Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Teams / Systems Biology of Decision Making - O. Gandrillon / Publications (not up to date) / Granulocytic differentiation of human NB4 promyelocytic leukemia cells induced by all-trans retinoic acid metabolites.

Granulocytic differentiation of human NB4 promyelocytic leukemia cells induced by all-trans retinoic acid metabolites.

N Idres, G Benoit, M A Flexor, M Lanotte, and G G Chabot (2001)

Cancer Res, 61(2):700-5.

The metabolism of all-trans retinoic acid (ATRA) has been reported to be partly responsible for the in vivo resistance to ATRA seen in the treatment of human acute promyelocytic leukemia (APL). However, ATRA metabolism appears to be involved in the growth inhibition of several cancer cell lines in vitro. The purpose of this study was to evaluate the in vitro activity of the principal metabolites of ATRA [4-hydroxy-retinoic acid (4-OH-RA), 18-hydroxy-retinoic acid(18-OH-RA), 4-oxo-retinoic acid (4-oxo-RA), and 5,6-epoxy-retinoic acid (5,6-epoxy-RA)] in NB4, a human promyelocytic leukemia cell line that exhibits the APL diagnostic t(15;17) chromosomal translocation and expresses the PML-RAR alpha fusion protein. We established that the four ATRA metabolites were indeed formed by the NB4 cells in vitro. NB4 cell growth was inhibited (69-78% at 120 h) and cell cycle progression in the G1 phase (82-85% at 120 h) was blocked by ATRAand all of the metabolites at 1 microM concentration. ATRA and its metabolites could induce NB4 cells differentiation with similar activity, as evaluated by cell morphology, by the nitroblue tetrazolium reduction test (82-88% at 120 h) or by the expression of the maturation specific cell surface marker CD11c. In addition, nuclear body reorganization to macropunctated structures, as well as the degradation of PML-RAR alpha, was found to be similar for ATRA and all of its metabolites. Comparison of the relative potency of the retinoids using the nitroblue tetrazolium reduction test showed effective concentrations required todifferentiate 50% of cells in 72 h as follows: ATRA, 15.8 +/- 1.7 nM; 4-oxo-RA, 38.3 +/- 1.3 nM; 18-OH-RA, 55.5 +/- 1.8 nM; 4-OH-RA, 79.8 +/- 1.8 nM; and 5,6-epoxy-RA, 99.5 +/- 1.5 nM. The ATRA metabolites were found to exert their differentiation effects via the RAR alpha nuclear receptors, because the RAR alpha-specific antagonist BMS614 blocked metabolite-induced CD11c expression in NB4 cells. These data demonstrate that the principal ATRA Phase 1 metabolites can elicit leukemia cell growth inhibition and differentiation in vitro through the RAR alpha signaling pathway, and they suggest that these metabolites may play a role in ATRA antileukemic activity in vivo.

 
automatic medline import

Document Actions