EFFECTS OF DISORDER IN A QUANTUM SPIN LIQUID

Adding dirt to the Kitaev honeycomb model

John Chalker

Physics Department, Oxford University

Adam Willans, Oxford & Roderich Moessner, Dresden

Phys Rev Lett 104, 237203 (2010) and Phys Rev B 84, 115146 (2011)

Outline

Disorder in quantum magnets

- as a distraction
- as a probe
- as a source of new physics

Kitaev's honeycomb lattice model

- from spins to fluxes and free fermions

Disorder in the Kitaev model

vacancies and moment formation

weak exchange randomness and soft excitations

Disorder as a distraction

Example: S = 1/2 kagome system ZnCu₃(OH)₆Cl₂

Curie-like bulk susceptibility at low T

Finite local susceptibility

Helton et al, PRL 98

Mendels et al, PRL 100

 $\textbf{Cu} \leftrightarrow \textbf{Zn substitution ?}$

Disorder as a probe

Example: formation of spin-half moments in Haldane state

if spin-one Heisenberg chain is cut by vacancy

New physics from disorder

Example:

Random singlet phases from weak exchange randomness in spin-half antiferromagnetic Heisenberg chain Curie-like susceptibility at low T

$$\chi \sim 1/[T\ln^2 T]$$

Dasgupta & Ma (1980), Bhatt & Lee (1982), D. Fisher (1994)

Kitaev's honeycomb model

A. Kitaev, Ann. Phys. 321, 2 (2006)

Suggested realisation:

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009) A_2 IrO₃ A=Na or Li

Emergent degrees of freedom

Static fluxes

$$W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$$
$$[W_p, H] = 0$$
$$[W_p, W_q] = 0$$

Emergent degrees of freedom

Static fluxes ... and ... free fermions

$$W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$$
$$[W_p, H] = 0$$
$$[W_p, W_q] = 0$$

Tight binding model

hopping magnitudes J_x , J_y & J_z signs set by Z_2 fluxes

Spin correlations ultra-short-range: $\langle \sigma_j^{\alpha} \sigma_k^{\alpha} \rangle = 0$ for $|\mathbf{r}_j - \mathbf{r}_k| > 1$

Ground state phase diagram

• Gapped liquid phases for $J_z > J_x + J_y$ and permutations

Weakly coupled dimers – both sectors gapped

• Gapless liquid phase around $J_x = J_y = J_z \equiv J$

Dirac cones in fermion spectrum – flux sector gapped

Introducing disorder

Exchange randomness

• Weak disorder $\delta J_{lpha} \ll J_{lpha}$ generated by random strains

Gives random hopping

for fermion excitations

Introducing disorder

Exchange randomness

Vacancies

- Weak disorder $\delta J_{lpha} \ll J_{lpha}$ generated by random strains
- Gives random hopping for fermion excitations

- Break dimers for $J_z \gg J_x, J_y$
 - consequences?
- Fuse fluxes

$$W_{\rm tot} = W_p \cdot W_q \cdot W_r$$

- consequences?

Response to a Zeeman field

Clean system: Zeeman energy $\mathcal{H}_Z = -\sum_k \vec{h} \cdot \vec{\sigma}_k$ makes fluxes dynamical: $[\mathcal{H}_Z, W_p] \neq 0$

 $\langle E_n | \mathcal{H}_Z | E_m \rangle \neq 0$ only between distinct flux sectors

Gap between flux sectors \Rightarrow finite susceptibility

Response to a Zeeman field

Clean system: Zeeman energy $\mathcal{H}_Z = -\sum_k \vec{h} \cdot \vec{\sigma}_k$ makes fluxes dynamical: $[\mathcal{H}_Z, W_p] \neq 0$

 $\langle E_n | \mathcal{H}_Z | E_m \rangle \neq 0$ only between distinct flux sectors

Gap between flux sectors \Rightarrow finite susceptibility

System with vacancy: solvable with leading part of \mathcal{H}_Z

missing interactions & fusion of flux sectors

 \Rightarrow enhanced susceptibility & static fluxes at leading order

Isolated vacancy in gapped phase

Free moment formed

Finite T: $\chi \propto 1/T$ **Zero** T: $\langle \sigma^z \rangle = g_{\text{eff}} \operatorname{sgn}(h_z)$ • Moment localised on single site Ε р q 0 • Magnitude varies with J_{α} $g_{\text{eff}} \rightarrow 1$ for $J_z \gg J_x, J_y$ h $g_{\rm eff} \rightarrow 0$ at boundary

with gapless phase

Interaction between vacancy moments

Gapped phase

Overlapping modes \Rightarrow weakly coupled moments

Interaction between vacancy moments

Gapped phase

Fermion zero modes localised in wedges

A-sublattice **B-sublattice**

Overlapping modes

 \Rightarrow weakly coupled moments

Finite vacancy density \Rightarrow

Random bipartite hopping problem

1D version well-studied

Dyson singularity in density of states

 $\rho(E) \sim 1/[E(\ln E)^3]$

What happens for Kitaev problem?

Interaction between vacancy moments

Gapped phase

Finite vacancy density

Fermion zero modes

localised in wedges

A-sublattice B-sublattice

Overlapping modes

 \Rightarrow weakly coupled moments

Many low-energy excitations

 $\rho(E) \sim 1/[E(\ln E)^x]$

Vacancy susceptibility in the gapless phase

No free moments but spins next to vacancy easily polarised

- Ground state without vacancies is in zero flux sector
- Vacancies bind fluxes Consequences?

Vacancy susceptibility in the gapless phase

No free moments but spins next to vacancy easily polarised

- Ground state without vacancies is in zero flux sector
- Vacancies bind fluxes Consequences?

Single vacancy with flux

Zero-flux sector

 $\chi \propto \ln(1/T)$

Each component of \vec{m} located on different site

 $\chi \propto [T \ln(1/T)]^{-1}$

Weak exchange randomness in gapless phase

Fermionic excitations are massless Dirac particles

Exchange disorder translates into random vector potential in Dirac eqn

Weak exchange randomness in gapless phase

Fermionic excitations are massless Dirac particles

Exchange disorder translates into

random vector potential in Dirac eqn

Power-law behaviour

exponents vary with disorder strength

Ludwig et al 1994

With $\Delta \propto \langle (\delta J)^2
angle$ find

- \bullet Density of states $\,\rho(E) \propto |E|^{(1-\Delta)/(1+\Delta)}$
- \bullet Hence heat capacity $\,C \propto T^{2/(1+\Delta)}$

Summary

• Can use Kitaev honeycomb model as lab for theorists

- model remains tractable with disorder
- Disorder does not alter nature of degrees of freedom
 - fluxes and free fermions
- But ground states, excitation spectra

and response functions all changed

- flux bound to vacancies
- moment formation and singular susceptibility
- soft excitations from vacancies or exchange disorder

From spins to fermions

- sketch of Kitaev's solution

Represent each spin using 4 Majorana fermions $(bc = -cb, c^{\dagger} = c)$ $\vec{\sigma} \to \{c, b^x, b^y, b^z\}$ with $\sigma_k^{\alpha} = \mathrm{i} \, b_k^{\alpha} c_k$ so $\sigma_j^{\alpha} \sigma_k^{\alpha} = b_j^{\alpha} b_k^{\alpha} c_j c_k$ • Resulting \mathcal{H} is quadratic in c_k 's • $[\mathcal{H}, \hat{u}_{jk}] = 0$ with $\hat{u}_{jk} = \mathrm{i} b_j^{\alpha_{jk}} b_k^{\alpha_{jk}}$ $\mathcal{H} = \frac{i}{4} \sum_{ik} \hat{A}_{ik} c_i c_k$ $\hat{A}_{jk} = \begin{cases} 2J_{\alpha_{jk}}\hat{u}_{jk} & j, k \text{ neighbours} \\ 0 & \text{otherwise} \end{cases}$ bb honeycomb tight binding model **Project to get physical states**