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1 Introduction

This manual describes the different steps needed to make a full comparison
of nucleosome occupancy and modification profile. The steps described in
this manual are similar to the steps performed for the results published in
the article [5]. We assume that NucleoMiner has been previously installed
on your machine and that it is correctly running. Otherwise please see the
NucleoMiner manual. Assume that your:

• $PATH is configurated properly

• $PERLLIB is configurated properly

• $LD_LIBRARY_PATH is configurated properly
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2 Mapping tiling array probes on genome

Programs used in this section

• NM1lq2fsa (perl) extract probe sequences from .1lq file

• NMmp2g (shell) map probes to genome

• NMmpa (C) extract probe matches

• NMepm (perl) extract probe with unique match

2.1 Extacting probe sequences in fasta format

First, go into the Affymetrix directory in Data to generate from the .1lq file
provided by Affymetrix the corresponding fasta file.

$NM1lq2fsa -i S.cerevisiae_tiling.1lq --reverse 1>S.cerevisiae_tiling.fasta

This generally takes a few minutes, so be patient. Note that here we have
to use the --reverse option since the probe sequence in the Affetrix file are
stored in reverse order. Then, if you have a look at the fasta file generated
by NM1lq2fsa you should have something like that

$head -10 S.cerevisiae_tiling.fasta

>0_0

TCCTGAACGGTAGCATCTTGACGAC

>1_0

GTCGTCAAGATGCTACCGTTCAGGA

>2_0

TCCTGAACGGTAGCATCTTGACGAC

>3_0

GTCGTCAAGATGCTACCGTTCAGGA

>4_0

NNNNNNNNNNNNNNNNNNNNNNNNN

where the unique identifient of each probe is given here by the concate-
nation of the (x, y) coordinate of the probe on the array (separated by a
underscore, i.e x y). Note here that sequence 4_0 is just a serie of Ns. This
happens when the corresponding sequence in the .1lq file is in fact not de-
fined.
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2.2 Creating the probe annotation files

To annotate the probes here simply consists in getting their coordinate on a
given genome sequence. To do that, we will use the software MUMmer (http://
mummer.sourceforge.net/) to first rapidly align the probes onto the genome
sequence. Second, a short series of scripts will help us to create annotation
files and other convenient files.

MUMmer We assume that you have previously installed the last MUMmer
version (≥ 3.0) on your machine. Otherwise please go to http://mummer.
sourceforge.net/ and follow the install procedures describe in the online
manual. Don’t forget to add the MUMmer directory to your $PATH.
Assuming you are running a shell in bash, this can be simply done as follows:

$export PATH=${PATH}:/path/to/MUMmer/directory

NMmp2g Once MUMmer have been installed, the first step consists in map-
ping the probe sequences onto the genome sequence. Go into folder S1/BY_S288
and use the script NMmp2g as follows:

$NMmp2g ../../Data/BY_S288c/Sequence/Genome.fasta \

../../Data/Affymetrix/S.cerevisiae_tiling.fasta \

NMmp2g.out 2>NMmp2g.log

where the first argument (here ../../Data/BY_S288c/Sequence/Genome.

fasta) is the path to the entire genome sequence in fasta format, the second
(../../Data/Affymetrix/S.cerevisiae_tiling.fasta) is the path to the
probe sequences in fasta format - as previously generated - and the last one,
NMmp2g.out is the output file into which results from MUMmer will be stored.
The last part NMmp2g.log is just a redirection of the standard output (of
MUMmer) into the file NMmp2g.log.

So, if everythink worked fine, you should have a file NMmp2g.out that
looks like that:

$head -10 NMmp2g.out

> 0_0 Len = 25

> 0_0 Reverse Len = 25

> 1_0 Len = 25

> 1_0 Reverse Len = 25

> 2_0 Len = 25

> 2_0 Reverse Len = 25

> 3_0 Len = 25

4



> 3_0 Reverse Len = 25

> 4_0 Len = 25

> 4_0 Reverse Len = 25

As you can see, the output of MUMmer needs to be reformated in order to
create the probe annotation files. In the above extract of the output, you
can note that none of the probes match the genome sequence. When a probe
have a match on the genome, we have something like that:

> 31_3 Len = 25

chrVII 707119 1 25

chrII 643009 1 25

chrXVI 775770 1 25

chrXVI 435897 1 25

where each line after the header > 31_3 Len = 25 (that gives you the
probe id, as previously defined), gives details on the location and the nature
of the match.

NMmpa From the file NMmp2g.out we will then create as many files as the
number of genome sequences (or chromosomes) per match strand (+ or -).
This is done by running the program NMmpa which is a C implementation of
the R script makeProbeAnno included in the R package distributed by David
et al. [2].

So, let’s do it:

$NMmpa -i NMmp2g.out -o NMmpa -a 2560

where the option -a 2560 indicates that the array is a squared matrix of
2560 × 2560 probes. Once the program ends, you can see that a new folder
called NMmpa has been created and that its folder contains files with extension
.prb which names start by the corresponding chromosome name (chrI, chrII,
etc...) suffixed by the strand of the match. So if a probe have a match in
positive strand (+) on chromosome chrI, the match will be listed inside the
file chrI+.prb.

Let’s now have a look at these files:

$head -10 NMmpa/chrI+.prb

86_3 7767 114699 25 0

93_3 7774 27052 25 3

93_3 7774 25702 25 3

208_3 7889 15351 25 3

510_3 8191 32509 25 0
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860_3 8541 192923 25 0

894_3 8575 193187 25 0

1061_3 8742 79283 25 0

1171_3 8852 144051 25 0

1275_3 8956 541 25 3

As you can see, all these files are formated as tables of 5 columns sepearated
by a whitespace. The meaning of the columns is:

1. the (x, y) probe coordinates on the array,

2. the probe id,

3. the starting position (bp) of the match on the sequence,

4. the length of the match,

5. the uniqueness status of the match, defined as follows:

• 0 unique perfect match

• 1 multiple perfect matches

• 2 unique near match

• 3 multiple near matches

NMepm Since we are interested here only by probes that have an unique
perfect match (PM) on the genome, we will use the NMepm perl script to
extract these probes from the files previously generated by NMmpa. Before
running NMepm we first need to generate a simple file that lists the name of
the chromosomes for which we want to extract the PM probes. Here we will
consider all the chromosome sequences. To get this file we can simply extract
the chromosome names from the fasta file as follows:

$grep ’^>’ ../../Data/BY_S288c/Sequence/Genome.fasta \

| grep -vw chrMito \

| sed ’s/^>//’ > ../../Data/BY_S288c/Sequence/Chromosomes.txt

Note that here we removed the mitochondrial chromosome (chrMito) from
the list. We can then run NMepm as follows:

$NMepm -i NMmpa/ -c ../../Data/BY_S288c/Sequence/Chromosomes.txt \

-o NMepm -t 4 2>NMepm.log
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where recall NMmpa contains the probe per strand annotation files pre-
viously generated with NMmpa, and -t 4 indicates to NMepm that we want
probe genomic coordinates tiled with unit step of 4bp. As you can see, the
program as created a directory called NMepm (-o NMepm) which contains as
many .prb files as the number or chromosomes listed in ../../Data/BY_

S288c/Sequence/Chromosomes.txt. Let’s have a look at one this file:

$head -10 NMepm/chrI.prb

2147 833 2134628 chrI - 41 66 53 55 2

2199 1361 3486360 chrI + 45 70 57 59 2

953 1169 2993594 chrI - 49 74 61 63 2

1530 713 1826811 chrI + 53 78 65 67 2

1417 1001 2563978 chrI - 57 82 69 71 2

771 1239 3172612 chrI + 61 86 73 75 2

1745 1095 2804946 chrI - 65 90 77 79 2

991 1953 5000672 chrI + 69 94 81 83 2

295 1987 5087016 chrI - 73 98 85 87 2

540 1207 3090461 chrI + 77 102 89 91 2

All these .prb files are 10 columns table separated by a single whitespace.
The columns are

1. the x coordinate of the probe onto the array

2. the y coordinate of the probe onto the array

3. the unique probe id

4. the name of the sequence on which the probe is located

5. the strand of the probe match (here remember that this is a unique
perfect match)

6. the starting position of the match on the sequence

7. the ending position of the match on the sequence

8. the midpoint of the probe on the sequence

9. the tiling point of the probe on the sequence
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10. the shift between the midpoint and the tiling point ranging from -3 to
3.

Let’s explain the meaning of the last two columns. Since we are dealing
here with tiling array, it is convenient for further analyses to have a probe
coverage which respects everywhere the tiling step (here 4bp). That is to
say, the physical distance between any pair of probes located on the same
chromosome has to be a multiple of the tiling step. To insure this constrain
is fulfill everywhere in the genome, the program NMepm implements a simple
dynamic algorithm that first identifies chunks of consecutive probes that
respect this constrain and then tries to optimize the positionning of these
chunks with respect to each other so that it obtains the optimal positionning
without shifting the individual probe midpoints by more than 3bp. The final
position of the probe is then called the tiling point.

Finally, we will extract only 4 columns from these .prb files in order to
create a unique file which could be used by NMcl2tab to extract data from
raw Affymetrix .CEL. files. To do that, let’s use a simple inline command:

$awk ’{print $4" "$9" "$1" "$2}’ NMepm/*.prb > BY_S288c.prb

Creating a general script Since we are now familiar with the different
stages of the PM probe annotation pipeline, we can now try to create a shell
script that will help us to quiclky reproduce these steps, in particular for
a new strain (provided that we have the genome sequence of this strain, of
course). The script could then look like that:

#! /bin/bash

##

# Arguments

##

strain=$1 # The name of the strain

genome_fasta=$2 # The genome sequence in fasta format

probe_fasta=$3 # The probe sequences in fasta format

array_size=$4 # The dimension of the array (yeast tiling array = 2560)

output_dir=$5 # The output directory

output_dir=${output_dir}/${strain}

##

# Create the output directory

##

mkdir -p $output_dir
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##

# Map the probes on the genome using MUMmer

##

echo -n "Map probes on the genome: ..."

NMmp2g $genome_fasta $probe_fasta $output_dir/NMmp2g.out 2>$output_dir/NMmp2g.log

echo " [ OK ]"

# Extract the probes that have matche(s) on the genome and output the result

# by chromosome and by strand (+/-) into folder NMmpa

echo -n "Extract and format probe matches: ..."

NMmpa -i $output_dir/NMmp2g.out -o $output_dir/NMmpa -a $array_size

echo " [ OK ]"

# Now, extract only probes that have a unique perfect match

# on the genome (both strands) and remobed probe which do not match at an

# expected tiling step (4bp).

echo -n "Extract and format PM probes: ..."

grep ’^>’ $genome_fasta | sed ’s/^>//’ > $output_dir/seqid.txt

NMepm -i $output_dir/NMmpa -c $output_dir/seqid.txt -o $output_dir/NMepm -t 4 2>$output_dir/NMepm.log

awk ’{print $4" "$9" "$1" "$2}’ ${output_dir}/NMepm/*.prb > ${output_dir}/${strain}.prb

echo " [ OK ]"

This bash script has been implemented in the program NMstrain2array

that we can use now to get the list of PM probes on RM 11-1a (RM) genome.

$NMstrain2array RM_11-1a ./Data/RM_11-1a/Sequence/Genome.fasta \

./Data/Affymetrix/S.cerevisiae_tiling.fasta 2560 S1

Map probes on the genome: ... [ OK ]

Extract and format probe matches: ... [ OK ]

Extract and format PM probes: ... [ OK ]

Finally, we have now two files, BY_S288c.prb and RM_11-1a.prb that
give us the probes that have a unique PM on each genome. We can then get
an idea of the number of probes that are shared between the two strains as
follows:

$cat S1/BY_S288c/BY_S288c.prb S1/RM_11-1a/RM_11-1a.prb \

| cut -d ’ ’ -f 3,4 | sort | uniq -c \

| awk ’{print $1}’ | sort | uniq -c

368639 1

2501942 2

So,BY and RM share 2,501,942 probes and there are 368,639 probes that are
specific to either BY and RM. We will now use these two files for the next
section.
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3 Pre-processing of raw Affymetrix .CEL files

Before running the analyses using the tiling array data sets, we need to
extract and to format the raw probe hybridzation signals from the .CEL files
produced by the Affymetrix platform.

To do so, we need to have the text version of the .CEL files and not the
binary version. If you don’t know which version you have, you can easily
check your files by using the command ‘file [my_file]‘. If the output
is something like data or ASCII text then it’s ok. Otherwise if the output
contains the term binary you have first to convert the .CEL files by using the
.CEL converter tool released by Affymetrix (you can download a Windows
version.of this tool from our website http://www.ens-lyon.fr/LBMC/gisv/
/index.php?option=com_content&task=view&id=37&Itemid=27).

3.1 Extracting data from .CEL files

So, we assume now that all the .CEL files are in text format as they are in
each directory Array of the strain data folders of this manual (see Data).

NMcl2tab The C program NMcl2tab will help us to extract all the probe
hybridization measurements from the .CEL files and to format them into a
useful table. Before running the program, we need to write a short config-
uration file that will indicate to NMcl2tab which files he has to consider.
The configuration file consists in a table of two columns: the left column is
for the id of the experiment when the right column gives the name of the
corresponding file.

If you have a look inside directory Data/BY_S228c/Array you should see
a file called NucOccupancy.conf. Let’s have a look at this file:

$cat Data/BY_S228c/Array/NucOccupancy.conf

CBY01 CBY01-II.CEL

CBY02 CBY02-I.CEL

CBY08 CBY08-II.CEL

So, here we will extract the probe hybrization signal from 3 .CEL files and
each dataset will have its own unique name (CBY01, CBY02 and CBY08).
Let’s do it:

$ NMcl2tab -c Data/BY_S288c/Array/NucOccupancy.conf \
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-d Data/BY_S288c/Array/ -p S1/BY_S288c/BY_S288c.prb \

-o Data/BY_S288c/Array/NucOccupancy_raw.txt

--

extractAffy

--

CEL description from file [ Data/BY_S288c/Array/NucOccupancy.conf ]

CEL directory [ Data/BY_S288c/Array/ ]

Probe file [ S1/BY_S288c/BY_S288c.prb ]

--

Read probe set

--

Chromosome chrIII : 72257 probes [ OK ]

Chromosome chrII : 192607 probes [ OK ]

Chromosome chrI : 46546 probes [ OK ]

Chromosome chrIV : 355204 probes [ OK ]

Chromosome chrIX : 100626 probes [ OK ]

Chromosome chrVIII : 126301 probes [ OK ]

Chromosome chrVII : 255874 probes [ OK ]

Chromosome chrVI : 61945 probes [ OK ]

Chromosome chrV : 134902 probes [ OK ]

Chromosome chrXIII : 219184 probes [ OK ]

Chromosome chrXII : 242748 probes [ OK ]

Chromosome chrXI : 162453 probes [ OK ]

Chromosome chrXIV : 182756 probes [ OK ]

Chromosome chrX : 170169 probes [ OK ]

Chromosome chrXVI : 220699 probes [ OK ]

Chromosome chrXV : 257613 probes [ OK ]

--

Import data from .CEL files

--

For experiment CBY01:

Read data from CEL file CBY01-II.CEL: [ OK ]

For experiment CBY02:

Read data from CEL file CBY02-I.CEL: [ OK ]

For experiment CBY08:

Read data from CEL file CBY08-II.CEL: [ OK ]

--

Export data

--

So now, you should have a new file in Data/BY_S288c/Array called
NucOccupancy_raw.txt. Let’s have a look at this file:

$head -10 Data/BY_S288c/Array/NucOccupancy_raw.txt

chromosome position CBY01 CBY02 CBY08

chrIII 38 1.470300e+04 5.044000e+03 1.227300e+04
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chrIII 42 7.693000e+03 1.226100e+04 1.193100e+04

chrIII 226 2.153200e+04 3.195700e+04 3.193200e+04

chrIII 230 7.490000e+03 2.793000e+03 1.007000e+04

chrIII 234 2.126100e+04 3.004300e+04 3.353300e+04

chrIII 238 9.659000e+03 4.564000e+03 8.916000e+03

chrIII 242 1.642300e+04 2.709500e+04 2.464800e+04

chrIII 278 1.581800e+04 6.362000e+03 1.652100e+04

chrIII 358 7.156000e+03 2.731000e+03 7.374000e+03

which is in fact a simple table with 5 columns: the two first columns indicate
the genomic coordinates of the (probe) data point and the following columns
(here 3) report the hybridization intensity as given in each original .CEL file.
Note that the names of the 3 last columns correspond to the ones specified
in the configuration file NucOccupancy.conf.

3.2 Normalizing signal

3.2.1 Using NMcl2tab

It is possible to perform the normalization of the tiling arrays at the same
time than the extraction from the .CEL files. The program NMcl2tab pro-
poses 3 types of quantile-based normalization procedure:

• qq: quantile normalization,

• lqq: log2 transformation followed by quantile normalization,

• qql: quantile normalization followed by log2 transformation.

So, suppose we want to quantile normalize the previous arrays using the
qql procedure. We can then do that by using the -n short option as follows:

$ NMcl2tab -c Data/BY_S288c/Array/NucOccupancy.conf \

-d Data/BY_S288c/Array/ -p S1/BY_S288c/BY_S288c.prb \

-o Data/BY_S288c/Array/NucOccupancy_raw.txt

-n qql

3.2.2 Using another program

Once the data have been extracted using NMcl2tab, the outputed file can
be directly used by other softwares, in particular by TileMap [3] which is
available at http://biogibbs.stanford.edu/~jihk/TileMap/index.htm.
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Normalization can then be done by using the program tilemap_norm from
the TileMap package (note that this program implements only a quantile
normalization).

We provide in the directory Data/BY_S288c/Array/ a template of the
configuration file required by tilemap_norm to run:

$cat Data/BY_S288c/Array/NucOccupancy.norm

###############################

# TileMap Normalization #

###############################

[Working directory] = .

[Raw Data file] = NucOccupancy_raw.txt

[Export file] = NucOccupancy_norm.txt

[Array number] = 3

[Truncation lower bound before normalization] = -1000000000.0

[Take log2 transformation before normalization] (1:yes; 0:no) = 1

We invite you to have a look at the TileMap manual to have more
details on this file. Finally, the normalization can be done like this (assuming
that you have previously added to your $PATH variable the location of the
TileMap binaries):

$cd Data/BY_S288c/Array/

$tilemap_norm NucOccupancy.norm

You then should have a new file in Data/BY_S288c/Array/ called NucOccupancy_
norm.txt that have the same format than NucOccupancy_raw.txt but for
which the hybridization intensities have been normalized.

3.3 Creating a NucleoMiner .db file

Most of the program implemented in NucleoMiner used a binary version
of the tiling array datasets. To convert a tiling array dataset, as obtained
previously, we will use the program NMtfb. This program requires a small
configuration file that describes the organization of the dataset and if some
simple pre-processing is needed to create the final dataset (that will then be
used in subsequent analyses with NucleoMiner).

Since the next step of the tutorial deals with the inference of nucleosome
occupancy, we will then prepare the corresponding dataset. As we will see
in the next section, the inference of nucleosome occupancy is perfomed by
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fitting a Hidden Markov Model (HMM) to the average hybrization signal
among replicates (and of course per strain).

The program NMtfb can be directly used to compute the average hy-
brization intensities and to store the result in an appropriate binary file
that could be used in the next step. To do so, we need first to create
the configuration file. For simplicity, we have created this file for you:
Data/BY_S288c/Array/NucOccupancy.dbconf. Let’s have a look at its con-
tent

cat Data/BY_S288c/Array/NucOccupancy.dbconf

############################

# NMtdb configuration file #

############################

##

# The name of the dataset

##

name = BY_NucOccupancy

##

# Number of arrays to consider

##

narray = 3

##

# Membership of the arrays

##

groupId = 1 1 1

##

# Pre-processing algorithm

# full = do nothing

# mean = compute the mean across replicates (per group)

# median = compute the median accross replicates (per group)

##

type = mean

As you can, by using the mean tag in the pre-processing section of the
configuration file, we will ask NMtdb to compute for each probe of the input
dataset the mean hybridization value and to consider it as the final datapoint.
Let’s run NMtdb:

$NMtdb -i Data/BY_S288c/Array/NucOccupancy_norm.txt \

-c Data/BY_S288c/Array/NucOccupancy.dbconf \

-o Data/BY_S288c/Array/NucOccupancy_norm.db

--

tilingdb
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--

Read configuration file: [ OK ]

--

Read data file: [ OK ].

--

Save data: [ OK ]

--

Note that the Read data file: step can take some times depending
on how big is the input dataset. The program has then created a new file
Data/BY_S288c/Array/NucOccupancy_norm.db which is in fact a binary file,

$file Data/BY_S288c/Array/NucOccupancy_norm.db

Data/BY_S288c/Array/NucOccupancy_norm.db: data

So, don’t try to open this file with a text editor or something else: it
is very important to not modify this file by hand, otherwise you will expe-
rience some troubles in subsequent analyses that require this file. Besides,
since this file is a binary file, it is specific to your machine architecture and
operating system, so it is highly recommanded to not send this file to other
users, unless they have exactly the same machine architecture and operating
system. Unless, send the original input file togeter with the configuration file
and the corresponding arguments of NMtdb.

Finally, we can have a look to the content of Data/BY_S288c/Array/
NucOccupancy_norm.db by using the flag option --print of NMtdb as follows:

$NMtdb -i Data/BY_S288c/Array/NucOccupancy_norm.db --print | head -10

chromosome position A1

chrIII 38 1.332212e+01

chrIII 42 1.333482e+01

chrIII 226 1.473298e+01

chrIII 230 1.263931e+01

chrIII 234 1.470365e+01

chrIII 238 1.290735e+01

chrIII 242 1.438298e+01

chrIII 278 1.357645e+01

chrIII 358 1.241799e+01

As you can see there is only one column of hybrization intensity values
since we ask NMtdb to compute the mean from the three replicates.

Practice Do the same data preprocessing for strain RM 11-1a.
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4 Inferring nucleosome occupancy

In this section, we will learn how to use NucleoMiner in order to infer nu-
cleosome positions from our tiling array dataset. Recall that NucleoMiner
implements a custom version of the Hidden Markov Model devised by [6],
similar also to the one used by [4].

4.1 Signal with unpredictable trends

Here, in order to remove unpredictable trends in the hybridization signal we
will use sliding windows to fit localy the HMM (as in [6]). Thus, independent
run of the HMM will be successively applied in window of 1kb (i.e. ∼250
probes) all along the genome. The model parameters and posteriors of all
windows containing a fixed probe will be then averaged and used for a global
computation of both state probabilities and most-likely states (among well-
positioned nucleosome, fuzzy nucleosome and linker). As we used only probes
with unique and perfect matches, we also allowed the HMM to deal with
missing data. State probabilities and most-likely states of “missing probes”
will be computed in the same way than for observed probes, taking advantage
of neighboring observed information.

Inferring nucleosome positionning withNucleoMiner requires two steps.
The first one consists in fitting the HMM to the data (NMhmmfit) and the sec-
ond one applies the Viterbi algorithm (NMhmmvit) to the averaged posterior
probabilities as computed and outputed by NMhmmfit.

NMhmmfit We assume here that, as described in the previous section, you
have created for each strain a data file in NucleoMiner format using NMtdb,
so that binary file Data/BY_S288c/Array/NucOccupancy_norm.db contains
the average signal among (biological) replicates from the nucleosome mapping
chip experiment.

For speed consideration, and since the process is the same for each chro-
mosome, we will fit here the HMM only on chromosome I of BY S288c (using
the -c option of NMhmmfit).

$NMhmmfit -i Data/BY_S288c/Array/NucOccupancy_norm.db \

-o S2/BY_S288c/NMhmmfit -c chrI

>chrI|nprobe=46546|nwindow=57515|coverage=0.81|

gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!

gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!
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gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!

gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!

gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!

0%|= | 10%

As you can see, sometimes the message

gdl_tiling_hmm_baum_welch stopped: the tiling sequence cannot be built from the HMM!

appears. Don’t worry too much about this message: it is just a warning. It
means that for a given sliding window, the program was unable to fit the
HMM to the data within that window. For example, this can happen when
the window contain a large amount of missing data, or the data quality, or
more precisely the signal to noise ratio is low.

Now, as you can see, the program NMhmmfit has created a new directory
S2/BY_S288c/NMhmmfit/ which contains a new file:

$ls S2/BY_S288c/NMhmmfit/

chrI.nhw

Don’t try to open this file with a text editor. Again this is a binary file,

$file S2/BY_S288c/NMhmmfit/chrI.nhw

S2/BY_S288c/NMhmmfit/chrI.nhw: data

and you must not modify this file, otherwise you will experiment troubles
when using NMhmmvit.

NMhmmvit Once the .nhw files have been generated by NMhmmfit, you
can use first NMhmmvit to have a look at the content of these binary files. To
do so, just type the following line:

$NMhmmvit -i Data/BY_S288c/Array/NucOccupancy_norm.db \

-r S2/BY_S288c/NMhmmfit/ -c chrI \

--print 1>S2/BY_S288c/NMhmmfit/chrI.txt

where the output is redirected to the file S2/BY_S288c/NMhmmfit/chrI.
txt. Let’s look at this file, at least at its header:

$head -1 S2/BY_S288c/NMhmmfit/chrI.txt

chromosome probe position virtual ignore chunk mu(0) var(0) mu(1) var(1) pr(in,0) pr(in,0)

pr(in,0) pr(in,0) pr(in,0) pr(in,0) pr(in,0) pr(in,0)

pr(in,0) pr(out,0) pr(out,0) pr(out,0) pr(out,31) pr(out,32)

pr(out,33) pr(out,34) pr(out,35) pr(out,36) pr(out,37) pr(out,77)

pr(0,0) pr(0,1) pr(0,2)
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As you can see, the file is organized as a table which columns are seperated
by single whitespace. The three columns (chromosome, probe and position)
give the location of the current probe, the fourth column, virtual, is either ’0’
(for no) or ’1’ (for yes) depending on the status of the current probe. A probe
is said to be “virtual” if no probe has been reported at that position so that
results for that position have been imputed by the HMM. The fith column,
ignore is either ’y’ (for yes) or ’n’ (for no). If a probe is flagged as to be
ignored, it generally means that NMhmmfit was unable to fit the HMM around
this probe. The sixth column, chunk, gives the index of the chromosome
chunk to which the probe belongs. In fact, it is common that the HMM
cannot be really run on the entire chromosome (e.g. due to the presence of
long repeat regions that introduce a long break within the tiling coverage) but
rather on contiguous pieces of the chromosome, here denominated as chunks.
Then, the following columns depends on the HMM parametrization. The
four first columns, (mu(0), var(0), mu(1), var(1), give the mean and variance
estimates for the two gaussian distributions used in the HMM, one for the
linker state (mu(0), var(0)) and one for the nucleosomal state, either well-
positioned or fuzzy (mu(1), var(1)). The following 23 columns correspond
to the estimates - at the current probe - of the transition probabilities of the
HMM. Since we used here the default parametrization of the HMM (i.e, at
least 31 probes and at most 38 probes for a well-positionned nucleosome),
these 23 columns are ordered as described in Figure 1.

So, as you can see, we have all the information in hands to determine the
most likely positions of the nucleosomes along the chromosome. This is done
by applying the Viterbi algorithm as implemented in NMhmmvit. Let’s do it:

$NMhmmvit -i Data/BY_S288c/Array/NucOccupancy_norm.db \

-r S2/BY_S288c/NMhmmfit -c chrI \

-o S2/BY_S288c/NMhmmvit 2>/dev/null

$head -10 S2/BY_S288c/NMhmmvit/chrI.nuc

chromosome probe position virtual ignore chunk calling s1 p1 p2 p3

chrI 1 55 0 n 1 0 10.0845 0.000 0.585 0.414

chrI 2 59 0 n 1 0 10.0594 0.000 0.553 0.447

chrI 3 63 0 n 1 0 10.0315 0.333 0.369 0.298

chrI 4 67 0 n 1 0 9.88305 0.500 0.277 0.223

chrI 5 71 0 n 1 0 9.72784 0.600 0.221 0.179

chrI 6 75 0 n 1 0 9.59281 0.667 0.184 0.149

chrI 7 79 0 n 1 0 9.47126 0.714 0.158 0.128

chrI 8 83 0 n 1 0 9.36506 0.750 0.138 0.112

chrI 9 87 0 n 1 0 9.27393 0.778 0.123 0.099
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Figure 1:

Now, you should have a new directory S2/BY_S288c/NMhmmvit/ which
contains a new file chrI.nuc. As you can see, this file is again a simple table
which columns are seperated by a single whitespace. As for the --print

option, the first six columns give details about the current probe location
and its status. Follow four columns that summarize the result of NMhmmvit:

• calling is 0,1,2 depending on the most likely state at the current probe,

– 0 linker,
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– 1 fuzzy nucleosome,

– 2 well-localized nucleosome,

• s1 is the smoothed hybridization signal using the output of the HMM,

• p1 is the posterior probability that the current probe belongs to a linker,

• p2 is the posterior probability that the current probe belongs to a fuzzy
nucleosome,

• p3 is the posterior probability that the current probe belongs to a well-
localized nucleosome.

$NMhmm2plot -i S2/BY_S288c/NMhmm2plot.config \

-c chrI -s 100000 -e 105000 -o S2/BY_S288c/

This creates two text file (.txt) in the directory S2/BY_S288c/ with the
same prefix obtained by concatenating the name of the chromosome and the
starting and the ending positions, namely chrI_100000_105000. The file
suffixed by _d contains a table of 5 columns separated by a single whitespace,

$ head -10 S2/BY_S288c/chrI_100000_105000_d.txt

100003 6.61 8.25 0.79 1.00

100007 NA 8.27 0.79 1.00

100011 NA 8.28 0.80 1.00

100015 8.73 8.27 0.79 1.00

100019 6.52 8.15 0.73 1.00

100023 7.39 8.11 0.72 1.00

100027 6.85 8.09 0.71 1.00

100031 7.00 8.08 0.70 1.00

100035 6.84 8.08 0.70 1.00

100039 6.42 8.08 0.71 1.00

where the first column is the position of the interrogated point, the second
one the average hybrization signal for the corresponding probe (NA when
missing), the third one the smoothed signal (by the HMM), the fourth one
gives the probability to be within a nucleosome (either fuzzy or delocalized)
and the fifth column the most likely state at this point (as computed by
NMhmmvit).

As depicted in Figure 2, we can then use the NucleoMiner R package to
plot these data by using the R function NMhmm2plot (see the documentation
for more details).
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Figure 2:

Practice Fit the HMM for the remaining chromosomes of BY S288c and
the entire genome of RM 11-1a.

4.2 Detrended signal

Sometimes it is possible to use additional data to detrend the signal so that
the sliding window strategy as used previously is no longer required to fit the
HMM. For example, [4] used data from tiling array on which they hybridized
the full DNA (including DNA from nucleosomes and linkers) to remove the
probe effect and so to normalize their signal. In that case, one can be inter-
ested to either fit the HMM on the entire chromosome without using sliding
window, or when nucleosome positions are already known on some regions,
to train the HMM on these region and then to use the trained version of the
HMM to predict nucleosome positions elsewhere on the genome.

TODO
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4.3 Threading the inference process

Using sliding windows to fit the HMM can lead to very long (in time) and
heavy (in cpu/memory) processes. One simple way to speed up t process, is
to split the inference by chromosome.

Linux/Unix clusters with qsub utility If you have a cluster with qsub
utility to submit jobs, you have to write two short scripts. The first one will
just loop on chromosome and submit the job to the cluster for the current
chromosome,

$cat NMQsubHmm.sh

#!/bin/bash

QUE = $1

# man qsub to obtain an explanation of the options

for i in "I" "II" "III" "IV" "V" "VI" "VII" "VIII" \

"IX" "X" "XI" "XII" "XIII" "XIV" "XV" "XVI"

do

qsub -m b -m e -e ./chr${i}.err -q $QUE -o ./chr${Roman}.out ./NMQsubHmmRun.sh chr${i}

done

where the program takes as single argument the name of the queue where
you want to submit all your jobs (note that chr${i} is the name of the
chromosome, so modify the elements of the loop or the stem name (chr)
if the sequence names are different). The second program is a very short
piece of code that just call NMhmmfit (to modify if you want to use different
arguments that the one specified by default).

$cat NMQsubHmmRun.sh

#!/bin/bash

#$ -cwd

#$ -V

chr=$1

#

NMhmmfit -i ./data.db -o NMhmmfit -c ${chr}

4.4 Averaging nucleosome occupancy profiles around
genomic features

An interesting issue with nucleosome occupancy profile is to look at the pat-
tern of nucleosome density around specific genomic features like for example
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the transcriptions start sites (TSS) or end sites (TES). We can also be inter-
ested in computing average nucleosome occupancy profiles over cis-regions
like the entire cis-region of genes. To do so we need first to reformat the
output of NMhmmvit into a tiling array dataset like format. This is done by
the perl script NMnuc2toc as follows:

$NMnuc2toc -i S2/BY_S288c/NMhmmvit 1>S2/BY_S288c/BY_S288c_nuc.txt

Then, as for the original dataset, we have now to convert this file into a
.db file by using NMtdb:

$NMtdb -i S2/BY_S288c/BY_S288c_nuc.txt \

-c S2/BY_S288c/BY_S288c_nuc.dbconf \

-o S2/BY_S288c/BY_S288c_nuc.db

Now, we will create a new folder S2/BY_S288c/Features to store the
results for any feature we want to investigate. Let’s look first at the gene
transcript boundaries (TSS and TES):

$mkdir -p S2/BY_S288c/Features/Transcript

$echo "transcrpit ." >S2/BY_S288c/Features/Transcript/feature_id.txt

The file S2/BY_S288c/Features/Transcript/feature_id.txt is required
by NMt2feat. It tells to the program that we are interested only in feature
of type transcript, whatever the ID of the feature (that’s why we used the
wildcard ’.’ after the transcript tag).

NMt2feat We can then run NMt2feat as follows:

• TSS (--start)

$NMt2feat -i S2/BY_S288c/BY_S288c_nuc.db \

-o S2/BY_S288c/Features/Transcript/TSS \

-f Data/BY_S288c/Features/features.gff \

-l S2/BY_S288c/Features/Transcript/feature_id.txt \

-w 500 -n 50 --start

• TES (--end)

$NMt2feat -i S2/BY_S288c/BY_S288c_nuc.db \

-o S2/BY_S288c/Features/Transcript/TES \

-f Data/BY_S288c/Features/features.gff \

-l S2/BY_S288c/Features/Transcript/feature_id.txt \

-w 500 -n 50 --end
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where -w 500 -n 50 indicates to NMt2feat that we want to consider
500bp from either side of the feature boundary and that we want to split
these 500bp into 50 bins of equal sizes (i.e here 10bp). As you can see, the
program NMt2feat creates a file suffixed by _avg.txt which is organized as
a table with 6 columns separated by a single whitespace. Let’s have a look
at this table for the TSS:

$head -10 S2/BY_S288c/Features/Transcript/TSS_avg.txt

start 0 -500 -490 9330.19 11026

start 1 -490 -480 9296.27 11079

start 2 -480 -470 10313.1 12316

start 3 -470 -460 9256.08 11084

start 4 -460 -450 10371.6 12320

start 5 -450 -440 9372.42 11092

start 6 -440 -430 10484.1 12331

start 7 -430 -420 9491.17 11098

start 8 -420 -410 10593.3 12333

start 9 -410 -400 9552.06 11102

The columns indicate:

1. the interrogated feature boundary (here start=TSS),

2. the bin index (here from 0 to 99),

3. the starting position of the bin,

4. the ending position of the bin,

5. the total amount of signal into that bin,

6. the total number of probes falling into that bin.

Using the function NMt2featplot of the R pcackage, we can easily plot
the content of the _avg.txt file. An exemple for the TSS is depicted in
Figure 3.

NMt2featcis This program is an extension of NMt2feat which allows us
to look at the entire cis-profile around a given genomic feature.

$NMt2featcis -i S2/BY_S288c/BY_S288c_nuc.db \

-o S2/BY_S288c/Features/Transcript/txnuc \

-f Data/BY_S288c/Features/features.gff \

-l S2/BY_S288c/Features/Transcript/feature_id.txt \

-u 500 -d 500 -p 50 -w 50 -s 10
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Figure 3:

Here we asked NMt2featcis to compute the cis-profile around all the
transcripts annotated in BY genome by using a upstream and downstream
region of 500bp (-u 500 -d 500) each divided into 50 bins of equal size
(-p 50 -w 50) and by splitting the transcript region in 10 equal parts, what-
ever the size of the transcript region (-s 10). The program has created a file
S2/BY_S288c/Features/Transcript/txnuc_cis.txt which is organized as
a table with 9 columns separated by a single whitespace.

$head -10 S2/BY_S288c/Features/Transcript/txnuc_cis.txt

u 0 0 4710 0 10 10458.5 12350 4692

u 1 1 4710 10 20 9320.86 11108 4693

u 2 2 4710 20 30 10341.2 12352 4694

u 3 3 4710 30 40 9277.35 11113 4694

u 4 4 4710 40 50 10398.5 12356 4696

u 5 5 4710 50 60 9395.63 11121 4698

u 6 6 4710 60 70 10510.1 12364 4699

u 7 7 4710 70 80 9513.81 11125 4699

u 8 8 4710 80 90 10622.1 12366 4700

u 9 9 4710 90 100 9574.55 11129 4702
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where the columns indicate:

1. the region:

• u upstream the feature,

• i inside the feature (here the transcribed region),

• d downstream the feature,

2. the absolute bin index,

3. the relative bin index (w.r.t the region it belongs to),

4. the total number of interrogated features,

5. the starting position of the bin,

6. the ending position of the bin,

7. the total amount of signal into that bin,

8. the total number of probes falling into that bin,

9. the total number of features that contribute to that bin.

Finally, using the function NMt2featcisplot of the R pcackage, we can
easily plot the content of the _cis.txt file. An exemple is depicted in Fig-
ure 4.
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Figure 4:
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5 Aligning genome sequences

Before aligning our nucleosome occupancy profiles (as computed in the previ-
ous section), we need first to align the DNA sequences of the two strains. We
will then use the sequence alignments to initiate the nucleosome alignment.
Note that it is difficult to say something about nucleosomes in regions where
sequences have poor matches.

In this section, we will assume that the sequences of our strains are of rela-
tively good quality and that the divergence between the two strains is modest,
with eventually just a few and small genomic rearrangements (translocation,
inversion, etc...). We will then use MUMmer to perform the sequence align-
ments, using one strain as the reference and the other as the query. However,
the output of MUMmer needs to be reprocessed and reformated in order
to get a clean picture of the whole alignment. This entire process can be
realized by one NucleoMiner program, namely NMgxcomp, as follows:

$NMgxcomp Data/BY_S288c/Sequence/Genome.fasta \

Data/RM_11-1a/Sequence/Genome.fasta \

S3/BY_RM 2>S3/BY_RM.log

where the firt argument Data/BY_S288c/Sequence/Genome.fasta of NMgxcomp
gives the genome sequence in fasta format of the strain used as reference
(here BY), the second argument Data/RM_11-1a/Sequence/Genome.fasta

gives the genome sequence in fasta format of the strain used as the query
(here RM) and the last argument S3/BY_RM indicates the stem name/path
of the output files.

As you can see, the folder S3 contains now a bunch of files prefixed by
BY_RM. Some are direct outputs from MUMmer programs, while those
containing the suffix _gxcomp have been created by the script NMmum2gxc of
NucleoMiner. Here, we will describe only these files.

The .out file The file S3/BY_RM_gxcomp.out is just an output of the pro-
gession of the script NMmum2gxc. Nevertheless, the outputed table give you
a first overview of the nature of the raw alignment between the sequences of
the two strains. Here, and in the subsequent files the prefix cis is used to
describe a chromosome-to-chromosome relationship while the prefix trans is
used to flag putative translocation events.

$ cat S3/BY_RM_gxcomp.out
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##

# Table of relationships to explore

##

type ref qry T(match|ref) %(match|qry) %(match|ref) %(+|ref) %(-|ref)

cis chrVIII supercontig_1.12 506622 0.938 0.900 1.000 0.000

trans chrVIII supercontig_1.17 15760 0.029 0.028 0.000 1.000

cis chrX supercontig_1.8 684930 0.976 0.918 1.000 0.000

cis chrVII supercontig_1.2 1032008 0.993 0.946 0.000 1.000

cis chrIX supercontig_1.14 400804 1.000 0.911 0.000 1.000

cis chrII supercontig_1.6 785026 1.000 0.965 0.000 1.000

cis chrXIV supercontig_1.7 763497 1.000 0.973 0.043 0.957

cis chrIII supercontig_1.15 300505 0.965 0.949 0.971 0.029

cis chrXV supercontig_1.3 1034494 0.975 0.948 1.000 0.000

cis chrVI supercontig_1.16 231275 0.938 0.856 1.000 0.000

trans chrVI supercontig_1.8 13642 0.055 0.050 1.000 0.000

cis chrXII supercontig_1.10 566426 0.554 0.525 1.000 0.000

cis chrXII supercontig_1.13 441487 0.432 0.409 1.000 0.000

cis chrXVI supercontig_1.4 882793 0.964 0.931 1.000 0.000

cis chrI supercontig_1.17 165518 0.992 0.719 0.000 1.000

cis chrXI supercontig_1.9 641056 1.000 0.962 1.000 0.000

cis chrV supercontig_1.11 545509 0.998 0.946 1.000 0.000

cis chrIV supercontig_1.1 1471886 0.995 0.961 0.000 1.000

cis chrXIII supercontig_1.5 884250 0.987 0.957 1.000 0.000

##

# Exploring cis relationships: wait...

##

##

# Exploring trans relationships:wait...

##

##

# Merge+Output results:wait...

##

The .map file The file S3/BY_RM_gxcomp.map gives an overview of the
organization of the final sequence alignments. For each reference sequence,
you have something like that:

>chrX [24352 - 729989]

chrX 24352 197492 cis + supercontig_1.8 1 29024 202068 99.14 0.23 0.24

chrX 204115 354637 cis + supercontig_1.8 1 202521 353040 99.59 0.20 0.21

chrX 354638 354832 cis + supercontig_1.8 1 353377 353570 97.07 0.00 0.00

chrX 355170 400123 cis + supercontig_1.8 1 353571 398451 99.17 0.06 0.06

chrX 400124 472455 cis + supercontig_1.8 1 398731 471082 99.31 0.10 0.10

chrX 483971 538095 cis + supercontig_1.8 1 471083 525249 99.36 0.07 0.07

chrX 538433 541087 cis + supercontig_1.8 1 525250 527879 97.71 0.00 0.00
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chrX 541426 543597 cis + supercontig_1.8 1 527880 530052 99.08 0.00 0.00

chrX 543695 620997 cis + supercontig_1.8 1 530053 607313 99.42 0.10 0.11

chrX 621007 628798 cis + supercontig_1.8 1 607448 615241 99.12 0.01 0.01

chrX 628799 713797 cis + supercontig_1.8 1 615525 700524 99.68 0.11 0.12

chrX 715484 729989 cis + supercontig_1.8 1 702196 716707 99.47 0.02 0.02

*chrX - - - - supercontig_1.8 - - - - 0.92 0.95

where >chrX [24352 - 729989] indicates that the following section (un-
til reaching a new > sign, like for a fasta file) deals with the alignments start-
ing from position 24,352 (bp) to position 729,989 (bp) on reference sequence
called chrX. Then comes a table into which each row stands for a full-length
alignment (including moderate gaps). The column meaning is:

1. the name of the reference sequence,

2. the starting position of the alignment of the reference sequence,

3. the ending position of the alignment of the reference sequence,

4. the nature of the alignment,

5. the name of the query sequence involved in the alignment,

6. the strand of the alignment (1 is normal and -1 is reverse),

7. the starting position of the alignment of the query sequence,

8. the ending position of the alignment of the query sequence,

9. the percentage of identity,

10. the percentage of insertion (in the reference, or deletion in query),

11. the percentage of deletion (in the reference, or insertion in query).

The .poly file The file S3/BY_RM_gxcomp.poly lists the sequence poly-
morphisms as detected by the program from the alignments. There are three
kinds of sequence polymorphisms: SNP, insertion (w.r.t the reference se-
quence) and deletion (w.r.t the reference sequence). We can then easily
know how many SNPs (snp), insertions (ins) and deletions (del) are present
in our alignment as follows:
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$cut -d ’ ’ -f 3 S3/BY_RM_gxcomp.poly | sort | uniq -c

3252 del

2973 ins

47817 snp

So here we have 47,817 SNPs, 2,973 insertions (of at least 1bp) and 3,252
deletions (of at least 1bp). If we now look at the way each polymorphism is
described in the file S3/BY_RM_gxcomp.poly we see something like that:

$grep -w snp S3/BY_RM_gxcomp.poly | head -1

cis chrVIII snp 12719 T supercontig_1.12 2874 A 1

where the columns indicate

1. the nature of the alignment (see above),

2. the name of the reference sequence,

3. the kind of polymoprhism (here a SNP),

4. the position of the SNP in the reference sequence,

5. the allele of the SNP in the reference sequence,

6. the name of the query sequence,

7. the position of the SNP in the query sequence,

8. the allele of the SNP in the query sequence,

9. the length in bp of the polymorphism (always 1 for a SNP).

For an insertion we have

$grep -w ins S3/BY_RM_gxcomp.poly | head -1

cis chrVIII ins 14780 14780 supercontig_1.12 4934 - 1

where the fifth column corresponding previously to the allele of the SNP in
the reference sequence indicates now the ending position of the insertion in
the reference sequence, the eighth column corresponding to the allele of the
SNP in the query sequence indicates is now empty (-) and the last column
indicates the length of the insertion (here is a single base insertion). Finally,
for a deletion we have:

$grep -w del S3/BY_RM_gxcomp.poly | head -1

cis chrVIII del 17132 - supercontig_1.12 7286 7286 1

where the fifth column is now empty (-), the eighth column indicates the
ending position of the deletion in the querty sequence and the last column
indicates the length of the deletion (here is a single base deletion).
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The .gff file The file S3/BY_RM_gxcomp.gff contains the same information
than the .poly file but formating in gff version 3, so that you can simply plug
this file into your favorite genome browser to see where the polymoprhisms
are all along the query sequence.

The .c2c file The file S3/BY_RM_gxcomp.c2c is a simple table that de-
scribes how the genome sequence can be aligned. This file will be very usefull
in the next step of this tutorial. Let’s have a look to its content:

$head -10 S3/BY_RM_gxcomp.c2c

chrVIII 12680 14779 c + - supercontig_1.12 1 2835 4934

chrVIII 14780 14780 c + i supercontig_1.12 1 4934 4934

chrVIII 14781 15406 c + - supercontig_1.12 1 4935 5560

chrVIII 15407 15407 c + i supercontig_1.12 1 5560 5560

chrVIII 15408 17132 c + - supercontig_1.12 1 5561 7285

chrVIII 17132 17132 c + d supercontig_1.12 1 7286 7286

chrVIII 17133 18415 c + - supercontig_1.12 1 7287 8569

chrVIII 18416 18416 c + i supercontig_1.12 1 8569 8569

chrVIII 18417 18566 c + - supercontig_1.12 1 8570 8719

chrVIII 18566 18566 c + d supercontig_1.12 1 8720 8720

which is a plain text file organized as a table of 10 columns (separated by
a whitespace):

1. the name of the reference sequence,

2. when column 6 is:

• (-) the starting position of the unagapped local alignment on the
reference,

• (i) the starting position of the insertion in the reference,

• (d) the position of the deletion in the reference,

3. when column 6 is:

• (-) the ending position of the unagapped local alignment on the
reference,

• (i) the ending position of the insertion in the reference,

• (d) the position of the deletion in the reference,
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4. the nature of the alignment (c for cis and t for trans, see above),

5. the strand of the alignment (+ for normal, - for reverse),

6. the nature of the event:

• (-) ungapped alignment,

• (i) insertion (in the reference),

• (d) deletion (in the reference),

7. the name of the query sequence,

8. the strand of the alignment (1 for normal, -1 for reverse),

9. when column 6 is:

• (-) the starting position of the unagapped local alignment on the
query,

• (i) the position of the deletion in the query,

• (d) the starting position of the insertion in the query,

10. when column 6 is:

• (-) the ending position of the unagapped local alignment on the
reference,

• (i) the position of the deletion in the query,

• (d) the ending position of the insertion in the query,

Finally, you can use the R function NMgcxplot from the nucleominer R
package to visualy inspect the alignements (e.g. see Figure 5).

You can also plot the SNP density along the entire genome by using
another R function from the nucleominer R package, namely NMsnpxplot.
This function needs a file that gives the size (in bp) of the chromosomes we
want to plot. This file can be simply created by using an single line perl
function as follows:

$cat Data/BY_S288c/Sequence/Genome.fasta | perl -ane \

’if (/^>(.+)/){print $seqid," ",$size,"\n" if ($size); \

$seqid=$1;$size=0;}else{$size+=scalar(split(//));} \

END{print $seqid," ",$size,"\n";}’ \

> Data/BY_S288c/Sequence/Genome.size
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Figure 5:

We need also to slightly reformat the .map file as follows:

$grep -v ’^>’ S3/BY_RM_gxcomp.map | grep -v ’\*’ > S3/BY_RM_gxcomp.txt

Now, we have all the required files to run NMsnpxplot. Result is depicted
in Figure 6.

6 Aligning nucleosome occupancy profiles

At this point we have:

• the nucleosome occupancy for each strain,

• the sequence alignment of the strain genomes,

so we can try now to look at the differences in nucleosome occupancy between
the two strains. To do that, we will simply align the two nucleosome occu-
pancy profiles based on what we already know about the sequence alignment.
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Figure 6:

By nucleosome occupancy profiles we mean here the most-likely nucleosome
occupancy profiles of the two strains (as obtained from the Viterbi algorithm
(NMhmmvit) on each chromosome).

NMalign2 The program NMalign2 implements a simple dynamic algo-
rithm to align the nucleosome profile of a query on the nucleosome profile of
the reference according to the genome alignment of the query on the refer-
ence. The algorithm works chromosome-by-chromosome as follows:

• Assumption: two nucleosomes are said to be unambiguously aligned if
the distance between their midpoints is lower than half of their average
size.

• Initiation: find all unambiguously aligned nucleosomes along the chro-
mosome.

• Recursion: between two consecutive unambiguously aligned nucleo-
somes
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Figure 7:

– if there is no unaligned nucleosome in the interval, then go to the
next unambiguously aligned nucleosome.

– else:

∗ Align nucleosomes by minimizing physical distance between
aligned pairs.

∗ The remaining nucleosome(s) are considered as insertion(s)
(if they are reference nucleosomes) or deletion(s) (if they are
query nucleosomes).

∗ Go to the next unambiguously aligned nucleosome.

To run NMalign2, we need first to write a short configuration file that
will tell the program where he can find the difference sources of information
require to process the nucleosome alignment. We already put such a file into
the folder S4:

$NMalign2 -c S4/NMalign.conf -o S4/NMalign
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This can take some times, so be patient. In fact, NMalign is doing a bit
more jobs than aligning the nucleosome profiles, increasing the computation
time. This should be improved in the next release of NucleoMiner. As you
can see, the program has created a new directory S4/NMalign into which one
file per chromosome has been created. This .nal file is a binary file storing
the result of the alignment and some other useful information that will help
to speed up subsequent analyses.

In order to generate human readable version of these .nal files, we have
to run again NMalign by using now the --print= flag as follows:

$NMalign2 -i S4/NMalign/ -o S4/NMalign/ -c S4/NMalign.conf --print

The .nuc file Then, as you can see, we have now as many nuc files in
directory S4/NMalign/ than the number of studied chromosomes. These
.nuc files are text files organized as a table which columns are seperated by
a single whitespace. From left to right, the meaning of each column is:

1. the reference sequence,

2. the reference chunk index,

3. the ignore status of the reference nucleosome (y=yes/n=no),

4. the outlier status of the reference nucleosome (0=ok,1=outlier),

5. the starting position of the nucleosome on the reference,

6. the ending position of the nucleosome on the reference,

7. the status of the nucleosome on the reference (1=fuzzy, 2=well-localized),

8. the shift in bp between the midpoints of the reference and the corre-
sponding query nucleosomes,

9. the fraction of the insertion/deletion spanning the nucleosome w.r.t the
total length of the reference nucleosome,

10. the average probability that the probes covering the reference nucleo-
some fall into a nucleosome (either fuzzy or well-localized),

11. the query chunk index,
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12. the ignore status of the query nucleosome (y=yes/n=no),

13. the outlier status of the query nucleosome (0=ok,1=outlier),

14. the starting position of the query nucleosome on the reference,

15. the ending position of the query nucleosome on the reference,

16. the status of the nucleosome on the query (1=fuzzy, 2=well-localized),

17. the shift in bp between the midpoints of the query and the correspond-
ing reference nucleosomes,

18. the fraction of the insertion/deletion spanning the nucleosome w.r.t the
total length of the query nucleosome,

19. the average probability that the probes covering the query nucleosome
fall into a nucleosome (either fuzzy or well-localized).

20. if aligned, the p-value of the nucleosome (see next section),

21. if aligned, the effect size corresponding to the p-value (see next section),

22. if aligned, the status of the aligned nucleosome:

• -1 = insertion/deletion,

• 0 = fuzzy/fuzzy,

• 1 = fuzzy/well-localized or well-localized/fuzzy,

• 2 = well-localized/well-localized,

23. the probability that the region corresponds in fact to a linker / linker
configuration,

24. the probability that the region corresponds in fact to a nucleosome
(reference) / linker (query) configuration (insertion),

25. the probability that the region corresponds in fact to a linker (query)
/ nucleosome (reference) configuration (deletion),

26. the probability that the region corresponds in fact to a nucleosome /
nucleosome configuration.

Now, we can use the function NMnxcplot of the nucleominer R package to
visualize the content of these .nuc files. An exemple is depicted in Figure 8.
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Figure 8:

7 Looking for Single Nucleosome EpiPolymor-

phism

Once we have aligned the nucleosomes between the two strains, we can now
try to investigate the putative strain specific properties of the nucleosomes.
Here, we are interested in describing the divergence of the two strains in
histone H3 acetylation at Lysine 14 (H3K14).

7.1 Creating the dataset

Original dataset We need now to create a new dataset which will in-
clude for each strain the two experiments, i.e the 3 replicates used to estab-
lish the nucleosome occupancy profile (NUC) and the 6 replicates from the
H3K14 ChIP-CHIP experiment (ChIP). As you can see, the file Data/BY_
S288c/Array/NucH3K14.conf contains the 3 .CEL previously used to infer
the nucleosome occupancy and then come the 6 replicates for the ChIP-CHIP
experiment.

$cat Data/BY_S288c/Array/NucH3K14.conf
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CBY01 CBY01-II.CEL

CBY02 CBY02-I.CEL

CBY08 CBY08-II.CEL

BY02 BY02-I.CEL

BY07 BY07-I.CEL

BY10 BY10-I.CEL

BY14 BY14.CEL

BY16 BY16.CEL

BY17 BY17.CEL

So, let’s extract and normalize the data from these nine .CEL files:

$NMcl2tab -c Data/BY_S288c/Array/NucH3K14.conf \

-d Data/BY_S288c/Array/ -p S1/BY_S288c/BY_S288c.prb \

-o Data/BY_S288c/Array/NucH3K14_norm.txt

-n qql

And then use NMtdb to export the dataset into the binary format required
by NucleoMiner (note that this time, the type attribute of the NMtdb

configuration file, namely Data/BY_S288c/Array/NucH3K14.dbconf, is set
to full, i.e that no pre-processing action is asked to NMtdb).

$cd Data/BY_S288c/Array/

$NMtdb -i NucH3K14_norm.txt -o NucH3K14_norm.db -c NucH3K14.dbconf

Log-ratio dataset Another useful view of our data is to compute for each
strain the average log ratio between the ChIP signal and the NUC signal,
so that any acetylated nucleosome should exhibit positive values while non
acetylated nucleosomes should exhibit negative values. To do so, we will use
the option --substract of NMtdb as the intensities are already log trans-
formed during the normalization procedure: rm

$NMtdb -i Data/BY_S288c/Array/NucH3K14_norm.txt \

-o Data/BY_S288c/Array/NucH3K14_log.db \

-c Data/BY_S288c/Array/NucH3K14_log.dbconf \

--substract

7.2 Running the ANOVA

We are now ready to run NManova2. This program will loop on aligned nu-
cleosomes (only) and for each pair of aligned nucleosomes it will perform an
ANOVA (ANalysis Of VAriance) in order to test if there is any interaction
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between the two stains and the two experiments (NUC and ChIP). A signifi-
cant interaction will then mean that for this nucleosome, one strain exhibits
hybridization signal in the ChIP experiment while the other one seems to
have no signal for that nucleosome. By default, NManova2 will also includes
a probe effect into the model.

We will use as input the results of the nucleosome alignment as previously
computed by NMalign2.

$NManova2 -a S4/NMalign -o S5/NManova -i NucH3K14_norm.db

By default, the ANOVA will be performed on the whole genome. To
parallelize the computation or to just focus on a given chromosome you can
ask NManova2 to run on a single chromosome For example, suppose we want
to run the analysis only on chromosome chrI:

$NManova2 -a S4/NMalign -o S5/NManova -i NucH3K14_norm.db -s chrI

Now, assuming you ran the ANOVA on the whole genome, you should
see on the folder S5/MNabova as many files as the number of chromosomes,
each file being prefixed by the corresponding chromosome name.

7.3 Computing the FDR

The program NManofdr2 implements the procedure of Benjamini and Hochberg
[1] to determine the p-value cutoffs corresponding to low, moderate and large
FDR values. Let’s run the program

$NManofdr2 -i S5/NManova -d HucH3K14_norm.db -o S5/FDR.txt

The output of the program is stored in the file FDR.txt which is a simple
table like this:

$cat S5/FDR.txt

###

# Output of NManofdr2

###

FDR Pval #SNEP #NUC %SNEP

1.00e-04 2.89e-06 1822 62824 0.02900

1.00e-03 4.74e-05 2984 62824 0.04750

1.00e-02 8.44e-04 5303 62824 0.08441

5.00e-02 6.84e-03 8602 62824 0.13692

1.00e-01 1.75e-02 10997 62824 0.17504

41



where the first column provides the FDR value, the second one the corre-
sponding p-value cut-off, the third one indicates the corresponding number
of SNEPs (i.e. nucleosomes for which the p-value from the ANOVA is lower
than the p-value cut-off), the fourth has the same value for all rows and
corresponds to the total number of nucleosome having a valid p-value and
the last column is just the fraction of SNEPS, i.e the ratio between the third
and the fourth column.

7.4 Outputting the results

The program NManout2 will allow us to output the results in various formats.
First, let’s use the flag option --summary to get a single file summarizing the
ANOVA results as a table with the following columns:

1. the chromosome name,

2. the chromosome chunk index,

3. the starting position of the reference nucleosome (here BY),

4. the ending position of the reference nucleosome (here BY),

5. the starting position of the query nucleosome (here RM),

6. the ending position of the query nucleosome (here RM),

7. the p-value from the ANOVA for the interaction term (-1 for unscanned
nucleosome),

8. the sign of the interaction (0 = reference, 1 = query),

9. the value of the interaction term,

10. the status of the reference nucleosome (1 = fuzzy, 2 = well-localized),

11. the status of the query nucleosome (1 = fuzzy, 2 = well-localized).

So let’s generate this file:

$NManout2 -i S5/NManova -d HucH3K14_norm.db --summary 1>S5/NManova_summary.txt

Once it is done, you should end up with the following file:
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$head S5/NManova_summary.txt

chrIII 1 2722 2850 2682 2818 2.78859e-14 0 1.26806 2 2

chrIII 1 2858 2978 2826 2986 9.98774e-18 0 1.4422 2 1

chrIII 1 3006 3138 3014 3146 2.53145e-26 0 1.14352 2 2

chrIII 1 3154 3274 3170 3326 5.93676e-07 0 0.879466 2 1

chrIII 1 3294 3430 3334 3454 8.5769e-18 0 1.42377 2 2

chrIII 1 3438 3558 3462 3626 1.4782e-24 0 1.57474 2 1

chrIII 1 3582 3738 3634 3798 6.06824e-25 0 1.48753 1 1

chrIII 1 3770 3922 3834 3962 2.89049e-07 0 0.840172 1 2

chrIII 1 4002 4138 3982 4134 4.31898e-06 0 1.00544 2 1

chrIII 1 4314 4466 4374 4498 0.032396 0 0.517827 1 2

where the meaning of the columns has been discussed above.
To get a more detailed picture of the SNEPs, we can then ask to NManout2

to output only the nucleosomes which p-values are lower a pre-defined cut-off
together with additional information such that neighboring nucleosomes and
known functional annotations. So, here we will look at the nucleosomes which
p-values are smaller than the cut-off corresponding to a FDR of 1%. Then,
we will ask NManout2 to output for each SNEP the functional annotations (as
provided in the file Data/BY_S288c/Features/features.gff) falling sym-
metrically within a 5kb window around the SNEP. Finally, we will ask also
to get for each SNEP the 5 nucleosomes before and the 5 nucleosomes after,
in order to investigate if the SNEP is isolated or not. This multiple query
can be done as follows:

$NManout2 -i S5/NManova -d HucH3K14_norm.db -o S5/NManout \

-f Data/BY_S288c/Features/features.gff \

-w 2500 -p 8.44e-4 -b 5

The command generates 3 files whith the stem name NManout in the folder
S5:

• NManout_snep_table.txt is the file providing the result of the multiple
query,

• NManout_snep.gff is a file in GFF format (version 3) listing all the
SNEPs called at the chosen p-value cut-off. This file can then be used
as input to your favorite genome browser.

• NManout_snep_tiling.txt is a file that will be useful to do some extra
analysis on the SNEP distribution w.r.t to functional annotation using
either NMt2feat or NMt2featcis.
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