if we turn on a magnetic field?

e For small fields, as in Mulder et al, fluctuations restore rotational order
but leave the Z3 discrete symmetry in XY broken

e The interesting thing is that for sufficiently large field, a transition occurs
to a completely symmetric phase

e i.c. the broken discrete symmetry is restored in a finite magnetic field
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e MonteCarlo snapshots
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e Susceptibility around J5/J; = 0.5
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e Peaks of the structure factor
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e [ = 0 susceptibility vs. T" and Binder cumulant
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Conclusions and future work

Heisenberg on the hexagonal lattice shows an interesting disordered phase

which could be relevant to some materials
Schwinger-bosons technique gives encouraging results

Include fluctuations:

— On top of SBMFT
— Using bond operators, given the structure of the different GS's

Interesting magnetization properties: OBD, pseudo-plateau, emerging

symmetries, ...

Connection with the half-filled Hubbard
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