(Nambu) Monopoles and their "Dirac strings" in thermal artificial magnetic square ices
Afranio R. Pereira, G.M. Wysin, Rodrigo C. Silva, F.S. Nascimento, Lucas A. S. Mól, Winder A. Moura-Melo

A lot of experimental effort is under way with the objective of constructing dipolar arrays of monodomain nanomagnets. Two-dimensional artificial spin ice arrays of diverse geometries are examples. They mimic the frustrated spin ice materials.

In this talk I would like to present some results about the thermodynamics and also, some preliminary calculations about the dynamics of these artificial materials.

Nature 439, 303 (2006)).

We use two approaches to study these artificial materials:

1. First, the internal structure of the islands is neglected, by considering the magnetic islands as point-like dipoles. The islands have an Ising-like behavior!!!

2. The internal structure of the islands is taken into account. We should consider the dynamics of all spins inside each island !!!

Minimal energy: spins of the island atoms point out along the longest axis (here, the x-axis).

Energy increases as the spins of the island atoms start to point out along any other direction (see graphic).

The two-dimensional (2D) magnetic square lattice was the first artificial spin ice (see Nature 439, 303 (2006)).

$$
H_{S I}=D a^{3} \sum_{i \neq j}\left[\frac{\vec{S}_{i} \cdot \vec{S}_{j}}{r_{i j}^{3}}-\frac{3\left(\vec{S}_{i} \cdot \vec{r}_{i j}\right)\left(\vec{S}_{j} \cdot \vec{r}_{i j}\right)}{r_{i j}^{5}}\right]
$$

Nature 439, 303 (2006)).

Ice rule: the 6 bonds are not equivalent.

In each vertex, the ice rule dictates that 2 spins point inward and 2 point outward. However, differently from the $3 d$ spin ice, in $2 d$, not all spins can be equidistant. Then, the six bonds between the four islands belonging to a vertex are not all equivalent.

Indeed, considering the two topologies that obey the ice rule, topology 2 has about four times more energy than topology 1.

Below we show the configuration of the ground state. Clearly, it obeys the ice rule (all vertices with topology 1).

This ground state was not obtained experimentally until 2010 (Morgan et. al., Nature Phys. 7, 75 (2011)).

It was solved by allowing the magnetic islands in the artificial spin ice to interact as they are gradually formed at room temperature. As a result, the system can be effectively thermalized, allowing it to find its predicted ground state.

The ground state looks like a checkerboard. The effective magnetic charge in each vertex is naturally zero.

The most elementary excitation involves inverting a single spin (violating the ice rule) to generate localized dipole magnetic charges (blue and red circles with a red arrow in between).

The simplest excitations are then 2 neighbor vertices, one of them in the 3 -in, 1 -out (red) state and the other in 3-out, 1-in (blue) state.

These effective magnetic charges interact through a potential given by ((arXiv:0809.2105 (2008), JAP 106, 063913 (2009)):

$$
V(R, X)=q / R+b X+c,
$$

$q \approx-4 D a, b \approx 10 D / a$ and $c \approx 23 D$
a is the lattice spacing
$-\mu_{0} Q_{M}^{2} / 4 \pi R$

$$
\left|Q_{u}\right|=\sqrt{4 \pi q|q|} \mu_{0}
$$

Differently from the usual 3d spin ice, the string connecting the charges in the 2d case is energetic, with a nonzero tension. The string energy is then proportional to the string length $X, V(R, X)=q / R+b X+c$.

$$
\left|Q_{M}\right|=\sqrt{4 \pi|q| / \mu_{0}}
$$

This picture bears in mind that these excitations are, to some extent, similar to Nambu monopoles \& strings!

See Y. Nambu, Phys. Rev. D 10, 4202 (1974):

1. The end points of the string behave like particles with charge g, which leads to a Yukawa interaction.
2. The string has energy! For a sufficiently long string, the string energy is dominant.
3. The string is oriented, i.e., has an intrinsic sense of polarization, like a magnet.

Nambu also argued that there are very likely classical dumbbell-like solutions for the Weinberg-Salam model describing a monopole-anti-monopole pair connected by a string-like tube of neutral weak $Z 0$ flux).
See also Y. Nambu, Nucl. Phys. B 130, 505 (1977).

However, it is not clear whether a description in terms of, for example, Dirac monopoles (fractionalized objects) is truly viable in artificial square spin ice systems.

Here we would like to know something about the possibility of "breaking" the string...

START $24 \times 24 \mathrm{~J}=0 \mathrm{D}=0.2 \mathrm{~K} 1=1,0 \mathrm{~K} 3=0 \quad \mathrm{~T}=0.1 \mathrm{dt}=0,001$ alpha=0. 1

These monopoles were identified as small localized departures from the ground state at frequencies that follow the Boltzmann law (Nature Phys. 7, 75 (2011)). Excitations 1 and 40 are the first and second excited states respectively.

(b)

In principle, for the thermodynamics, the following arguments should be valid. There are many possible ways of connecting two monopole defects with a string. Below we show some of them for a string length equal to $X=24 a, R=2 a$.

Indeed, for X sufficiently large ($X \gg R$), the number of configurations would be well approximated by the random walk result $p^{x / a}$ (for a 2 d square lattice, $p=3$).

Then, using a very simple estimate, the string configurational entropy ($k_{\mathrm{B}} \ln p^{X / a}$) is proportional to X, and the string free energy can be approximated by

$$
F=\left[b-(\ln 3) k_{B} T / a\right] X
$$

So we have an effective tension $\boldsymbol{b}_{\text {eff }}$

$$
\left[b-(\ln 3) k_{B} T / a\right]
$$

which vanishes for

$$
\mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{c}} \approx \mathrm{ba} / \ln (3) .
$$

$$
\mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{c}} \approx 9.1 \mathrm{D} .
$$

Could the string loose the monopoles at a temperature near 9.1D?

By using Monte Carlo techniques we calculate the specific heat, the density of monopoles and also their average separation as functions of temperature.

Here, the magnetic moments of the islands are replaced by pointlike dipoles (spins). Then, we describe the system by the following Hamiltonian:

$$
H_{S I}=D a^{3} \sum_{i \neq j}\left[\frac{\vec{S}_{i} \cdot \vec{S}_{j}}{r_{i j}^{3}}-\frac{3\left(\vec{S}_{i} \cdot \vec{r}_{i j}\right)\left(\vec{S}_{j} \cdot \vec{r}_{i j}\right)}{r_{i j}^{5}}\right]
$$

where. $D=\mu_{0} \mu^{2} / 4 \pi a^{3}$ is the coupling constant of the dipolar interaction, (from experimental data, $D \approx 2 \times 10^{-19} J$,), a is the lattice constant and S_{i} represents the spins, which can assume only the values: $\boldsymbol{S}_{h i}=\left(S_{x}= \pm 1, S_{y}=0, \mathrm{~S}_{\mathrm{z}}=0\right)$ or

$$
S_{v i}=\left(S_{x}=0, S_{y}= \pm 1, \mathrm{~S}_{\mathrm{z}}=0\right)
$$

Periodic boundary conditions were implemented by means of the Ewald Summation.

We have studied lattices with several different sizes (L from 10 a to 80a). Now we discuss the MC results.

1. Density of monopoles and density of string loops (40). The last presents a maximum at a temperature around $k_{B} T=7.2 D$.

The figures show typical distributions of magnetic charges and string loops without charges (4O) for temperatures below $k_{B} T=7.2 D$ (left for 6D) and above $k_{B} T=7.2 D$ (right for 8D).

4 O excitations may form clusters at low temperature that percolate the array at the critical temperature, justifying thus the increasing number of these excitations at $k_{B} T=7.2 D$.

2. Specific heat. It presents a sharp peak around $k_{B} T=7.2 D$. The peak increases logarithmically with the system size.

Average distance between monopoles and antimonopoles.

 It presents a maximum at a temperature around $k_{B} T=7.2 D$ (i.e., at the same temperature in which the specific heat exhibits a peak). In addition, the height of the maximum also increases logarithmically with L.

Typical configurations of charges for temperatures below (left) and above (right) $k_{B} T=7.2 D$. Since the average distance between opposite charges diverges in the thermodynamic limit, we expect completely isolated charges for infinite systems. For viable compounds at temperatures above $k_{B} T=7.2 D$ we observe some charges without strings and pieces of strings without charges disperse around the array.

The point-like dipoles used for studying the thermodynamics is only an approximation. We are now considering the internal structure of the islands.

The typical islands have Lz much less than Lx or Ly.

1. The idea of an Ising spin for a particle is replaced by a 3d magnetic moment, moving in some anisotropic potential, but free to point in any direction, if enough energy becomes available to it .
2. This type of potential is continuous, in contrast to the two-state Ising particle, having a welldefined energy barrier .
3. We find that for high aspect ratio ($L x \gg L y$) ellipses, an uniform rotation model is very useful.

For a particle whose hard axis is along z and easy axis along x, an effective potential that approximately represents the energies is shown to be

$$
E=E_{0}+K_{1}\left[1-(\hat{\mu} \cdot \hat{x})^{2}\right]+K_{3}(\hat{\mu} \cdot \hat{z})^{2}
$$

where μ is the unit vector pointing in the direction of the particle's net magnetic moment.

1. We considered thin elliptical particles with thicknesses $g 3=L x / L z=20$, and aspect ratios $g 1=L x / L y=3,5$ and 8 .
2. The lengths ranged from 120 nm to 480 nm .

$\mathbf{L}_{\mathbf{x}}$

Magnetic anisotropy of elongated thin nano-islands
Department of Physics, Kansas State Universiti,
W. A. Moura-Melo, ${ }^{\dagger}$ L.A.S. Mól ${ }^{\ddagger}$ and A. R. Pereira ${ }^{9}$

The energetics of thin elongated ferromagnetic nano-islands is considered for some different shapes,
aspect ratios, and applied magnencicfied directions. These nano-island particles are important for
artificial spin-ice materials For low tempertwo aspect ratios, and applied magnetic field directions. These nano-island particles are important for
artificial sini-ice materials. For low temperature, the magnetic internal energy of an individual particle is evaluated numerically as a function of the direction of a particle's net magnetization. This leads to estimations of effective anisotropy constants for (1) the easy axis along the particle's
long direction, and (2 the hard axis along the particle's thin direction. A spin relaxation algorithm
together with fast together with fast Fourier transform for the demagnetitaztion field is used to osplve the micromanguetics
problem for a thin system. The magnetic hysteresis is also found. The results indicate some problem for a thin system. The magnetic hysteresis is also found. The ressults indiciatesome
possibilites for controlling the equilibrium and dynamics in spin-ice materials by using different island geometries.
PACS numbers: $75.75 .+\mathrm{a}, 85.70 . \mathrm{Ay}, 75.10 . \mathrm{Hk}, 75.70 \mathrm{Mg}$
Keywords: magnetic anisotropy, magnetic hyyteresis, micr
I. introduction: flongated thin

NANO-ISLANDS

Disordered and frustrated magnetic states such as
those present in artificial spin ices ${ }^{1,2}$ continue to draw those present in artificial spin ices ${ }^{1,2}$ continue to draw interest, due to their competing ground states, magnetic
monopole excitations ${ }^{3}$, string excitations ${ }^{4} 7$ and the dificulty to acchieve thermal equilibrium. Those systems are
composed from elongated magnetic islands or particles of composed from elongated magnetic islands or particles of
some length L_{x} (several hundred nanometers) and width some length L_{x} (several huudred nanometers) and width
L_{y} grown or ecthed lithographically to a small height L_{z} L_{y} grown or etched lithographically to a sman height L_{z}
on a substrate, whose geometric demagnetization effects
(effectively internal dipolar interactions) lead to a strong (effectively, internal dipolar interactions) lead to a strong
magnetic anisotropy. The typical islands have L_{z} much magnetic anisotropy. The typical islands have L_{z} much
less than L_{x} or L_{y}. Obviously any very thin magnet less than L_{x} or L_{y}. Obviously any very thin magnet
acquires an effective easy-plane anisotropy, and if the
particle is narrow as well, the long direction becomes an particle is narrow as well, the long direction becomes an
easy axis. The demagnetization field within an individual particle is responsible for this, making the plane of
the island ($x y$-plane) an easy plane, and the x-axis an the island (xy-plane) an easy plane, and the x-axis an
easy axis. Then net magnetic moment $\bar{\mu}$ acts somewhat
like an Ising variable with a defined easy axis \hat{x}. These like an Ising variable with a defined easy axis $\hat{\hat{c}}$. These
islands sare arranged into ordeed array to produce, for example, square lattice or kagome lattice artificial spin-
ices. The analysis of spin ice models assumes that such particles have only the two states with $\bar{\mu}$ either aligned or anti-aligned to the particle's easy axis. The dipolar inter-
action between different particles on one of the spin-ice action between different particles on one of the spin-ice
lattices leads to the ice-rules, such as the "two in / two out" rule for the square lattice and pyrochlore spin ices ${ }^{3}$. Such ice rules are only energetic preferences, however,
and only indicate the preferred states of the magnetic and only indicate the preferred states of the magnetic
moments. They are not absolute rigid statements about the allowed states. Thus, the intention here is to investigate the energetics of the fluctuations away from this
Ising aligned state, in the individual elliptical islands that
are used to compose a spin-ice system.
At some level, there must be transitions between these Ising-like states. An individual particle may contain ergy barrier that must be surpassed to flip the Ising state of a particle. Hence, the dynamics is greatly constrained
by such how this energy barriers. It is our interest here to discuss the islands, and make some evaluations of the dependence of the effective potential on the island shape and height. The types of shapes we consider are ellipsess. Thin
single domain ellipes found that the reversal process involves close to a uniform Stoner-Wohlfarth rotation, but with reduced energy barriers due to some non-uniformity of the magnetization
However, we find here that for high-spect ratio ellipses
thic this non-uniformity is minimal and a uniform rotation uld be very useful.
Although the theory for spin ice has been developed for Ising-like magnetic moments, their dynamics requires
different model. In reality, the underlying magnetic mo-
ment must be evolvig to ment must be evolving from much more complex dynam-
ics. The reversal ics. The reversal of an individual island, in the dipolar
fields of its surrounding islands, must be a complex profields of its surrounding islands, must be a complex pro-
cess, and could involve the motion of domain walls and
vortices within the individual vortices within the individual particles, or an impeded rotation of the local magnetization mostly in unison. But in
the assumption of strong ferromagnetic exchange inside a particular particle, and a uniform externally applied
field a particular particle, and a uniform externally appled
field, one can investigate the reversal process using differ-
ent approaches to the micromenntict ent approaches to the micromagneticic ${ }^{1}$, and see whether
vortices or domain walls play any signifant role. Eser vortices or domain walls play any significant role. Espe-
cially, one can investigate whether there are intermediate cially, one can investigate whether there are intermediate
metastable vortex or domain-wall states as steps of the reversal. To a great extent for the thin elliptical particles
considered here, the reversal proceeds mostly as a neely

Some typical results for the internal energy curves are shown below for the in-plane potential of an elliptical particle with $g 1=L x / L z=5$, with major axis 240 nm , minor axis 48 nm and thickness 12 nm . The potentials for in-plane motion of μ fit very well to the functional form,

$$
E_{\text {int }}\left(\phi_{m}\right)=E_{0}+K_{1} \sin ^{2} \phi_{m} .
$$

The angle ϕ_{m} is the direction of the net particle moment $\boldsymbol{\mu}$ in the easy plane.

The points come from the simulations at the different angles $\boldsymbol{\phi}_{\mathrm{H}}$ of the applied field from the long axis; all fall onto the same curve.

The fit gives a reliable estimate of anisotropy constant \boldsymbol{K}_{1}

$$
-K_{1}(\hat{\mu} \cdot \hat{x})^{2}
$$

$$
E=E_{0}+K_{1}\left[1-(\hat{\mu} \cdot \hat{x})^{2}\right]+K_{3}(\hat{\mu} \cdot \hat{z})^{2}
$$

The out-of-plane potential for the same elliptical particle ($g 1=L x / L z=5$, with major axis 240 nm , minor axis 48 nm and thickness 12 nm). The points from simulations at different angles θ_{H} of the applied field are combined into one curve.

The angle θ_{m} is the tilting of the net particle moment $\boldsymbol{\mu}$ out of the easy plane.

The fit gives a reliable estimate of anisotropy constant for the hard axis K_{3}

$$
K_{3}(\hat{\mu} \cdot \hat{z})^{2}
$$

$$
E_{\mathrm{int}}\left(\theta_{m}\right)=E_{0}+\left(K_{1}+K_{3}\right) \sin ^{2} \theta_{m}
$$

Hysteresis loops for an elliptical particle with an in-plane applied field at the indicated angles ϕ_{H} to the long axis of the particle.

Hysteresis loops for an elliptical particle with the applied field tilted out of the xyplane at the indicated angles θ_{H} from the long axis of the particle.

With these results for an individual nanoisland (mainly the values of \boldsymbol{K}_{1} and \boldsymbol{K}_{3}) we study now the dynamics of artificial spin ices (in square and kagome lattices) at finite temperatures. We have only preliminary calculations...

These are only preliminary calculations. All simulations were performed with the following fictitious constants: $\mathrm{J}=0, \quad \mathrm{~K} 1=1, \quad \mathrm{~K} 3=0$, $\mathrm{D}=\mathbf{0}$, 2 .

$$
k_{B} T=0.1=D / 2
$$

It starts in an uniform state, relaxing...

START $24 \times 24 \mathrm{~J}=0 \mathrm{D}=0.2 \mathrm{~K} 1=1.0 \mathrm{~K} 3=0 \quad \mathrm{~T}=0.1 \mathrm{dt}=0.001$ alpha=0.1

These are only preliminary calculations. All simulations were performed with the following fictitious constants: $\mathrm{J}=0, \mathrm{~K} 1=1, \mathrm{~K} 3=0, \mathrm{D}=0.2$.

$$
k_{B} T=0.1=D / 2
$$

It starts in the ground state.

These are only preliminary calculations. All simulations were performed with the following fictitious constants: J=0, K1=1, K3=0, D=0.2.
$k_{B} T=0.4=2 D$
It starts in the ground state.

START $24 \times 24 \mathrm{~J}=0 \mathrm{D}=0.2 \mathrm{~K} 1=1.0 \mathrm{~K} 3=0 \quad \mathrm{~T}=0.4 \mathrm{dt}=0.001$ alpha= $=0.1$

Sys 1/1, 288 Spins

All simulations were performed with the following fictitious constants: $\mathrm{J}=0, \mathrm{~K} 1=1$, $K 3=0, D=0.2$.
$k_{B} T=1.4=7 D$

It starts in the ground state.

Sys 1/1. 288 Spins

Since the total magnetic moment of the islands has more degrees of freedom, the temperature in which the specific heat exhibits a peak must be much smaller than 7.2D.

It also must depends on the island type: sizes, shapes etc. We are now investigating this possibility.
$k_{B} T=1.4=7 D$

It starts in the ground state.

Sys 1/1. 288 Spins

We would like to thank the Brazilian research agencies.

FAPEMIG

