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Magnons In frustrated QAFM

BEC at finite momentum

e Cs,CuCly as realization of triangular
antiferromagnet

e model Hamiltonian from high field
measurements [1]

e ordered phase below Ty = 0.6 K (spiral
magnet)

e Spin-wave approach for “cone-state”
delivers dispersion from linear spin-
wave theory [2,3]

e Goal: calculate renormalization of pho-
nons due to magnons

Spin-Phonon Hamiltonian
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Wi = CA(k)|k| (acoustic phonons)
dispersion from linear spin-wave theory

E_ie # Ex=1/(AD)? — B2+A ~ V(K)IK| (2)

600
h - Olhc 500

Ex (meV)

10

magnetic Field (T)
(Left) Gapless Magnon dispersion Ex of the anisotropic tri-
angular lattice antiferromagnet Cs,CuCls with /) = 0.34,
Dzyaloshinskii-Moriya anisotropy D/ = 0.054, and for a
magnetic field h = 0.1h. [2]. (Right) The magnon velocities
in the two principal directions as a function of the magnetic
field are in the adiabatic limit.

Introduction

e Bose-Einstein condensation (BEC) at fi-
nite momenta is of a different symme-
try class, the so-called Brazovskii uni-
versality class [1].

e Experimental observation of coher-
ence phenomenon of magnons in thin
stripes made of the magnetic insulator
yttrium-iron garnet (YIG) where the en-
ergy dispersion €, exhibits two degen-
erate minima at finite wave-vectors

+q [2].

The lowest modes of the
spin-wave spectrum of a
thin YIG film exhibit lo-
cal minima at finite wave
vectors. Especially inter-
esting is the lowest mode
where large magnon den-
sities can be created by
microwave pumping.

Model
Interacting boson model on a lattice with
Hamiltonian given by

H=H>r+H3+Hsg, (1)
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The energy dispersion € Is assumed to
exhibit two degenerate minima at finite
wave-vectors g, and the terms propor-
tional to the complex parameter yx ex-
plicitly break the U(1) symmetry associ-
ated with particle number conservation.

In the presence of a Bose condensate
some of the expectation values ¢, = (ag)
are finite. It is then useful to do a Bogoli-
ubov shift,

Ax = Pk + 6Qk. (3)

magnon-magnon interactions in pres-

ence of the magnetic field
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Problem: singular in the Bogoliubov ba-
SIS

Solution: Use Hermitian parametriza-
tion to sort the relevant degrees of free-
dom [3]
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magnon-phonon hybridization
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renormalization of the one-phonon two-
magnon vertex due to magnon-magnon
interactions and the magnon-phonon hy-
bridization
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Shift of elastic constants in leading or-
der 1/S: Classical spin background and
renormalization due to hybridization
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Feynman diagrams for the phonon self-energy: One-phonon

two-magnon processes (a), two-phonon one-magnon pro-
cesses (b).

Condensate at finite momentum

The spatial dependence of the Bose con-
densate is determined by the Gross-
Pitaevskii equation which can be ob-
tained from the extremum condition of
the corresponding Euclidean action.

If the dispersion €x has two degenerate
minima at finite wave-vectors +q we
have to consider the ansatz
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to obtain the discrete Gross-Pitaevskii
equation
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Due to the lack of U(1) symmetry all scat-
tering processes are present. Note that
we have all combinations of g; = a, a for

the four bosons interactions.

If we assume on the right-hand side of
Eq (5) that only the coefficients l/JO‘ with

= +1 are finite, then we find that on
the left-hand side all field components ¢
with n = 0, £1, £2, £3 must also be fi-
nite. For general interactions therefore
all integer multiples of g have to be fi-
nite. The condensate density can then
be strongly localized at the sites of a one-
dimensional lattice with spacing 2m/|q|.
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Graphical representation of the interaction processes with
three (left) and four (right) bosons of our model. For sim-
plicity the momentum labels are suppressed.

Comparison to experiments
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Experimental setup of the pulse echo method [4]: In this
phase-sensitive detection technique two ultrasound trans-
ducers (blue) are attached to parallel planes of the crys-
tal with distance L. On tuning the frequency f such that
the echo signal remains unchanged one can measure the
change of the sound velocity dc,/c) = df/f and the relative
attenuation rate Aa « 1/LIn(A1/Ap) simultaneously.
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Measured velocity shifts of the longitudinal c¢,>-phonon
mode (blue) and the c33-mode (black) at T ~ 50 mK. Solid
line: Fit of the data for the ¢;,-mode to obtain the param-
eters (|k|, |k’]) = (15,51). Dashed line: Prediction for the
Cc33-mode with the same parameters.

spatial dependence of couplings
J(x) =J(b)e™<x-PVb (9a)
J/(r)=J'(d)e~*(=ava (9b)

0.8

0.6}

0.4}

Ao (db/cm)

0.2}

B (T)
Experimental results for the relative ultrasonic attenuation
Aa in Cs,CuCly of the longitudinal c22-phonon mode (blue)

and the c33-mode (black) and our corresponding theoretical
predictions using the values (|k|, |k’]) = (15, 51).
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Energy dispersion of thin-film ferromag-

nets e, has two degenerate minima at 1¥nlf

wave-vectors £q = £qge;, [2-4]. For YIG

only the four-point vertices U""l";gi con-

tribute. We truncate the coupled equa-
tions (5) at some finite order.

Results

e Non-trivial solutions for y; > €4 —

e Fourier coefficients ¢° decay rapidly
for large n
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Experimental setup to investigate the magnon gas in thin-
films of YIG using the Brillouin light scattering spectroscopy
technique in combination with parallel pumping [5]. In anal-
izing the scattered light it is possible to measure the oc-
cupation number of the magnons with energy and wave-
vector resolution. Unfortunately, the wave vectors are re-
stricted to the regime k, <1.6-10°(cm)~L.
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Absolute values |y, = |(ﬂg|
. of the Fourier components of
the order parameter for BEC
] in YIG for different values of
1 the dimensionless ratio y1/r1 =
1 Yq/(€q — ). The Fourier com-
] ponents ¢7 are dominant and
¢ 1 the higher order Fourier compo-

] nents ¢° decay approximately
1 exponentially as a function of
i n. The data has been ob-
tained from the numerical so-
10 lution of the discrete Gross-

Pitaevskii equation using inter-
action parameters for YIG.
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Spin-wave dispersion of the lowest mode of a YIG film with
He = 1000 Oe and d = 5.1um using the approach [4]. Once
a condensate at finite momentum q at minimum Energy Egq
is present, interactions lead to finite condensate densities
at 3q and 5q. The condensate fraction of the higher Fourier
components is rather small.
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