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Ice rules in spin ice  

Spin ice materials Ho2Ti2O7, Dy2Ti207 

Magnetic ice rules 
two-in two-out

Harris et al, Phys. Rev. Lett.79, 2554-2557 (1997)
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strained to the cubic directions of the lattice [26] is regarded as some of the earliest

work on frustration, before the term had first been used to describe such a situation

by Toulouse in his work on spin glasses [27], and the pyrochlore lattice is certainly

one of the most well studied of the magnetic lattice models; however, before the

spin ice model the focus was on antiferromagnetic spins. Spin ice stands out in the

history of frustrated magnetic lattice models for being the first to exhibit frustration

with ferromagnetic interactions between spins.

The spin ice model has Ising spins similarly residing on the vertices of the py-

rochlore lattice but constrained to lie along the body centred diagonal directions

of each tetrahedron, see figure (8). The spins interact ferromagnetically under the

topological constraint that the divergence of the magnetic field in any tetrahedron

must be zero,

∇ ·M(r) = 0 (52)

This constraint has far reaching consequences and will be returned to throughout

this thesis. It is realised by ensuring that of the four spins on a tetrahedron there

are always two spins pointing in and two spins pointing out, however of the 2
4
= 16

possible spin configurations on a tetrahedron six satisfy this constraint creating a

degeneracy in the ground state of each tetrahedron. Further, as the tetrahedra share

corners only, the configuration on any tetrahedron does not uniquely determine that

of its neighbours and the degeneracy in the ground state of the lattice is extensive;

experimental evidence of this is presented in chapter (2). The inability of the lattice

to uniquely order is a signature of the frustration present; this is also in apparent

contradiction to the third law of thermodynamics and identifies a characteristic zero

point entropy associated with frustrated lattices as described above in the context

of the kagome lattice. The name spin ice is due to the exact mapping between

this model and water ice, identified by Harris and Bramwell [14, 28] which can also

be seen through the simultaneous mapping of both to the antiferromagnetic Ising

pyrochlore lattice model which Anderson originally considered [26].

The spin ice model was conceived with an effective ferromagnetic nearest neigh-
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Figure 2. The process of magnetization of Dy2Ti2O7 along the [111] direction.

The single crystals obtained were translucent yellow. DC magnetization measurements were
made using a capacitive Faraday magnetometer installed in a 3He cryostat, with a field gradient
of 300 Oe cm−1 [13]. Specific heat measurements were carried out by a relaxation method
(PPMS, Quantum Design) down to 0.4 K. The typical sizes of the samples used for the
magnetization and specific heat measurements were 0.5 × 2 × 2 and 0.1 × 1 × 1 mm3,
respectively. In order to minimize the demagnetizing field effect, the [111] direction was
oriented along the sample plane.

DC magnetization curves of Dy2Ti2O7 with magnetic field applied along the [111]
direction are shown in figure 2. At T = 1.65 K, the magnetization is a gradual function
of field with a weak feature at around 10 kOe, and saturates at higher fields to the value
∼5 µB/Dy. This moment value corresponds to the fully saturated one-in–three-out (or three-
in–one-out) state of the Ising pyrochlore lattice with the local Ising axis pointing along the
〈111〉 directions. The result at 1.65 K is in good agreement with the previous measurements
made at 1.8 K by Fukazawa et al [14].

On cooling below 1 K, the feature at ∼10 kOe becomes sharper, and eventually turns into
a metamagnetic step at T = 0.48 K with a preceding magnetization plateau below ∼9 kOe.
The magnetic moment of the plateau is very close to the value 3.33 µB/Dy, as expected for the
saturated moment along the [111] direction, without destroying the ice rule (two-in–two-out
state). In fact, the emergence of the plateau is closely associated with the formation of the spin
ice state which is evidenced by the appearance of magnetization hysteresis below 5 kOe [7].
Clearly, the metamagnetic step near 10 kOe corresponds to a breaking of the spin ice state by
a magnetic field strong enough to overcome the magnetic interactions. This phenomenon has
been predicted by Monte Carlo simulations of spin ice models [12, 14, 15], but experimentally
only a broad feature had been observed in the previous measurements done at 1.8 K [14]. Our
data are the first results in the low-temperature regime where the ice rule configuration is well
developed. Magnetization measurements at still lower temperatures are in progress and the
results will be published soon [16].

S0 =
3
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THE KASTELEYN TRANSITION

Spin to dimer mapping

Disordered
Finite entropy

Ordered
Zero entropy

Kasteleyn, J. of Math. Phys. 1963
Moessner and Sondhi, PRB, 2003



WORM EXCITATIONS
(CLOSED LOOPS)

δG = δε − TKδS = 0
At transition Only long loops 

change M
energy loss 

=entropy gain
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WORM EXCITATIONS
(CLOSED LOOPS)

Chapter (4) described how the stochastic decision provides the entropic contribu-

tion to the forming loop therefore we now evaluate the Zeeman energy contribution

as the competition between these two terms governs the transition. The Zeeman

energy is evaluated per move and as stated above that involves two spins flipping

hence for the left and right moves,

�R =2HS⊥ cosφ+ 2HS⊥ cos
�π
3
− φ

�
(173)

=⇒ �R =3HS⊥ cosφ+
√
3HS⊥ sinφ (174)

and similarly

�L =3HS⊥ cosφ−
√
3HS⊥ sinφ (175)

where H is the magnitude of the field and the inplane spin component S⊥ = 2
√
2

3 so

that,

�R/L =�y ± �x (176)

�y =2
√
2H cosφ (177)

�x =
2
√
2

3
H sinφ (178)

just as in equation (144).

In order to express the probabilities in terms of these energies it is necessary to

impose two standard conditions upon them. First, the sum of the probabilities for

all possible moves at any time must equal unity.

�

i

Pi = 1 (179)

=⇒ PR + PL = 1 (180)

Secondly, due to the sequential nature of the loop construction the algorithm does

not satisfy detailed balance, however the probabilities are constructed to obey this
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δG = δε − TKδS = 0
At transition Only long loops 

change M
energy loss 
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PHASE DIAGRAM
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Figure 31: The phase space of kagome ice with respect to an applied magnetic field.
As a function of H

T
the Kasteleyn transition temperature collapses to the line shown

in red within each of the three continuous topological sectors (separated by dotted
lines). The long range ordered topological ground state is indicated within each
sector. The transition temperature line displayed here is an exact result calculated
using equation (144), not a schematic representation.
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 internal energy U is constant for all (Pauling) states

Magnetic Helmholtz Free energy is pure Entropy!

Thermodynamics of  the K transition

� 

χ = ∂m
∂h

= − 1
T

N
∂2S ∂m2

Kasteleyn transition:
S=>0 for finite h/T� 

h = 1
N

∂F
∂m

= − T
N

∂S
∂m



KASTELEYN transition in collective paramagnet
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LANDAU FREE ENERGY

Landau critical exponents:

Upper critical dimension is 3 
therefore mean field exponents will 

be subject to corrections in 2D. 
Fluctuation modified values:

Jaubert et al. J. Phys.: Conf. Ser. 2009
Bhattacharjee et al. J. Stat. Phys. 1983

Critical Behavior of a Three-Dimensional Dimer Model 373 

which yields a quadratic, 0 2, term in the expansion of the free energy. This 
in turn gives a finite discontinuity in the specific heat. Thus, d = 3 is the 
critical dimensionality for the K-model  generalized to arbitrary dimensions. 
For continuous dimensionalities in the range 1 < d < 3 we believe (based 
on our ansatz and on our analysis of the random walk formula analytically 
continued to nonintegral dimensions) that (6) is correct. This gives a = (3 - 
d)//2 for 1 < d <  3. 

A parallel analysis has also been carried out for the three-dimensional 
lipid analog model, mentioned in the Introduction: a logarithmic term of 
the same form as obtained for the three-dimensional IA model is again 
found. 

5. CONCLUSION 

We have obtained the exact asymptotic behavior of the largest eigen- 
value of the n = 2 block of the transfer matrix for the IA dimer model in all 
dimensions. Together with the ansatz explained in Sections 2 and 3 these 
results suggest the following behavior of the specific heat, C(T), and its 
exponents ~ and a ' :  

for T < T~, a '  = 0 (finite) in all dimensions [with C(T) =- 0]; 
for T > To; 

= 1//2 for d =  2 in agreement with the exact solution (3) and 
a = (3 - d)/2 more generally for 1 < d < 3; 
a = 0 (log divergence) for d = 3; 
a = 0 (finite) for d > 3. 
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NEUTRON SCATTERING
FINITE FIELD

Figure 44: The evolution of the unpolarised component of the neutron scattering
pattern of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable
is increased from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the

electronic version of this document an animation is displayed whilst in the paper
copy representative images are shown progressing from the top left to bottom right.

141

Figure 44: The evolution of the unpolarised component of the neutron scattering
pattern of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable
is increased from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the

electronic version of this document an animation is displayed whilst in the paper
copy representative images are shown progressing from the top left to bottom right.
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ϕ=0

M.S. predictions
•Drifting peaks
•Reduced symmetry
•Different perpendicular 
correlation lengths
•Asymmetry of transition

Moessner and Sondhi,  PRB, 2003



NEUTRON SCATTERING
FINITE FIELD

Figure 45: The evolution of the inplane component of the neutron scattering pattern
of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable is increased
from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the electronic version

of this document an animation is displayed whilst in the paper copy representative
images are shown progressing from the top left to bottom right.
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Figure 45: The evolution of the inplane component of the neutron scattering pattern
of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable is increased
from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the electronic version

of this document an animation is displayed whilst in the paper copy representative
images are shown progressing from the top left to bottom right.

142

ϕ=0

M.S. predictions
•Drifting peaks
•Reduced symmetry
•Different perpendicular 
correlation lengths
•Asymmetry of transition

Moessner and Sondhi,  PRB, 2003



NEUTRON SCATTERING
FINITE FIELD

Figure 46: The evolution of the pseudospin component of the neutron scattering
pattern of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable
is increased from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the

electronic version of this document an animation is displayed whilst in the paper
copy representative images are shown progressing from the top left to bottom right.
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Figure 46: The evolution of the pseudospin component of the neutron scattering
pattern of kagome ice in a field at an angle φ = 0◦. The thermodynamic variable
is increased from H

T
= 0 to H

T
= HK

TK
to induce a Kasteleyn transition. In the

electronic version of this document an animation is displayed whilst in the paper
copy representative images are shown progressing from the top left to bottom right.
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ϕ=0

M.S. predictions
•Drifting peaks
•Reduced symmetry
•Different perpendicular 
correlation lengths
•Asymmetry of transition

Moessner and Sondhi,  PRB, 2003



NEUTRON SCATTERING 
FINITE FIELD

ϕ≠0

Note:
•Symmetry
•Peak shape
•Correlation lengths



COMPARISON WITH 
EXPERIMENT

Fennell et al. Unpub.
Fennell et al. Nat. Phys., 2007
Morris et al. Science, 2009

[1, 1, 1]

[1̄, 1̄, 2]

[1̄, 1, 0]
φ

Θ

H

Figure 50: During the experiments performed in reference [66] the tilt angle between
the field, H, and the [1, 1, 1] direction is marked in the figure and was measured as
Θ ≈ 3◦. Only the component of the field that lies in the kagome plane (perpen-
dicular to [1, 1, 1]) causes the Kasteleyn transition hence this is the field referred
to in this work. Note that a very small tilt of the experimental magnetic field can
produce a large angle on the kagome plane and cause the spin correlations to change
significantly.

This is presented alongside simulated data at φ = 20◦ which gives a good fit to

the experimental data. We note here that quantitatively matching simulated to

experimental data would provide a method of measuring the inplane field angle more

accurately than is currently possible in experimental situations. See also figure (19)

for an additional image of the kagome ice neutron scattering patterns.

The experimental data was recorded at a temperature of 0.1 K and a field of

0.4 T. In order to compare these values with the theoretical field and temperature

used in the simulations it is necessary to include a value of the moment per spin for

Ho2Ti2O7 which is approximately µ = 10 µB and resolve the experimental field into

the kagome plane component

Hth

Tth
=

10µBHexp sin 3◦

kBTexp
(207)

=⇒ Hth

Tth
= 1.406 . . . (208)

whilst the simulation was performed at,

Hth

Tth
=

1

7.7751 . . .
= 0.128 . . . (209)
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0.1K, 0.4T
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h
T exp

=
10µBH exp sin(3

0 )
kBTexp

≈ 1.4

h
T th

≈ 0.12

Agreement is 
qualitative



FINITE SIZE SCALING

Bhattacharjee and Nagle, PRA, 1981

Specific heat of brick lattice

Short, wide, R→∞ Tall, thin, R→0

6.2.2 Theoretical Finite Size Scaling Behaviour

The discrepancy between the theoretical predictions for the thermodynamic vari-

ables such as the x component of the magnetisation and the simulation results

indicate that finite size effects, and shape effects, are likely to make a significant

contribution to the behaviour of the kagome ice model. A finite size scaling analysis

of this region should also validate the separate values of the critical exponent for

the correlation lengths parallel and perpendicular to the applied field direction.

Bhattacharjee and Nagle have investigated the finite size scaling response of a

model of dimers on a brick lattice which has been shown to be equivalent to the

kagome ice model [115]. In that work they investigated the consequence of reducing

the extents of the lattice in turn from the thermodynamic limit, ∞×∞, to either

N ×∞ or ∞×M and finally to a finite N ×M lattice. In this work we maintain a

constant lattice shape of L×L with periodic boundary conditions hence we cannot

see effects due to an actual changing lattice shape however we shall show that

applying an inplane magnetic field to the kagome ice model has a similar effect to

changing the shape of the lattice. By considering the specific heat they show that

finite size scaling theory is appropriate to the critical region of the model and hence

also to kagome ice. It was necessary to confirm this as both lattice models are

subject to a topological constraint which imposes a violently asymmetric transition

on the system and finite size scaling theory is generally applied to isotropic models

with symmetric transitions thus it was not immediately obvious that the procedures

could be carried from one situation to the other.

Bhattacharjee and Nagle prove that the specific heat finite size scaling function

depends on the scaled reduced temperature and a shape factor, R = N2

M where there

are 2N lattice points along the horizontal direction and 2M lattice points along the

vertical direction of the brick lattice. The scaled reduced temperature is defined as

τ = MN2t
M+N2 where the reduced temperature is t = T−TK

TK
as usual. The specific heat

scaling function may be written in terms of these variables in the critical region.

C(T ) ∼ P(R, τ) (213)
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COMMENSURATE FIELD 
BEHAVIOUR

where for the directions perpendicular and parallel to the applied field

ν⊥ =
1

2
(222)

ν� = 1 (223)

which were shown to be correct through explicitly calculating the dimer pair correla-

tion functions [116] and a renormalisation group approach where the exponents were

shown to be independent of dimension [117]. Further verification for these values is

provided by their agreement with Fisher’s anisotropic hyperscaling relation [118],

(d− 1)ν⊥ + ν� = 2− α (224)

where

d = 2 (225)

α =
1

2
(226)

The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,

χ = t−γP
�
ξ⊥
L⊥

,
ξ�
L�

�
(227)

166

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit
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as a function of temperature and then the same
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the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of
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Figure 56: Top: Susceptibility of the kagome ice lattice with field at an angle φ = 0◦

for lattice sizes covering three orders of magnitude. Also shown is the theoretical
susceptibility in the thermodynamic limit. Bottom: The same data plotted as a
function of scaling variables to show the behaviour of the finite size scaling function.
The remarkable collapse of the data over a large range of lattice sizes validates the
assertion that the correlation length parallel to the field direction dominates the
behaviour of the system.

168

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where for the directions perpendicular and parallel to the applied field

ν⊥ =
1

2
(222)

ν� = 1 (223)

which were shown to be correct through explicitly calculating the dimer pair correla-

tion functions [116] and a renormalisation group approach where the exponents were

shown to be independent of dimension [117]. Further verification for these values is

provided by their agreement with Fisher’s anisotropic hyperscaling relation [118],

(d− 1)ν⊥ + ν� = 2− α (224)

where

d = 2 (225)
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2
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The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,

χ = t−γP
�
ξ⊥
L⊥

,
ξ�
L�

�
(227)
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becomes infinite.

6.2.3 Topological Winding Numbers

The behaviour of the specific heat of the brick lattice model is a function of the

shape factor for the lattice however this quantity is constant for all simulations

carried out on the kagome ice lattice although it will be shown that the specific heat

(and magnetic susceptibility) vary as if it were changing. A relevant quantity to

examine instead is a measure of the topological order of the lattice for the addition

of the first string at the Kasteleyn transition using a topological quantum number.

This quantity is often known as a winding number and for a closed loop and a point

in a 2D plane it is generally defined as the number of times the loop winds around

the point in the anticlockwise direction. In kagome ice periodic boundary conditions

transform a plane into a torus and similarly the winding number is transformed into

the number of times a loop closing through the boundary conditions winds around

a line on the torus.

The winding number, Wi, for a topological state C can be calculated by taking

a cut through the lattice in the direction of a lattice vector i and recording a cut

number, Yi(C) which is increased by one for each string it cuts [38]. The winding

number is then defined as the difference between the cut number in a particular state

and that of a reference state, C �. The first loop to transform the system out of the

long range ordered state at the Kasteleyn transition must have a vertical component

due to the lattice configuration hence these loops are of interest for this problem and

the appropriate lattice vector is a in the horizontal direction; however, by taking a

cut parallel to the lattice vector b it is equally possible to define a winding number

that measures horizontal loops. During this derivation these will not be considered

and the winding number is referred to as Wa = W .

W = Ya(C)− Ya(C
�) (214)

where the reference state is chosen to have a single string crossing the lattice once

so that the winding number records the difference between the number of times a
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Figure 55: A snapshot of the kagome ice lattice taken from a simulation at T = TK

and φ = 50◦. The lattice contains a single string (highlighted in red) which winds
around the lattice through the periodic boundary conditions until it closes on itself.
This snapshot shows the loop forming in a direction that is approximately perpen-
dicular to the field direction as this minimises its unfavourable Zeeman interaction.
The blue line parallel to the lattice vector a is a trajectory for calculating a cut
number which records the number of times a string is encountered in that direction.
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produce an incommensurate string that winds around the lattice at least twice and

at most L times for a lattice of 3L2 spins.

The commensurability of a string with the lattice, Γ, is inversely proportional to

the winding number and directly proportional to the shape factor of reference [115],

Γ =
1

W
∝ R (217)

The behaviour of the kagome ice model under the influence of a magnetic field

can now be compared to that of the brick lattice with varying lattice shapes and

remarkably the influence of the applied magnetic field direction is equivalent to

varying the extent of the lattice.

6.2.4 Kagome Ice Finite Size Scaling Behaviour

The thermodynamic variable in kagome ice is the ratio H

T
rather than either of these

parameters separately so that the specific heat and the susceptibility are related by

C

χ
=

2H2

T
(218)

and behave in the same manner. The susceptibility of kagome ice is considered here

however this still permits a direct comparison with reference [115].

The magnetic susceptibility is inversely proportional to the reduced temperature

to the power of the critical exponent γ as shown in table (2),

χ ∼ |t|−γ (219)

and similarly the correlation lengths in different directions are proportional to the

reduced temperature to the power of exponents corresponding to those directions,

ξ⊥ ∼ |t|−ν⊥ (220)

ξ� ∼ |t|−ν� (221)
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where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),
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and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,
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χ = L
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�
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The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.

167

where for the directions perpendicular and parallel to the applied field

ν⊥ =
1

2
(222)

ν� = 1 (223)

which were shown to be correct through explicitly calculating the dimer pair correla-

tion functions [116] and a renormalisation group approach where the exponents were

shown to be independent of dimension [117]. Further verification for these values is

provided by their agreement with Fisher’s anisotropic hyperscaling relation [118],

(d− 1)ν⊥ + ν� = 2− α (224)

where

d = 2 (225)

α =
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2
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The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,
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1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
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2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
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as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.
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where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
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and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,
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|t|ν�L

�
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The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.
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φ = 55◦

φ = 45◦

φ = 30◦

φ = 20◦

Figure 57: The finite size scaling function for the magnetic susceptibility exhibits a
crossover between two limiting behaviours dictated by the critical correlation length
exponents. The field is applied at an angle of φ = 55◦, 45◦, 30◦ and 20◦ for images
from the top to the bottom of the figure. The left column is plotted with scaling
variables suitable for the correlation length parallel to the field to be dominant
and the right column is plotted with scaling variables suitable for the correlation
length perpendicular to the field to be dominant. The behaviour of the susceptibility
collapses well in the top left and bottom right figures but with field at intermediate
angles neither figure collapses onto a single function.

170

scaling

where for the directions perpendicular and parallel to the applied field

ν⊥ =
1

2
(222)

ν� = 1 (223)

which were shown to be correct through explicitly calculating the dimer pair correla-

tion functions [116] and a renormalisation group approach where the exponents were

shown to be independent of dimension [117]. Further verification for these values is

provided by their agreement with Fisher’s anisotropic hyperscaling relation [118],

(d− 1)ν⊥ + ν� = 2− α (224)

where

d = 2 (225)

α =
1

2
(226)

The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,

χ = t−γP
�
ξ⊥
L⊥

,
ξ�
L�

�
(227)

166

scaling

where for the directions perpendicular and parallel to the applied field

ν⊥ =
1

2
(222)

ν� = 1 (223)

which were shown to be correct through explicitly calculating the dimer pair correla-

tion functions [116] and a renormalisation group approach where the exponents were

shown to be independent of dimension [117]. Further verification for these values is

provided by their agreement with Fisher’s anisotropic hyperscaling relation [118],

(d− 1)ν⊥ + ν� = 2− α (224)

where

d = 2 (225)

α =
1

2
(226)

The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,

χ = t−γP
�
ξ⊥
L⊥

,
ξ�
L�

�
(227)

166



INCOMMENSURATE FIELD 
BEHAVIOUR

where the correlation lengths are scaled by the length of the lattice edge as this is

the largest length in the system and the only fixed reference in the critical region.

Here L is a numerical parameter determining the lattice length which is normalised

by the lattice constant and is therefore dimensionless and the shape of the lattice

fixes L⊥ = L� = L. Substituting for the correlation length using equations (220)

and (221),

χ = t−γP
�

1

|t|ν⊥L,
1

|t|ν�L

�
(228)

= t−γ × (|t|ν�L)
γ
ν� Q

�
1

|t|ν⊥L,
1

|t|ν�L

�
(229)

= L
γ
ν�Q

�
1

|t|ν⊥L,
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|t|ν�L

�
(230)

φ = 0
◦
and in the limit |t| → 0, |t|ν⊥ � |t|ν� . It may be assumed that the larger

variable dominates the behaviour of the function hence,

lim
|t|→0

χ = L
γ
ν�Q

�
1

|t|ν�L

�
(231)

The choice of the factor to take out of the scaling function P in equation (229)

was guided by the knowledge that the correlation length parallel to the field domi-

nates the correlation length perpendicular to it as the transition is approached with

field at an angle φ = 0
◦
. The scaling function can be investigated graphically by

plotting χL
− γ

ν� versus |t|L
1
ν� for a range of different lattice sizes given that the sus-

ceptibility critical exponent is γ =
1
2 and ν� = 1, equation (223). Figure (56) shows

susceptibility data plotted against the theoretical value in the thermodynamic limit

with applied field at an angle φ = 0
◦
as a function of temperature and then the same

data replotted using the coordinates identified above so that the data collapses onto

the finite size scaling function Q. The previous derivation and figure (56) rely on

the choice of ν� as the dominant critical length exponent and the precise collapse of

the susceptibility data over a range of lattice sizes validates this for applied field at

an angle that introduces only commensurate loops into the lattice.
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of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is
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φ = 55◦

φ = 45◦

φ = 30◦

φ = 20◦

Figure 57: The finite size scaling function for the magnetic susceptibility exhibits a
crossover between two limiting behaviours dictated by the critical correlation length
exponents. The field is applied at an angle of φ = 55◦, 45◦, 30◦ and 20◦ for images
from the top to the bottom of the figure. The left column is plotted with scaling
variables suitable for the correlation length parallel to the field to be dominant
and the right column is plotted with scaling variables suitable for the correlation
length perpendicular to the field to be dominant. The behaviour of the susceptibility
collapses well in the top left and bottom right figures but with field at intermediate
angles neither figure collapses onto a single function.
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d = 2 (225)

α =
1

2
(226)

The finite scaling response of the susceptibility depends on the commensurability

of the strings just as the specific heat of the brick lattice model depended on the

shape function and the limiting commensurate and incommensurate behaviour is

now presented.

Commensurate Field Behaviour The scaling hypothesis for the specific heat

of the brick lattice model is dependent on a shape function and the scaled reduced

temperature, equation (213), but as the kagome lattice is a constant shape and

initially we choose to set the applied field at an angle φ = 0◦ the shape function

or commensurability is constant and may be discarded leaving behaviour that is

expected to be controlled by the parallel and perpendicular correlation lengths only.

A scaling hypothesis can be written which encapsulates the critical divergence in

terms of these variables,

χ = t−γP
�
ξ⊥
L⊥

,
ξ�
L�

�
(227)
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Conclusions

1. The Kasteleyn Transition appears in model <111> spin ice
2. A vestige of this transition can be observed in experiment 
3. Finite size scaling exposes the topological nature of the K-transition

From Spin Ice to Kagomé Planes:
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