Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes / Systems Biology of Decision Making - O. Gandrillon / Publications (not up to date) / Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors.

Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors.

C Mejia-Pous, F Damiola, and O Gandrillon (2011)

Cell Prolif, 44(5):441-52.

OBJECTIVES: Molecular mechanisms controlling cell fate decision making in self-renewing cells are poorly understood. A previous transcriptomic study, carried out in primary avian erythroid progenitor cells (T2ECs), revealed that the gene encoding oxidosqualene cyclase (OSC/LSS), an enzyme involved in cholesterol biosynthesis, is significantly up-regulated in self-renewing cells. The aim of the present work is to understand whether this up-regulation is required for self-renewal maintenance and what are the mechanisms involved. MATERIALS AND METHODS: To investigate OSC function, we studied effects of its enzymatic activity inhibition using Ro48-8071, a specific OSC inhibitor. In addition, we completed this pharmacological approach by RNAi-mediated OSC/LSS knockdown. The study of OSC inhibition was carried out on both self-renewing anddifferentiating cells to observe any state-dependent effect. RESULTS: Our data show that OSC acts both by protecting self-renewing T2EC cells from apoptosis and by blocking their differentiation program, as OSC inhibition is sufficient to trigger spontaneous commitment of self-renewing cells towards an early differentiation state. This is self-renewal specific, as OSC inhibition has no effect on erythroid progenitors that have already differentiated. CONCLUSIONS: Taken together, our results suggest that OSC/LSS expression and activity are required to maintain cell self-renewal and may be involved in the self-renewal versus differentiation/apoptosis decision making, by keeping cells in a self-renewal state.

 
automatic medline import

Actions sur le document