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(distributed) Routing in the Internet

Routing Scheme protocol that directs the traffic in a network

pre-requisite: computation of Routing Tables (RT)

Border Gateway Protocol (BGP): (AS network)

RT’s of size O(n log n) bits “almost” the full topology

problem to compute/update ⇒ How to reduce their size?

Compact routing along shortest paths

General graphs Ω(n log n) bits required [FG’97]

⇒ need of structural properties

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs



2/15

(distributed) Routing in the Internet

Routing Scheme protocol that directs the traffic in a network

pre-requisite: computation of Routing Tables (RT)

Border Gateway Protocol (BGP): (AS network)

RT’s of size O(n log n) bits “almost” the full topology

problem to compute/update ⇒ How to reduce their size?

Compact routing along shortest paths

General graphs Ω(n log n) bits required [FG’97]

⇒ need of structural properties

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs



2/15

(distributed) Routing in the Internet

Routing Scheme protocol that directs the traffic in a network

pre-requisite: computation of Routing Tables (RT)

Border Gateway Protocol (BGP): (AS network)

RT’s of size O(n log n) bits “almost” the full topology

problem to compute/update ⇒ How to reduce their size?

Compact routing along shortest paths

General graphs Ω(n log n) bits required [FG’97]

⇒ need of structural properties

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs



3/15

Properties of large scale networks Chordality

Well known properties graph parameters

small diameter (logarithmic) (⇒ small hyperbolicity)
power law degree distribution

high clustering coefficient ⇒ few long induced cycles

Chordality of a graph G : length of greatest induced cycle in G

chordality = 7

not induced cycle (chords)
induced cycle (chordless)
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Brief related work on chordality

Complexity chordality ≤ k?

NP-complete easy reduction from hamiltonian cycle
not FPT [CF’07] no algorithm f (k).poly(n) (unless P = NP)
FPT in planar graphs [KK’09] Graph Minor Theory

chordality ≤ k ⇒ treewidth ≤ O(∆k) [Bodlaender, Thilikos’97]

Compact routing schemes in graphs with chordality ≤ k

stretch RT’s size computation time

k + 1 O(k log2 n) poly(n) [Dourisboure’05]

header never changes
k − 1 O(∆ log n) O(D) [NRS’09]

distributed protocol to compute RT’s / no header
O(k log ∆) O(k log n) O(m2) [this paper]

Names and Headers (if any) are of polylogarithmic size
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs

(including k−chordal graphs)

for graphs with particular structure

decomposition algorithm

related to tree−decompositions
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs

(including k−chordal graphs)

for graphs with particular structure

decomposition algorithm

related to tree−decompositions

Study of Cops and Robber games
in k−chordal graphs

design of a strategy to capture a robber

derived into a graph decomposition
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Our results

Theorem 1: Cops and Robber games

k − 1 cops are sufficient to capture a robber in k-chordal graphs

Theorem 2: main result

There is a O(m2)-algorithm that, in any m-edge graph G ,

either returns an induced cycle larger than k,

or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length ≤ k − 1.

(⇒ treewidth ≤ O(∆.k) and treelength ≤ k)

Theorem 3: for any graph admitting such a tree-decomposition

there is a compact routing scheme using RT’s of size O(k log n)

bits, and achieving additive stretch O(k log ∆).
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Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

1 C places the cops;

2 R places the robber.

Step-by-step:

each cop traverses
at most 1 edge;

the robber traverses
at most 1 edge.

Robber captured:
A cop occupies the same vertex as the
robber.
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Cop number

cn(G ) minimum number of cops to capture any robber

Determine cn(G) for the following graph G?

≤ 3

cn(G) ≤ 3 for any planar graph G [Aigner, Fromme, 84]
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Cops & robber games: the graph structure helps!!

G with girth g (min induced cycle) and min degree d : cn(G) ≥ dg [Frankl 87]

∃ n-node graphs G (projective plane): cn(G) = Θ(
√
n) [Frankl 87]

G with dominating set k: cn(G) ≤ k [folklore]

Planar graph G : cn(G) ≤ 3 [Aigner, Fromme, 84]

Minor free graph G excluding a minor H: cn(G) ≤ |E(H)| [Andreae, 86]

G with genus g : cn(G) ≤ 3/2g + 3 [Schröder, 01]

G with treewidth t: cn(G) ≤ t/2 + 1 [Joret, Kaminsk,Theis 09]

G random graph (Erdös Reyni): cn(G) = O(
√
n) [Bollobas et al. 08]

any n-node graph G : cn(G) = O( n

2(1+o(1))
√

log n
) [Lu,Peng 09, Scott,Sudakov 10]

Theorem 1

G with chordality k : cn(G ) ≤ k − 1.
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Worm’s strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v1}
invariant: Cops always occupy an induced path P = {v1, · · · , vi}

algorithm:

extension: if w ∈ N(v1) ∪ N(vi ), Pw induced and N(w) ∩ Crobber 6= ∅

k
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1

1

Separator

induced path <k+1
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algorithm:
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1
1

1 1

1

k−6 Separator

induced path < k+1

1
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Worm’s strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v1}
invariant: Cops always occupy an induced path P = {v1, · · · , vi}
algorithm: retraction: if v1 or vi cannot be extended, else

extension: if w ∈ N(v1) ∪ N(vi ), Pw induced and N(w) ∩ Crobber 6= ∅

1

1

k−5

1

1
1
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Capture in k-chordal graphs: worm’s strategy

{v1, · · · , vi} occupied: if no retraction ⇒ induced cycle ≥ i + 1

1

1 1

1
1

1

Theorem 1 greedy algorithm

worw’s strategy uses ≤ k − 1 cops in k-chordal graphs
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

Tree−decomposition
Graph

Separator

Separator
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)
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Tree−decomposition
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

v

Graph

u

v

A u

B

v

A

B

C

C

u

Tree−decomposition

Usually, try to minimize the largest bag (treewidth)

Separator

Separator
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

v

Graph

u

v

A u

B

v

A

B

C

C

u

Tree−decomposition

Computation: find a separator with desired properties, then induction

Separator

Separator
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Tree-decomposition with k-induced paths

From k-worm’s strategy

1

k−5

1
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Tree-decomposition with k-induced paths

k-worm strategy ⇒ decomposition with separator= k-caterpillar

Theorem 2: main result

There is a O(m2)-algorithm that, in any m-edge graph G ,

either returns an induced cycle larger than k ,

or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length ≤ k − 1.

In case of k-chordal graphs:
⇒ treewidth ≤ O(∆.k) (improves [Bodlaender,Thilikos’97] result)
⇒ treelength ≤ k

⇒ hyperbolicity ≤ 3k/2
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Application to compact routing

stretch O(k log ∆) with RT’s of size O(k log n) bits

BFS-tree T , tree-decomposition D with k-caterpillar separators

From s to d

1 follow the path to r in T

until find x such that

Bx is an ancestor of Bd in D

stretch: +k

2 in Bx , find y an ancestor of
d in T

stretch: +k log ∆

3 follow the path to d in T

stretch: +k
shortest s−d path d

Bd

r

s

Bx

BFS tree T

x

y
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Further work

Routing

improve the stretch of our routing scheme

implementation in graphs with “few” long induced cycles

Decompositions

complexity of computing decomposition with k-induced path,
minimizing k

algorithmic uses of such decompositions

other structures of bags

Cops and robber

Conjecture: For any connected n-node graph G , cn(G ) = O(
√
n).

[Meyniel 87]
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