Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Teams / Genome mechanics - A. Piazza / Publications / Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi-C

Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi-C

Héloise Muller, Vittore F Scolari, Nicolas Agier, Aurele Piazza, Agnès Thierry, Guillaume Mercy, Stéphane Descorps-Declere, Luciana Lazar-Stefanita, Olivier Espéli, Bertrand Llorente, and others (2018)

Molecular systems biology, 14(7).

In all chromosome conformation capture based experiments the accuracy with which contacts are detected varies considerably because of the uneven distribution of restriction sites along genomes. In addition, repeated sequences as well as homologous regions in isogenic diploid backgrounds remain indistinguishable by the assay because of the ambiguities they introduce during the alignment of the sequencing reads along the genome. As a result, the investigation of homologs during meiosis prophase through 3C studies has been limited. Here, we redesigned and reassembled in yeast a 145kb region with regularly spaced restriction sites for various enzymes. Thanks to this Syn-HiC design, we enhanced the signal to noise ratio and improved our understanding of Hi-C data and definition of resolution. The redesigned sequence is now distinguishable from its native homologous counterpart in an isogenic diploid strain. As a proof of principle, we track the establishment of homolog pairing during meiotic prophase in a synchronized population. This provides new insights on the individualization and pairing of homologs, as well as on their internal restructuration into arrays of loops during meiosis prophase. Overall, we show the interest of redesigned genomic regions to explore complex biological questions otherwise difficult to address.

Document Actions