Metamagnetism in frustrated ferromagnetic spin chains

M. Arlego¹, F. Heidrich-Meisner², A. Honecker³, <u>G. Rossini</u>¹, T. Vekua⁴

 1 Universidad Nacional de La Plata, ARGENTINA Universities of 2 Munich, 3 Göttingen, 4 Hannover, GERMANY

Geometrically Frustrated Magnets IIP-Natal December 16, 2011

Frustrated ferromagnetic spin chain

$$H_{S} = \sum_{i=1}^{L} \left[\left(J \vec{S}_{i} \cdot \vec{S}_{i+1} + J' \vec{S}_{i} \cdot \vec{S}_{i+2} - h S_{i}^{z} \right) \right]$$

$$--- J < 0 \text{ FM}$$

$$--- J < 0 \text{ FM}$$

$$--- J = 1 \text{ AF}$$

Frustrated ferromagnetic spin chain

$$H_{S} = \sum_{i=1}^{L} \left[\left(J \vec{S}_{i} \cdot \vec{S}_{i+1} + J' \vec{S}_{i} \cdot \vec{S}_{i+2} - h S_{i}^{z} \right) \right]$$

S=1/2 realized in LiCuVO₄, Li₂ZrCuO₄. We looked at S=1:

Frustrated ferromagnetic spin chain

$$H_{S} = \sum_{i=1}^{L} \left[\left(J \vec{S}_{i} \cdot \vec{S}_{i+1} + J' \vec{S}_{i} \cdot \vec{S}_{i+2} - h S_{i}^{z} \right) \right]$$

S=1/2 realized in LiCuVO₄, Li₂ZrCuO₄. We looked at S=1:

Outline

- Classical picture
- 2 Two magnon problem
- 3 Multimagnon problem, $S \ge 1$
- 4 DMRG results

•
$$h = 0$$
: spiral order,

$$\theta = \arccos\left(-J/4\right)$$

$$J = 0, \ \theta = \pi/2$$

$$-4 < J < 0, \, 0 < \theta, \pi/2$$

$$J \leq -4, \ \theta = 0$$

Limit $S \to \infty$

• h = 0: spiral order,

$$\theta = \arccos(-J/4)$$

$$J = 0, \ \theta = \pi/2$$

$$-4 < J < 0, \, 0 < \theta, \pi/2$$

$$J \leq -4, \ \theta = 0$$

• $h \neq 0$: spiral in xy plane + canting towards z axis

Limit $S \to \infty$

• h = 0: spiral order,

$$\theta = \arccos(-J/4)$$

$$J = 0, \ \theta = \pi/2$$

$$-4 < J < 0, \, 0 < \theta, \pi/2$$

$$J \leq -4, \ \theta = 0$$

- $h \neq 0$: spiral in xy plane + canting towards z axis
- $h_{sat} = S/4(J+4)^2$

Bound states and jumps

•
$$H_S(h) = H_S(h = 0) - hS_{tot}^z$$

Bound states and jumps

•
$$H_S(h) = H_S(h = 0) - hS_{tot}^z$$

 S^z sector with especially low energy — hides following S^z sectors in the magnetization curve

Bound states and jumps

•
$$H_S(h) = H_S(h = 0) - hS_{tot}^z$$

- S^z sector with especially low energy

 hides following S^z sectors in the magnetization curve
- See jumps? → Look for bound states

One magnon dispersion

$$\epsilon_k = \frac{1}{2}V_k - \frac{1}{2}V_{k_{cl}} \geq 0$$

with
$$V_k = 2J\cos(k) + 2\cos(2k)$$

$$k_{cI} = \arccos(-J/4)$$
, incommensurate

Bound states and magnetization jumps One magnon dispersion Two magnon basis Two magnon eigenstates Bound States Resonances

• Two magnon states basis, with momentum K, relative coordinate r:

$$|K,r\rangle = \sum_{l=1}^{L} e^{iK(l+r/2)} S_{l}^{-} S_{l+r}^{-} |\uparrow\uparrow \cdots \uparrow\uparrow\rangle$$

• Two magnon states basis, with momentum K, relative coordinate r:

$$|K,r\rangle = \sum_{l=1}^{L} e^{iK(l+r/2)} S_{l}^{-} S_{l+r}^{-} |\uparrow\uparrow \cdots \uparrow\uparrow\rangle$$

• Two magnon states:

$$|\Psi_{2M}\rangle = \sum_{r} C_{r} |K,r\rangle$$

• Two magnon states basis, with momentum K, relative coordinate r:

$$|K,r\rangle = \sum_{l=1}^{L} e^{iK(l+r/2)} S_{l}^{-} S_{l+r}^{-} |\uparrow\uparrow \cdots \uparrow\uparrow\rangle$$

Two magnon states:

$$|\Psi_{2M}\rangle = \sum_{r} C_{r} |K, r\rangle$$

• S = 1/2: $C_0 = 0$, strictly hardcore

• Two magnon states basis, with momentum K, relative coordinate r:

$$|K,r\rangle = \sum_{l=1}^{L} e^{iK(l+r/2)} S_{l}^{-} S_{l+r}^{-} |\uparrow\uparrow \cdots \uparrow\uparrow\rangle$$

Two magnon states:

$$|\Psi_{2M}\rangle = \sum_{r} C_{r} |K,r\rangle$$

- S = 1/2: $C_0 = 0$, strictly hardcore
- Eigenstates:

$$\textit{H}_{\textit{S}}|\Psi_{2\textit{M}}\rangle = \textit{E}_{2\textit{M}}|\Psi_{2\textit{M}}\rangle$$

Two magnon eigenstates

Schrödinger equation $(S \ge 1)$ for eigenstates with momentum K

$$\Omega_0 C_0 = \frac{S}{\sqrt{S(2S-1)}} (\zeta_1 C_1 + \zeta_2 C_2)
(\Omega_0 - J) C_1 = \frac{(2S-1)^{3/2}}{S^{3/2}} \zeta_1 C_0 + \zeta_1 C_2 + \zeta_2 (C_1 + C_3)
(\Omega_0 - 1) C_2 = \frac{(2S-1)^{3/2}}{S^{3/2}} \zeta_2 C_0 + \zeta_2 C_4 + \zeta_1 (C_1 + C_3)$$

and for r > 3:

$$\Omega_0 C_r = \zeta_1 (C_{r+1} + C_{r-1}) + \zeta_2 (C_{r+2} + C_{r-2})$$

where Ω_0 is the eigenvalue, $\zeta_1 = 2SJ\cos(K/2)$, $\zeta_2 = 2S\cos(K)$

Two magnon bound states

Bound state Ansatz:

$$C_r = e^{-\kappa_- r} + v e^{-\kappa_+ r} \quad (r \ge 1)$$

Two magnon bound states

Bound state Ansatz:

$$C_r = e^{-\kappa_- r} + v e^{-\kappa_+ r} \quad (r \ge 1)$$

• Provides solutions for $J < J_{cr}(S)$, with width $a_s = 1/\min\{\text{Re}[\kappa_{\pm}]\}$

Two magnon bound states

Bound state Ansatz:

$$C_r = e^{-\kappa_- r} + v e^{-\kappa_+ r} \quad (r \ge 1)$$

- Provides solutions for $J < J_{cr}(S)$, with width $a_s = 1/\min\{\text{Re}[\kappa_{\pm}]\}$
- Example: S=1, J=-2.5. Bound state solutions shown in red.

 Bound states below the continuum, with negative binding energy:

$$\textit{E}_{\textit{b}}(\textit{K}^*) \simeq -1/\textit{ma}_{\textit{S}}^2$$

 Bound states below the continuum, with negative binding energy:

$$E_b(K^*) \simeq -1/ma_S^2$$

Bound state width:

$$a_{S} = 1/\min\{\text{Re}[\kappa_{\pm}]\}$$

 Bound states below the continuum, with negative binding energy:

$$E_b(K^*) \simeq -1/ma_S^2$$

Bound state width:

$$a_S = 1/\min\{\text{Re}[\kappa_{\pm}]\}$$

 S ≥ 1: extended bound states in a finite window

$$-4 < J < J_{cr}(S)$$

Bound states and magnetization jumps One magnon dispersion Two magnon basis Two magnon eigenstates Bound States

 Bound states below the continuum, with negative binding energy:

$$E_b(K^*) \simeq -1/ma_S^2$$

Bound state width:

$$a_{\mathcal{S}} = 1/\min\{\text{Re}[\kappa_{\pm}]\}$$

 S ≥ 1: extended bound states in a finite window

$$-4 < J < J_{cr}(S)$$

S	1/2	1	3/2	2	5/2
$J_{cr}(S)$	_	-2.11	-3.31	-3.68	-3.84

Bound states and magnetization jumps
One magnon dispersion
Two magnon basis
Two magnon eigenstates
Bound States
Resonances

 Bound states below the continuum, with negative binding energy:

$$E_b(K^*) \simeq -1/ma_S^2$$

Bound state width:

$$a_{\mathcal{S}} = 1/\min\{\text{Re}[\kappa_{\pm}]\}$$

 S ≥ 1: extended bound states in a finite window

$$-4 < J < J_{cr}(S)$$

S	1/2	1	3/2	2	5/2
$J_{cr}(S)$	_	-2.11	-3.31	-3.68	-3.84

Wide bound states → Hard coreness of magnons plays no major role in this regime!

Metamagnetism

• $M = S_{Total}^{z}/(SL)$: normalized magnetization

Metamagnetism

- $M = S_{Total}^{z}/(SL)$: normalized magnetization
- Metamagnetic jump: step to saturation with finite $\Delta M \longleftrightarrow$ finite density of magnons for $L \to \infty$

Multimagnon problem

Dyson-Maleev (same results at 1/S using Holstein-Primakoff)

$$\begin{array}{rcl} S_i^z & = & S - a_i^\dagger a_i \,, & S_i^+ = \sqrt{2S} a_i \,, \\ S_i^- & = & \sqrt{2S} a_i^\dagger (1 - a_i^\dagger a_i/2S) \,, \, \longrightarrow \end{array}$$

$$\rightarrow H_{S} = \sum_{k} (2S\epsilon_{k} - \mu(h)) a_{k}^{\dagger} a_{k} + \sum_{k,k',q} \frac{\Gamma_{0}(q;k,k')}{2L} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

with one-magnon like dispersion $\sim 2S\epsilon_k$ close to saturation $\mu(h)=h_s^{cl}-h\to 0^+$ and bare 4-leg vertex coupling $\Gamma_0(q;k,k')=V_q-\frac{1}{2}(V_k+V_{k'})$

Low energy regime

$$k \approx \pm k_{cl} \longrightarrow$$
 two boson species \pm

Low energy regime

$$k \approx \pm k_{cl} \longrightarrow$$
 two boson species \pm

• Intra-species coupling $g_0 \sim \Gamma_0(0; k_{cl}, k_{cl}) = \Gamma_0(0; -k_{cl}, -k_{cl})$

Low energy regime

$$k \approx \pm k_{cl} \longrightarrow$$
 two boson species \pm

• Intra-species coupling $g_0 \sim \Gamma_0(0; k_{cl}, k_{cl}) = \Gamma_0(0; -k_{cl}, -k_{cl})$

$$\begin{matrix} k_{cl} \\ k_{cl} \end{matrix} \qquad \begin{matrix} k_{cl} \\ k_{cl} \end{matrix}$$

• Inter-species coupling $\tilde{g}_0 \sim \Gamma_0(0; k_{cl}, -k_{cl}) + \Gamma_0(2k_{cl}; k_{cl}, -k_{cl})$

Low density, low energy effective model

 Low magnon density + wide bound states (S ≥ 1): we can ignore hard core constraint and curvature

Low density, low energy effective model

- Low magnon density + wide bound states (S ≥ 1): we can ignore hard core constraint and curvature
- Approximate boson modes around k_{cl} and $-k_{cl}$ by quadratic dispersion bosons $\psi_-(x), \, \psi_+(x)$ with mass $m=\frac{2}{5(4-J)(4+J)}$

Low density, low energy effective model

- Low magnon density + wide bound states (S ≥ 1): we can ignore hard core constraint and curvature
- Approximate boson modes around k_{cl} and $-k_{cl}$ by quadratic dispersion bosons $\psi_{-}(x), \, \psi_{+}(x)$ with mass $m=\frac{2}{5(4-J)(4+J)}$

getting a two component Lieb-Liniger model, with contact density-density interactions

$$\mathcal{H}_{\text{eff}} = \sum_{\alpha = +} - \frac{|\nabla \psi_{\alpha}|^2}{2m} + \frac{g_0}{2} (n_{-}^2(x) + n_{+}^2(x)) + \tilde{g}_0 n_{-}(x) n_{+}(x)$$

Effective coupling constants

Couplings depend on S through renormalization

$$\mathcal{H}_{\text{eff}} = \sum_{\alpha = +} -\frac{|\nabla \psi_{\alpha}|^2}{2m} + \frac{g_0(S)}{2} (n_{-}^2(x) + n_{+}^2(x)) + \tilde{g}_0(S) n_{-}(x) n_{+}(x)$$

Effective Coupling Regimes

- $g_0(S) > 0$ (< 0): repulsive (attractive) intra-species interaction
- $\tilde{g}_0(S) > 0 < 0$: repulsive (attractive) inter-species interaction

 $g_0(S)$, $\tilde{g}_0(S)$ are obtained from the renormalized $\Gamma(q; k, k')$:

$$\begin{split} g(S) &= \Gamma(0; k_{cl}, k_{cl}) \\ \tilde{g}(S) &= \Gamma(0; k_{cl}, -k_{cl}) + \Gamma(2k_{cl}; k_{cl}, -k_{cl}) \end{split}$$

Renormalization is done at the RG fixed point of a dilute, two-component Bose gas, dictated by SU(2) symmetry (Kolezhuk, PRA 81 (2010))

$$\lim_{\mu \to 0} g(S) = \lim_{\mu \to 0} \tilde{g}(S) = \pi \sqrt{\mu(S)} / \sqrt{2m}$$

Then one expects

$$g(S) = \frac{g_0(S)}{1 + g_0(S)\sqrt{2m}/(\pi\sqrt{\mu(S)})}$$
 Extract $g_0(S)$

$$\tilde{g}(S) = \frac{\tilde{g}_0(S)}{1 + \tilde{e}_0(S)\sqrt{2m}/(\pi\sqrt{\mu})}$$
 \Longrightarrow $\tilde{g}_0(S)$

1/S vertex renormalization

Bethe-Salpeter equation

$$\Gamma(q;k,k') = \Gamma_0(q;k,k') - \frac{1}{2SL} \sum_{p} \frac{\Gamma_0(q-p;k+p,k'-p)}{\epsilon_{k+p} + \epsilon_{k'-p}} \Gamma(p;k,k')$$

1/S expansion makes sense here, though the model is 1D. All integrals are evaluated analytically.

Attractive regime

- $g_0(S)$ may be tuned attractive \leftrightarrow repulsive
- $\tilde{g}_0(S)$ is always repulsive for -4 < J < 0

Mapping to bosons
Effective model
1/S renormalization
Attractive regime
Collapsed regime - Metamagnetism

Collapsed Bose gas - Metamagnetism

• Different species repulsion leads to a chiral phase: magnons appear with momenta close to either k_{cl} or $-k_{cl}$.

Mapping to bosons
Effective model
1/S renormalization
Attractive regime
Collapsed regime - Metamagnetism

Collapsed Bose gas - Metamagnetism

- Different species repulsion leads to a chiral phase: magnons appear with momenta close to either k_{cl} or $-k_{cl}$.
- Same species attraction leads to a wave function collapse, forming a multimagnon bound state below the scattering continuum.
- This resembles Feschbach resonances in Bose gases

Collapsed Bose gas - Metamagnetism

- Different species repulsion leads to a chiral phase: magnons appear with momenta close to either k_d or $-k_d$.
- Same species attraction leads to a wave function collapse, forming a multimagnon bound state below the scattering continuum.
- This resembles Feschbach resonances in Bose gases
- ullet This leads to supressed S^z states in the magnetization curves \Longrightarrow Metamagnetic jump ΔM

Collapsed Bose gas - Metamagnetism

- Different species repulsion leads to a chiral phase: magnons appear with momenta close to either k_{cl} or $-k_{cl}$.
- Same species attraction leads to a wave function collapse, forming a multimagnon bound state below the scattering continuum.
- This resembles Feschbach resonances in Bose gases
- ullet This leads to supressed S^z states in the magnetization curves \Longrightarrow Metamagnetic jump ΔM
- ullet How large ΔM ? Increasing density will break the low density approximation.

S = 1/2

Materials like LiCuVO₄ realize the spin 1/2 case

S = 1/2

Materials like LiCuVO₄ realize the spin 1/2 case

- two magnon bound states with $k=\pi$, binding magnons in different legs
- no jump, but more than two magnon states appear close to saturation, for $J \rightarrow -4$

S = 1/2

Materials like *LiCuVO*₄ realize the spin 1/2 case

- two magnon bound states with k = π, binding magnons in different legs
- no jump, but more than two magnon states appear close to saturation, for J
 ightharpoonup -4

Heidrich-Meisner, Honecker, Vekua, PRB74(2006)

Sudan, Lüscher, Läuchli, PRB80(2009)

S=1 magnetization curves

Wave function collapse

black: S_z = 80 /128 red: S_z = 90 /128 blue: S_z = 110 /128 green: S_z = 120 /180

S = 1 ground state phase diagram

Larger S

S	1/2	1	3/2	2	5/2
$J_{cr}(S)$	_	-2.11	-3.31	-3.68	-3.84

Larger S

S	1/2	1	3/2	2	5/2
$J_{cr}(S)$	_	-2.11	-3.31	-3.68	-3.84

Larger S

S	1/2	1	3/2	2	5/2
$J_{cr}(S)$	_	-2.11	-3.31	-3.68	-3.84

Critical S

Critical S above which metamagnetism window dissapears: $S_{cr}=5$ (Vekua, Kolezhuk, in progress)

• The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for $S \ge 1$ than for S = 1/2

- The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for $S \ge 1$ than for S = 1/2
- Metamagnetism can be explained by the appearence of collapsed chiral multimagnon states

- The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for $S \ge 1$ than for S = 1/2
- Metamagnetism can be explained by the appearence of collapsed chiral multimagnon states
- The 1/S approach works fine in 1D

- The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for $S \ge 1$ than for S = 1/2
- Metamagnetism can be explained by the appearence of collapsed chiral multimagnon states
- The 1/S approach works fine in 1D
- We predict a critical value of S above which metamagnetism disappears

- The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for $S \ge 1$ than for S = 1/2
- Metamagnetism can be explained by the appearence of collapsed chiral multimagnon states
- The 1/S approach works fine in 1D
- We predict a critical value of S above which metamagnetism disappears
- Metamagnetism for S=1/2 still shows up in a very narrow window close to spontaneous ferromagnetism

- The ferromagnetic frustrated spin chain, close to saturation, behaves very differently for S > 1 than for S = 1/2
- Metamagnetism can be explained by the appearence of collapsed chiral multimagnon states
- The 1/S approach works fine in 1D
- We predict a critical value of S above which metamagnetism disappears
- ullet Metamagnetism for S=1/2 still shows up in a very narrow window close to spontaneous ferromagnetism
- May be some material realizes S = 1 ferromagnetic frustrated spin?

