

Domain wall spin dynamics in Kagome antiferromagnets

PRL 107, 257205 (2011)

E. Lhotel¹, V. Simonet¹, R. Ballou¹, J. Ortloff^{1,2}, B. Canals¹, C. Paulsen¹ E. Suard³, T. Hansen³, D. J. Price⁴, P. T. Wood⁵, A. K. Powell⁶

¹Institut Néel, CNRS & Université Joseph Fourier, Grenoble, France ²Institute for Theoretical Physics, University of Würzburg, Germany ³Institut Laue Langevin, Grenoble, France ⁴Univ Glasgow, School of Chemistry, Scotland ⁵Univ Cambridge, Chem Lab, England ⁶Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Germany

FM Brazil, 2011

Domain wall spin dynamics in Kagome antiferromagnets

E. Lhotel¹, V. Simonet¹, R. Ballou¹, J. Ortloff^{1,2}, B. Canals¹, C. Paulsen¹ E. Suard³, T. Hansen³, D. J. Price⁴, P. T. Wood⁵, A. K. Powell⁶

Outline

- A new family of kagomé compounds: the quinternary oxalate family
- Magnetic properties close to T_N : realization of a "q=0" kagomé antiferromagnet with strong anisotropy
- Magnetic properties at low temperature: domain walls dynamics associated to quasi-Ising free spins in the ordered phase

• Discussion

Introduction

Geometric frustration : highly degenerate ground states with short-range spin-spin correlations, spin liquids and spin ices, or exotic ordered states

Example: Fe jarosites forming a kagomé lattice

 $KFe_3(OH)_6(SO_4)_2$ S = 5/2

Antiferromagnetic order: $T_N = 65 K \ll |\theta| = 800 K$

"q=0" umbrella magnetic structure : 120° moment on each triangle + weak out of plane component

=> Frustration released by 2nd order perturbation: attributed to **Dzyaloshinsky-Moriya interaction**

Matan et al., PRB 2011

Introduction

Excitations and dynamics associated to these states: propagative spin-waves like modes, weathervane soft modes, magnetic charges

Robert et al., PRL 2008

Matan et al. PRL 2006

Castelnovo et al. Nature 2007

Introduction

Magnetic domains always present in conventional magnets

180° antiferromagnetic domains: all spins reversed

Importance in multiferroics (handling via the ME effect, electronic properties of domain walls etc.)

cf. talk of G.J. MacDougall

Delaney et al, PRL 2009

Fe-oxalate compounds with generic formula: $Na_2Ba_3M_3(C_2O_4)_6X$ where for instance $M = Fe^{2+}$ and $X = A^{IV}(C_2O_4)_3$ with $A^{IV} = Zr$, Sn or $X = [A^{III}(C_2O_4)_3]_{0.5}[A^{III}(C_2O_4)_2(H_2O)_4]_{0.5}$ with $A^{III} = Fe$, Al

 $Na_2Ba_3Fe_3(C_2O_4)_6Zr(C_2O_4)_3$

Trigonal non-centrosymmetric space group P321: a=b=10.45 Å, c=7.54 Å

Fe²⁺ bridged by oxalate organic ligands $C_2O_4^{2-}$

 $Na_2Ba_3Fe_3(C_2O_4)_6 Zr(C_2O_4)_3$

Network of Fe^{2+} in the ab plane:

- same topology as the kagomé for nearest-neighbor interactions J_1
- identical in all compounds

Network of Fe^{2+} in the ab plane:

- same topology as the kagomé for nearest-neighbor interactions \mathbf{J}_1
- identical in all compounds

→Magnetization, DC & AC susceptibility and neutron diffraction down to 70 mK same results on all FeFe-oxalate, FeZr-oxalate, FeSn-oxalate powder samples

Magnetic properties close to T_N

Magnetic properties close to T_N

Magnetization measurements

FM Brazil, 2011

Magnetic properties close to ${\rm T}_{\rm N}$

Indexation of neutron diffractogram

- \Rightarrow propagation vector : k=(0,0,1/2)
- \Rightarrow Antiferromagnetic stacking along c

Magnetic properties close to T_N

Powder Neutron Diffraction

ILL: D20 - D2B, $\lambda = 2.4 \text{ Å}$

Magnetic properties close to T_N: Interpretation

3rd inter plane neighbors: J₃ via O-C-C-O bond = 7.54 Å

1st Neighbors: J_1 via O-C-O bond = 5.54 Å 2nd in plane Neighbors: J_2 via O-C-C-O bond = 7.15 Å

NEEL Magnetic properties close to T_N: Interpretation

1st Neighbors: J_1 via O-C-O bond = 5.54 Å 2nd in plane Neighbors: J_2 via O-C-C-O bond = 7.15 Å

> Multiaxial in plane anisotropy: along the local 2-fold axis ~ 10 kelvins

3rd inter plane neighbors:J₃ via O-C-C-O bond = 7.54 Å

Magnetic properties close to T_N: Interpretation

2D triangle-based lattices with antiferromagnetic interactions

triangular (Néel order) vs kagomé (spin liquid)

Multiaxial anisotropy in the kagomé lattice: release of the frustration

Multiaxial anisotropy in the kagomé lattice: release of the frustration

Lift the degeneracy \rightarrow magnetic order "q=0"

NEEL Magnetic properties close to T_N: Interpretation

Calculation with the model:

- Antiferromagnetic interactions:
- J_1 (3 K) and J_2 , J_3 (0.3 K)
- Multiaxial anisotropy along the 2-fold axis (10 K)

VEEL Magnetic properties close to T_N: Interpretation

Calculation with the model:

- Antiferromagnetic interactions: $J_1 \& J_2 (3 K)$ and $J_3 (0.3 K)$
- Multiaxial anisotropy along the 2-fold axis (10 K)

 \Rightarrow Explains magnetic order

VEEL Magnetic properties close to T_N: Interpretation

Calculation with the model:

- Antiferromagnetic interactions: $J_1 \& J_2 (3 K)$ and $J_3 (0.3 K)$
- Multiaxial anisotropy along the 2-fold axis (10 K)

⇒ Explains magnetic order
⇒ Reproduces magnetisation curves

FM Brazil, 2011

But this is not the end of the story...

2nd maximum in the susceptibility at ~ 400 mK in all compounds

Step-like feature in magnetization curves

2nd maximum in the susceptibility at ~ 400 mK in all compounds

Step-like feature in magnetization curves

Origin?

Neutron diffraction : no change in the magnetic structure down to 60 mK

Spin dynamics probed by AC susceptibility down to 60 mK H=0.5 Oe, f=1.1 mHz - 5.7 kHz

180° antiferromagnetic domains: all spins reversed Strong anisotropy: single atomic distance width of domain walls

FM Brazil, 2011

180° antiferromagnetic domains: all spins reversed Strong anisotropy: single atomic distance width of domain walls

FM Brazil, 2011

- Independent spins, blind to their neighbors, along the domain wall
- Same J_1 exchange energy cost in both orientations

- Independent spins, blind to their neighbors, along the domain wall
- Same J_1 exchange energy cost in both orientations

- Independent spins, blind to their neighbors, along the domain wall
- Same J_1 exchange energy cost in both orientations

- Independent spins, blind to their neighbors, along the domain wall
- Same J_1 exchange energy cost in both orientations

FM Brazil, 2011

Cross-over toward a very slow low T regime : large $\tau_0 = 10^{-3} s \Rightarrow$ collective behavior ? reduced E = 3 Kand broadening of the τ distribution

Long range dipolar interactions start to couple the free spins along the domain walls.

Calculated $E_{dip}/spin \approx 0.2 \text{ K}$

Cross-over toward a very slow low T regime : large $\tau_0 = 10^{-3} s \Rightarrow$ collective behavior ? reduced E = 3 Kand broadening of the τ distribution

Long range dipolar interactions start to couple the free spins along the domain walls.

Calculated $E_{dip}/spin \approx 0.2 \text{ K}$

Jaubert & Holdsworth JPCM 2011

Analogy with dipolar pyrochlore spin ice dynamics: pyrochlore spin-ice = low connectivity, strong multiaxial anisotropy BUT disordered ground state high temperature regime: single spin-flips above the anisotropy barrier low temperature: magnetic excitations (monopoles) coupled by dipolar interactions

Discussion

Fe-oxalate compounds = model system of Kagomé antiferromagnets with strong multiaxial anisotropy, exchange and dipolar interactions

•Released frustration: "q=0" 120° magnetic order

However, low lattice connectivity
string of exchange free quasi-Ising spins along the domain walls decoupling the antiferromagnetic domains

•At lower temperature: collective behavior induced by dipolar interactions

Discussion

General to different systems? Coulon et al Struct Bond 122, 163 2006 → Ferromagnetic Single-chain magnets with anisotropy

→Kagomé with AFM or FM (ordered spin ice) NN interactions and anisotropy Wills et al PRB 2002, Moeller et al PRB 2009, Chern et al PRL 2011

→other frustrated lattices with both ordered and fluctuating spins (ex. GGG...)?

→Pyrochlores?

Discussion

Analogy to Mushy sea ice phase :

Ice nanocrystals with fluid flowing inside interstices, and getting amorphously frozen when T

from E. C. Hunke et al. TCD 2011

Domain wall spin dynamics in Kagome antiferromagnets

PRL 107, 257205 (2011)

E. Lhotel¹, V. Simonet¹, R. Ballou¹, J. Ortloff^{1,2}, B. Canals¹, C. Paulsen¹ E. Suard³, T. Hansen³, D. J. Price⁴, P. T. Wood⁵, A. K. Powell⁶

¹Institut Néel, CNRS & Université Joseph Fourier, Grenoble, France ²Institute for Theoretical Physics, University of Würzburg, Germany ³Institut Laue Langevin, Grenoble, France ⁴Univ Glasgow, School of Chemistry, Scotland ⁵Univ Cambridge, Chem Lab, England ⁶Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Germany

FM Brazil, 2011

