What Have We Learned from Reverse-Engineering the Internet's Inter-domain Routing Protocol?

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK timothy.griffin@cl.cam.ac.uk

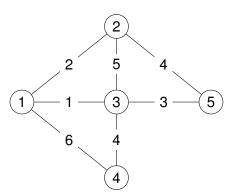
14èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications Hérault, France 29 May, 2012

Background

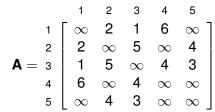
- Internet routing has evolved organically, by the expedient hack....
- ... basic principles need to be uncovered by reverse engineering.
- In the process, a new type of path problem is discovered!
- This may have widespread applicability beyond routing perhaps in operations research, combinatorics, and other branches of Computer Science.

4 3 5 4 3

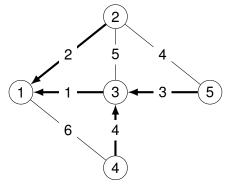
Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +)$



The adjacency matrix



Shortest paths example, continued



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

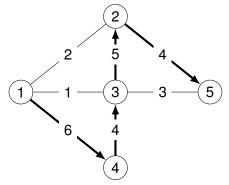
		1	2	3	4	5	
	1	0 2 1 5 4	2	1	5	4	
	2	2	0	3	7	4	
$\mathbf{A}^* =$	3	1	3	0	4	3	
	4	5	7	4	0	7	
	5	4	4	3	7	0	
Matrix A * solves this global							
antimality problems							

optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

Widest paths example, $(\mathbb{N}^{\infty}, \max, \min)$



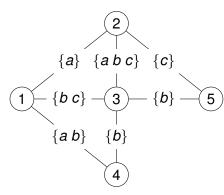
Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix							
		1	2	3	4	5	
	1	$\int \infty$	4	4	6	4 -	1
	2	4	∞	4 5	4	4	
$\mathbf{A}^* =$	3	4	5	∞	4	4	
	4	6	4	4	∞	4	
	5	4	4	4	4	∞	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
optimality problem:							

 $\mathbf{A}^*(i, j) = \max_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$

where w(p) is now the minimal edge weight in p.

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$



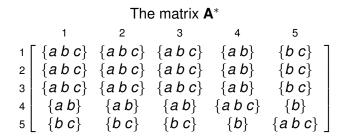
We want a Matrix **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from *i* to *j* with *x* in every arc weight along the path.

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$



Semirings

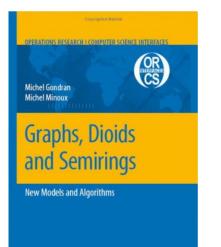
A few examples

name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	\mathbb{N}^{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2 ^{<i>W</i>}	\cup	\cap	{}	W	shared link attributes?
	2 ^{<i>W</i>}	\cap	U	W	{}	shared path attributes?

Path problems focus on global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

Recommended Reading



MORGAN & CLAYPOOL PUBLISHERS

Path Problems in Networks

John Baras George Theodorakopoulos

tgg22(Computer Laboratory University of CaWhat Have We Learned from Reverse-Engine

What algebraic properties are needed for efficient computation of global optimality?

Distributivity

$$\begin{array}{rcl} \mathsf{L}.\mathsf{D} & : & a \otimes (b \oplus c) & = & (a \otimes b) \oplus (a \otimes c), \\ \mathsf{R}.\mathsf{D} & : & (a \oplus b) \otimes c & = & (a \otimes c) \oplus (b \otimes c). \end{array}$$

What is this in $sp = (\mathbb{N}^{\infty}, \min, +)$?

L.DIST : $a + (b \min c) = (a + b) \min (a + c)$, R.DIST : $(a \min b) + c = (a + c) \min (b + c)$.

(I am ignoring all of the other semiring axioms here ...)

Lesson 1: Some realistic metrics are not distributive!

Two ways of forming "lexicographic" combination of shortest paths $\ensuremath{\mathrm{sp}}$ and bandwidth $\ensuremath{\mathrm{bw}}.$

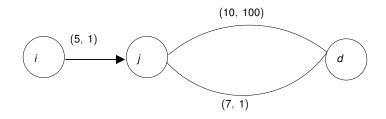
Widest shortest paths

- metric values of form (d, b)
- d in sp
- *b* in bw
- consider d first, break ties with b
- is distributive (some details ignored ...)

Shortest Widest paths

- metric values of form (b, d)
- d in sp
- *b* in bw
- consider b first, break ties with d
- not distributive

Example



node *j* prefers (10, 100) over (7, 1).
node *i* prefers (5, 2) over (5, 101).

 $(5, 1) \otimes ((10, 100) \oplus (7, 1)) = (5, 1) \otimes (10, 100) = (5, 101)$ $((5, 1) \otimes (10, 101)) \oplus ((5, 1) \otimes (7, 1)) = (5, 101) \oplus (5, 2) = (5, 2)$

< 回 ト < 三 ト < 三

Lesson 2: Left-Local Optimality

Say that L is a left locally-optimal solution when

 $\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I}.$

That is, for $i \neq j$ we have

$$\mathsf{L}(i, j) = \bigoplus_{q \in V} \mathsf{A}(i, q) \otimes \mathsf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.
- Rows L(*i*, _) represents **out-trees** <u>from</u> *i* (think Bellman-Ford).
- Columns L(_, *i*) represents **in-trees** to *i*.
- Works well with hop-by-hop forwarding from *i*.

Right-Local Optimality

Say that **R** is a right locally-optimal solution when

 $\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- **R**(*i*, *j*) is the best possible value given the values **R**(*q*, *j*), for all in-neighbors *q* of destination *j*.
- Rows L(*i*, _) represents **out-trees** <u>from</u> *i* (think Dijkstra).
- Columns L(_, *i*) represents in-trees to *i*.
- Does not work well with hop-by-hop forwarding from *i*.

< 回 > < 三 > < 三 >

With and Without Distributivity

With

For semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

 $\mathbf{A}^* = \mathbf{L} = \mathbf{R}$

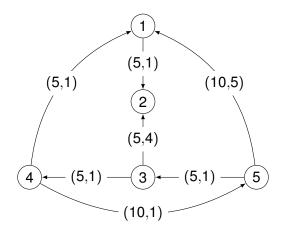
Without

Suppose that we drop distributivity and A^* , L, R exist. It may be the case they they are all distinct.

Health warning : matrix multiplication over structures lacking distributivity is not associative!

< 回 > < 三 > < 三 >

Example



(bandwidth, distance) with lexicographic order (bandwidth first).

A

Global optima

tgg22(Computer Laboratory University of CaWhat Have We Learned from Reverse-Engine

Left local optima

$$\begin{split} \textbf{L} &= \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & & & (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ 2 & & & (0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ (0,\infty) & & & (\infty,0) & (0,\infty) & (0,\infty) \\ (\textbf{5},\textbf{7}) & & (\textbf{5},3) & (\infty,0) & (\textbf{5},1) & (\textbf{5},2) \\ 10,6) & & (\textbf{5},2) & (\textbf{5},2) & (\infty,0) & (10,1) \\ 5 & & & (10,5) & (\textbf{5},4) & (\textbf{5},1) & (\textbf{5},2) & (\infty,0) \\ \end{smallmatrix} \right], \end{split}$$

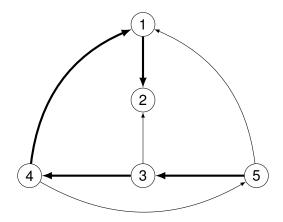
Entries marked in **bold** indicate those values which are not globally optimal.

A (1) > A (2) > A

Right local optima

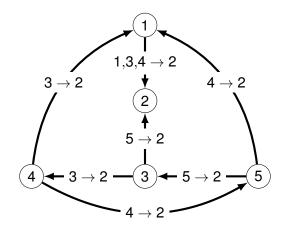
tgg22(Computer Laboratory University of CaWhat Have We Learned from Reverse-Engine

Left-locally optimal paths to node 2



A D N A P N A D N A D

Right-locally optimal paths to node 2



A (1) > A (2) > A

Lesson 3: Bellman-Ford can compute left-local solutions

$$\begin{array}{rcl} \mathbf{A}^{[0]} &=& \mathbf{I} \\ \mathbf{A}^{[k+1]} &=& (\mathbf{A}\otimes\mathbf{A}^k)\oplus\mathbf{I}, \end{array}$$

- Bellman-ford algorithm must be modified to ensure only loop-free paths are inspected.
- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- Left strictly inflationarity, L.S.INF : $\forall a, b : a \neq \overline{0} \implies a < a \otimes b$
- Here $a \leq b \equiv a = a \oplus b$.

Convergence to a unique left-local solution is guaranteed. Currently no polynomial bound is known on the number of iterations required. $\frac{1}{2} = \frac{1}{2} \sqrt{2}$

Lesson 4 : Dijkstra's algorithm can work for right-local optima!

- **Input** : adjacency matrix **A** and source vertex $i \in V$,
- **Output** : the *i*-th row of **R**, $\mathbf{R}(i, _)$.

```
begin
    S \leftarrow \{i\}
    \mathbf{R}(i, i) \leftarrow \overline{1}
    for each q \in V - \{i\} : \mathbf{R}(i, q) \leftarrow \mathbf{A}(i, q)
    while S \neq V
        begin
             find q \in V - S such that \mathbf{R}(i, q) is \leq_{\oplus}^{L} -minimal
             S \leftarrow S \cup \{q\}
             for each i \in V - S
                 \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))
        end
end
```

The goal

Given adjacency matrix **A** and source vertex $i \in V$, Dijkstra's algorithm will compute **R**(*i*, _) such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

Main invariant

$$\forall k : 1 \leq k \leq |V| \Longrightarrow \forall j \in S_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Routing in Equilibrium. João Luís Sobrinho and Timothy G. Griffin. The 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010).

• • • • • • • • • • • • •

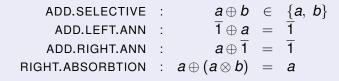
Minimal subset of semiring axioms needed right-local Dijkstra

Sehhlihhg Axioms

ADD.ASSOCIATIVE	:	$a \oplus (b \oplus c)$	=	$(a \oplus b) \oplus c$
ADD.COMMUTATIVE	:	$a \oplus b$	=	$b \oplus a$
ADD.LEFT.ID	:	<u>0</u> ⊕ <i>a</i>	=	а
KAVALTI. ASSOCIVATIANE	:	<i>₽®\(b®</i> ₽)	¥	(<i>Ħ</i> \\$\ \$)\\$\\\$\\\$
MULT.LEFT.ID	:	<u>1</u> ⊗a	=	а
MULTI.RIGIAH/NB	:	a /&/1	¥	á
MULT!.L/EFT!ANN	:	0/&/a	¥	Ø
WUNLT! HVGMtt. AWN	:	a /&/∕0	¥	Ø
U.DVSHANBUTIVE	:	<i>Ħℕ</i> (<i>þ</i> /⊞/¢)	¥	(#\B\b)\E\(\#\B\¢)
R!DI\$HHUUHWE	:	(∄⊞b) /®/¢	¥	(#\B\D)\E\(b \B\¢)

・ロト ・ 四ト ・ ヨト ・ ヨト

Additional axioms needed right-local Dijkstra



RIGHT.ABSORBTION gives inflationarity, $\forall a, b : a \leq a \otimes b$.

→ ∃ →

Expressed in Coq

```
Variable plus associative : ∀x y z, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z.
Variable plus commutative : \forall x y, x \oplus y = y \oplus x.
Variable plus selective
                                : \forall x \forall y, (x \oplus y == x) || (x \oplus y == y).
(* identities
                                                                   *)
Variable zero is left plus id : ∀x. zero ⊕ x = x.
Variable one_is_left_times_id : ∀x, one ⊚ x = x.
(* one is additive annihilator
                                                                    *)
Variable one is left plus ann : ∀x, one ⊕ x = one.
Variable one is right plus ann : ∀x, x ⊕ one = one.
(* right absorbtion
                                                                    *)
Variable right_absorption : ∀ a b : T, a ⊕ (a ⊚ b) == a.
Definition lno (a b : T) := a ⊕ b == a.
Notation "A ≤ B" := (lno A B) (at level 60).
Lemma lno_right_increasing : ∀ a b : T, a ≦ a ⊚ b.
```

Using a Link-State approach with hop-by-hop forwarding ...

Need left-local optima!

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \hat{\otimes}^T \mathbf{A}^T) \oplus \mathbf{I}$$

where \otimes^{T} is matrix multiplication defined with as

$$\mathbf{a} \otimes^{\mathsf{T}} \mathbf{b} = \mathbf{b} \otimes \mathbf{a}$$

and we assume left-inflationarity holds, L.INF : $\forall a, b : a \leq b \otimes a$.

Each node would have to solve the entire "all pairs" problem.

Inter-domain routing in the Internet

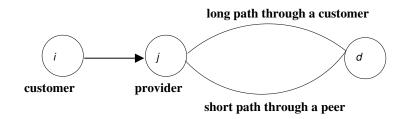
The Border Gateway Protocol (BGP)

- In the distributed Bellman-Ford family.
- Hard-state (not refresh based).
- Complex policy and metrics.
- Primary requirement: connectivity should not violate the economic relationships between autonomous networks.
- At a very high-level, the metric combines economics and traffic engineering.
- This is implemented using a lexicographic product, where economics is most significant.

Simplified model (Gao and Rexford)

- **customer route** : from somebody paying you for transit services.
- provider route : from somebody you are paying for transit services.
- peer route : from a competitor.
 - If you are at top of food chain you are forced to do this.
 - Smaller networks do this to reduce their provider charges.
- customer < peer < provider</p>

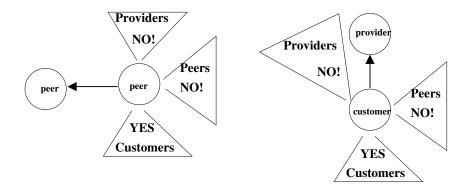
Example



node *j* prefers long path though one of its customers
node *i* prefers the shorter path through its provider

A (10) > A (10) > A (10)

Route visibility restriction



These restrictions are another source for violations of distributivity.

 ▶ < E > E
 𝔅 𝔅 𝔅

 29-05-2012
 32 / 36

BGP policies are not constrained ...

As a result ...

- Protocol will diverge when no solution exists.
- Protocol may diverge even when a solution exists.
- BGP Wedgies, RFC 4264.
 - Multiple stable states may exist.
 - No guarantee that each state implements intended policy.
 - Manual intervention required when system gets stuck in unintended local optima.
 - Debugging nearly impossible when policy is not shared between networks.

How to fix?

First, allow functions on arcs.

$$(S, \oplus, F \subseteq S \rightarrow S, \overline{0})$$

General conditions

- (S, ⊕, 0) is a commutative, idempotent, and selective monoid,
 ∀f ∈ F : f(0) = 0
- For local-optima need INF : $\forall a, f : a \leq f(a)$

Simplest model for "fixed" interdomain routing

- metrics of the form (c, d) or ∞ , where $c \in \{0, 1, 2\}$ and d is a path length,
- metrics compared lexicographically.
- 0 is for *downstream* routes (towards paying customers),
- 1 is for peer routes (towards competitor's customers),
- 2 is for upstream routes (towards charging providers),

The inflationary policy functions

• Gao/Rexford rules in red.

	0	1	2		0	1	2
а	0	1	2	m	2	1	2
b	0	1	∞	n	2	1	∞
С	0	2	2	0	2	2	2
d	0	2	∞	р	2	2	∞
е	0	∞	2	q	2	∞	2
f	0	∞	∞	r	2	∞	∞
g	1	1	2	S	∞	1	2
h	1	1	∞	t	∞	1	∞
i	1	2	2	u	∞	2	2
j	1	2	∞	v	∞	2	∞
k	1	∞	2	w	∞	∞	2
	1	∞	∞	X	∞	∞	∞

< 6 k

- E - N

What Have We Learned from Reverse-Engineering the Internet's Inter-domain Routing Protocol?

Lessons

- Some non-distributive algebras make are useful.
- Local optimality is a useful notion for non-distributive algebras.
- Bellman-Ford (path vectoring) can compute left-local optima ...
- ... and so can Dijkstra's algorithm!