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A lot of experimental effort is under way with the objective of constructing dipolar
arrays of monodomain nanomagnets. Two-dimensional artificial spin ice arrays ofy g p y
diverse geometries are examples. They mimic the frustrated spin ice
materials.



In this talk I would like to present some results about the
thermodynamics and also some preliminary calculations aboutthermodynamics and also, some preliminary calculations about
the dynamics of these artificial materials.

Nature 439, 303 (2006)). 



We use two approaches to study these artificial materials:

1. First, the internal structure of the islands is neglected, by considering the
magnetic islands as point-like dipoles. The islands have an Ising-like behavior!!!

2. The internal structure of the islands is taken into account.  We should consider 
the dynamics of all spins inside each island !!!  
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Minimal energy: spins of the island atoms point out along
the longest axis (here, the x-axis).

Energy increases as the spins of the island atoms start to
point out along any other direction (see graphic).



The two-dimensional (2D) magnetic square lattice was the first artificial
spin ice (see Nature 439, 303 (2006)).p ( 439, 3 3 ( ))

Ice rule: the 6 bonds 

are not equivalent.

In each vertex, the ice rule dictates
that 2 spins point inward and 2 point
outward. However, differently from
the 3d spin ice, in 2d, not all spins
can be equidistant. Then, the six
bonds between the four islands
belonging to a vertex are not allbelonging to a vertex are not all
equivalent.Nature 439, 303 (2006)). 



Indeed, considering the two topologies that obey the ice
rule, topology 2 has about four times more energy than
topology 1.

Topology 2Topology 1,



Below we show the configuration of the ground state. Clearly, it obeys the ice rule
( ll ti ith t l 1)(all vertices with topology 1).



This ground state was not obtained
experimentally until 2010 (Morganp y g
et. al., Nature Phys. 7, 75 (2011) ).

It was solved by allowing the magnetic
islands in the artificial spin ice to
interact as they are gradually formed
at room temperature. As a result, the

b ff i l h li dsystem can be effectively thermalized,
allowing it to find its predicted ground
state.



The ground state looks like a checkerboard. The effective magnetic charge in
each vertex is naturally zeroeach vertex is naturally zero.

The most elementary
excitation involves
inverting a singleinverting a single
spin (violating the ice
rule) to generate
l li d di llocalized dipole
magnetic charges
(blue and red circles
with a red arrow in
between).



The simplest excitations are then 2 neighbor vertices, one of them in 
th  3 i  1 t ( d) t t  d th  th  i  3 t  1 i  (bl )  t t  the 3-in, 1-out (red) state and the other in 3-out, 1-in (blue)  state. 

In principle, blue and red
charges could be separated

h f h l f hwithout further violation of the
ice rule. However, it just
happens if the topology ispp p gy
changed along a line of vertices
connecting the two charges. It
costs energy!costs energy!



These effective magnetic charges interact through a potential given by
((arXi 0809 2105 (2008) JAP 106 063913 (2009))((arXiv:0809.2105 (2008), JAP 106, 063913 (2009)):

V(R,X)= q/R +bX+ c,

where

Topology 2Topology 2
is the lattice spacing

QM = (4



Differently from the usual 3d spin ice, the string connecting the charges in the 2d case is
energetic, with a nonzero tension. The string energy is then proportional to the stringenergetic, with a nonzero tension. The string energy is then proportional to the string
length X , V(R,X)= q/R +bX+ c .



This picture bears in mind that these excitations are, to some extent, similar to
Nambu monopoles & strings!Nambu monopoles & strings!

See Y. Nambu, Phys. Rev. D 10, 4202 (1974):

1. The end points of the string behave like particles
with charge g, which leads to a Yukawawith charge g, which leads to a Yukawa
interaction.

2. The string has energy! For a sufficiently long
string, the string energy is dominant.

3. The string is oriented, i.e., has an intrinsic
sense of polarization, like a magnet.

Nambu also argued that there are very likely
classical dumbbell-like solutions for the
Weinberg-Salam model describing a monopole-g g p
anti-monopole pair connected by a string-like
tube of neutral weak Z0 flux).
See also Y. Nambu, Nucl. Phys. B 130, 505
(1977)(1977).



However, it is not clear
whether a description inwhether a description in
terms of, for example,
Dirac monopoles
(fractionalized objects) is(fractionalized objects) is
truly viable in artificial
square spin ice systems.

Here we would like to
know something aboutknow something about
the possibility of
�“breaking�” the string�…



These monopoles were identified as small localized departures from the ground
state at frequencies that follow the Boltzmann law (Nature Phys. 7, 75 (2011) ).
Excitations 1 and 4O are the first and second excited states respectively.



In principle, for the thermodynamics, the following arguments should
be valid There are many possible ways of connecting two monopolebe valid. There are many possible ways of connecting two monopole
defects with a string. Below we show some of them for a string length
equal to X=24a, R=2a.

Indeed, for X sufficiently large
(X R) h b f(X>>R), the number of
configurations would be well
approximated by the random walk
result p X/a (for a 2d square lattice,
p = 3).



Then, using a very simple estimate, the string configurational entropy
( k l X/a ) i i l d h i f b( kB ln p X/a ) is proportional to X, and the string free energy can be
approximated by

So we have an effective tension beff

which vanishes forwhich vanishes for

kBTc ba/ln(3).

kBTc 9.1 D .

Could the string loose the
monopoles at a temperature

9 1D?near 9.1D?



By using Monte Carlo techniques we calculate the specific heat, the density ofy g q p , y
monopoles and also their average separation as functions of temperature.



Here, the magnetic moments of the islands are replaced by point-
lik di l ( i ) Th d ib th t b th f ll ilike dipoles (spins). Then, we describe the system by the following
Hamiltonian:

Svi

Shi

where D = 0 
2/4 3 is the coupling constant of the dipolar interaction, 

(from experimental data, D  2 × 10-19 J,  ),         is the lattice constant and Si( p , , ), i

represents the spins, which can assume only the values:  Shi = (Sx =±1, Sy =0, Sz=0)      
or        Svi = (Sx =0, Sy = ±1, Sz=0).

Periodic boundary conditions were implemented by means of the Ewald Summation.



We have studied lattices with several different sizes (L from 10a toWe have studied lattices with several different sizes (L from 10a to

80a). Now we discuss the MC results.



1. Density of monopoles and density of string loops (4O).
h l i dThe last presents a maximum at a temperature around kBT=7.2D .



The figures show typical distributions of magnetic charges and string
loops without charges (4O) for temperatures below kBT=7.2D (left for
6D) and above kBT=7.2D (right for 8D).



4O excitations may form clusters at low temperature that percolate the array at
th iti l t t j tif i th th i i b f ththe critical temperature, justifying thus the increasing number of these
excitations at kBT=7.2D.



2. Specific heat. It presents a sharp peak around kBT=7.2D. The peak
increases logarithmically with the system size.



Average distance between monopoles and antimonopoles.
i d (i hIt presents a maximum at a temperature around kBT=7.2D (i.e., at the

same temperature in which the specific heat exhibits a peak). In addition, the
height of the maximum also increases logarithmically with L.g g y



Typical configurations of charges for temperatures below (left) and above (right)
k T 7 2D Since the average distance between opposite charges diverges in thekBT=7.2D . Since the average distance between opposite charges diverges in the
thermodynamic limit, we expect completely isolated charges for infinite systems.
For viable compounds at temperatures above kBT=7.2D we observe some charges
without strings and pieces of strings without charges disperse around the array.



The point-like dipoles used for studying the thermodynamics is only an
approximation We are now considering the internal structure of theapproximation. We are now considering the internal structure of the
islands.

The typical islands have LzThe typical islands have Lz
much less than Lx or Ly.

Ly Lz
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1. The idea of an Ising spin for a particle is replaced by a 3d magnetic moment , moving in some
anisotropic potential, but free to point in any direction, if enough energy becomes available to it .

2. This type of potential is continuous, in contrast to the two-state Ising particle, having a well-
defined energy barrier .

3. We find that for high aspect ratio (Lx >> Ly ) ellipses, an uniform rotation model is very useful.



For a particle whose hard axis is along z and easy axis along x, an effective
t ti l th t i t l t th gi i h t bpotential that approximately represents the energies is shown to be

where is the unit vector pointing in the direction of
th ti l ’ t ti tthe particle’s net magnetic moment.

1. We considered thin elliptical particles with
3 20thicknesses g3 = Lx/Lz = 20, and aspect

ratios g1 = Lx/Ly = 3, 5 and 8.

2. The lengths ranged from 120 nm to 480 nm.

Ly Lz

Lx 

z



Some typical results for the internal energy curves are shown below for the in-plane potential of an
elliptical particle with g1 = Lx/Lz= 5, with major axis 240 nm, minor axis 48 nm and thickness 12 nm.
The potentials for in-plane motion of fit very well to the functional form,

The angle m is the
direction of the net
particle moment inparticle moment in
the easy plane.

The points come from thep
simulations at the different
angles H of the applied
field from the long axis; all
f ll t thfall onto the same curve.

The fit gives a reliable
estimate of anisotropyestimate of anisotropy
constant K1



The out-of-plane potential for the same elliptical particle (g1 = Lx/Lz= 5, with major axis 240 nm, minor axis 48
nm and thickness 12 nm). The points from simulations at different angles H of the applied field are combined
into one curve.

The angle m is the
tilting of the net
particle moment out
of the easy plane.

The fit gives a reliable
estimate of anisotropyestimate of anisotropy
constant for the hard
axis K3



Hysteresis loops for an elliptical particle with an in-plane applied field at the
indicated angles H to the long axis of the particle.

H
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Hysteresis loops for an elliptical particle with the applied field tilted out of the xy-
plane at the indicated angles H from the long axis of the particle.
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With these results for an individual nanoisland (mainly the values of K1 and K3 )
we study now the dynamics of artificial spin ices (in square and kagome

Lx 

lattices) at finite temperatures. We have only preliminary calculations�…



These are only preliminary calculations. All simulations were performed with the
f ll i g fi titi t t J 0 K1 1 K3 0 D 0 2following fictitious constants: J=0, K1=1, K3=0, D=0.2.

kBT=0.1=D/2 

It starts in an uniformIt starts in an uniform 
state, relaxing�…



These are only preliminary calculations. All simulations were performed with the
f ll i g fi titi t t J 0 K1 1 K3 0 D 0 2following fictitious constants: J=0, K1=1, K3=0, D=0.2.

kBT=0.1 =D/2 

It starts in the ground state.g



These are only preliminary calculations. All simulations were performed with the
f ll i g fi titi t t J 0 K1 1 K3 0 D 0 2following fictitious constants: J=0, K1=1, K3=0, D=0.2.

kBT=0.4=2D

It starts in the ground state.g



All simulations were
performed with theperformed with the
following fictitious
constants:
J=0, K1=1,
K3=0, D=0.2.

k T 1 4 7DkBT=1.4=7D

It starts in the
ground state.



Since the total
magnetic moment ofmagnetic moment of
the islands has more
degrees of freedom,
the temperature in
which the specific
heat exhibits a peak
must be much
smaller than 7 2Dsmaller than 7.2D.

It also must depends
on the island type:
sizes, shapes etc. We
are now investigating
this possibility.

kBT=1.4=7DB

It starts in the
ground state.ground state.
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