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Outline

Disorder in quantum magnets

— as a distraction

— as a probe

— as a source of new physics

Kitaev’s honeycomb lattice model

— from spins to fluxes and free fermions

Disorder in the Kitaev model

— vacancies and moment formation

— weak exchange randomness and soft excitations



Disorder as a distraction

Example: S = 1/2 kagome system ZnCu3(OH)6Cl2

Curie-like bulk susceptibility at low T Finite local susceptibility

Helton et al, PRL 98 Mendels et al, PRL 100

Cu ↔ Zn substitution ?



Disorder as a probe

Example: formation of spin-half moments in Haldane state

if spin-one Heisenberg chain is cut by vacancy



New physics from disorder

Example:

Random singlet phases from weak exchange randomness

in spin-half antiferromagnetic Heisenberg chain

Curie-like susceptibility at low T

χ ∼ 1/[T ln2 T ]

Dasgupta & Ma (1980), Bhatt & Lee (1982), D. Fisher (1994)



Kitaev’s honeycomb model

Spin S = 1/2 quantum magnet

with strong ‘spin-orbit’ anisotropy
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A. Kitaev, Ann. Phys. 321, 2 (2006)

Suggested realisation:

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009) A2IrO3 A=Na or Li



Emergent degrees of freedom

Static fluxes
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Emergent degrees of freedom

Static fluxes . . . and . . . free fermions
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Tight binding model

hopping magnitudes Jx, Jy & Jz

signs set by Z2 fluxes

Spin correlations ultra-short-range: 〈σα
j σα

k 〉 = 0 for |rj − rk| > 1



Ground state phase diagram
• Gapped liquid phases for Jz > Jx + Jy and permutations

Weakly coupled dimers – both sectors gapped

• Gapless liquid phase around Jx = Jy = Jz ≡ J

Dirac cones in fermion spectrum – flux sector gapped

gapped
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Introducing disorder

Exchange randomness

• Weak disorder δJα ' Jα

generated by random strains

Gives random hopping

for fermion excitations



Introducing disorder

Exchange randomness Vacancies

• Weak disorder δJα ' Jα

generated by random strains

Gives random hopping

for fermion excitations
r

p q

• Break dimers for Jz ( Jx, Jy

– consequences?

• Fuse fluxes

Wtot = Wp · Wq · Wr

– consequences?



Response to a Zeeman field
Clean system: Zeeman energy HZ = −

∑

k
$h · $σk

makes fluxes dynamical: [HZ ,Wp] )= 0

〈En|HZ |Em〉 )= 0 only between distinct flux sectors

Gap between flux sectors ⇒ finite susceptibility



Response to a Zeeman field
Clean system: Zeeman energy HZ = −

∑

k
$h · $σk

makes fluxes dynamical: [HZ ,Wp] )= 0

〈En|HZ |Em〉 )= 0 only between distinct flux sectors

Gap between flux sectors ⇒ finite susceptibility

System with vacancy: solvable with leading part of HZ

HZ = H(0)
Z + H(1)

Z

[

H(0),Wp

]

= 0 for all p.

H(0)
Z = −hxσx

1 − hyσ2
y − hzσz

3

yhx

hz

h

missing interactions & fusion of flux sectors

⇒ enhanced susceptibility & static fluxes at leading order



Isolated vacancy in gapped phase

Free moment formed

Zero T : 〈σz〉 = geff sgn(hz) Finite T : χ ∝ 1/T

0
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• Moment localised on single site

r

p q

• Magnitude varies with Jα

geff → 1 for Jz ( Jx, Jy

geff → 0 at boundary

with gapless phase



Interaction between vacancy moments

Gapped phase

Fermion zero modes

localised in wedges

A-sublattice B-sublattice

Two vacancies on opposite sublat-

tices

0

h

E

Overlapping modes ⇒ weakly coupled moments



Interaction between vacancy moments
Gapped phase

Fermion zero modes

localised in wedges

A-sublattice B-sublattice

Overlapping modes

⇒ weakly coupled moments

Finite vacancy density ⇒

Random bipartite hopping problem

1D version well-studied
t1 2 3 4t t t

Dyson singularity

in density of states

ρ(E) ∼ 1/[E(ln E)3]

What happens

for Kitaev problem?



Interaction between vacancy moments
Gapped phase Finite vacancy density

Fermion zero modes

localised in wedges

A-sublattice B-sublattice

Overlapping modes

⇒ weakly coupled moments

Many low-energy excitations

ρ(E) ∼ 1/[E(ln E)x]
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χ(T ) ∼ 1/[T | ln T |x]

with x ≈ 1.7



Vacancy susceptibility in the gapless phase
No free moments but spins next to vacancy easily polarised

• Ground state without vacancies is in zero flux sector

• Vacancies bind fluxes — Consequences?



Vacancy susceptibility in the gapless phase
No free moments but spins next to vacancy easily polarised

• Ground state without vacancies is in zero flux sector

• Vacancies bind fluxes — Consequences?

Single vacancy with flux

χ ∝ ln(1/T )

Zero-flux sector

χ ∝ [T ln(1/T )]−1

y

zm
mx m Each component of $m

located on different site



Weak exchange randomness in gapless phase

Fermionic excitations are massless Dirac particles

Exchange disorder translates into

random vector potential in Dirac eqn



Weak exchange randomness in gapless phase

Fermionic excitations are massless Dirac particles

Exchange disorder translates into
random vector potential in Dirac eqn

Power-law behaviour
exponents vary with disorder strength

Ludwig et al 1994

With ∆ ∝ 〈(δJ)2〉 find

• Density of states ρ(E) ∝ |E|(1−∆)/(1+∆)

• Hence heat capacity C ∝ T 2/(1+∆)



Summary

• Can use Kitaev honeycomb model as lab for theorists
— model remains tractable with disorder

• Disorder does not alter nature of degrees of freedom
— fluxes and free fermions

• But ground states, excitation spectra

and response functions all changed
— flux bound to vacancies

— moment formation and singular susceptibility

— soft excitations from vacancies or exchange disorder



From spins to fermions

— sketch of Kitaev’s solution

Represent each spin using 4 Majorana fermions (bc = −cb, c† = c)

$σ → {c, bx, by, bz} with σα
k = i bα

k ck so σα
j σα

k = bα
j bα

kcjck

• Resulting H is quadratic in ck ’s

• [H, ûjk] = 0 with ûjk = ib
αjk

j b
αjk

k

H = i
4

∑

jk Âjkcjck

Âjk =

{

2Jαjk
ûjk j, k neighbours

0 otherwise

– honeycomb tight binding model
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Project to get physical states


