Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes / Regulation of Genome Architecture and Dynamics of Splicing (ReGArDS) - D. Auboeuf / C. Bourgeois / Publications / The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype

The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype

D. Auboeuf (2021)

Prog Biophys Mol Biol, 167:121–139.

The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.

[DOI:https://dx.doi.org/10.1016/j.pbiomolbio.2021.05.00810.1016/j.pbiomolbio.2021.05.008] [PubMed:https://www.ncbi.nlm.nih.gov/pubmed/3409798434097984]

Actions sur le document