k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth¹

Adrian Kosowski¹ Bi Li^{2,3} Nicolas Nisse² and Karol Suchan^{4,5}

 1 CEPAGE, INRIA, Univ. Bordeaux 1, France 2 MASCOTTE, INRIA, I3S (CNRS, UNS) Sophia Antipolis, France 3 AMSS, CAS, China

⁴ Univ. Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago, Chile ⁵ WMS, AGH - Univ. of Science and Technology, Krakow, Poland

AlgoTel, la Grande Motte, 31st May, 2012

Kosowski, Li, Nisse, and Suchan	k-Chordal Graphs
1 to be presented at ICALP'12 by Bi	* □ * * @ * * 差 * * 差 * ● * のへの

(distributed) Routing in the Internet

Routing Scheme pre-requisite:

protocol that directs the traffic in a network computation of Routing Tables (RT)

2/15

イロン イヨン イヨン イヨン

(distributed) Routing in the Internet

Routing Schemeprotocol that directs the traffic in a networkpre-requisite:computation of Routing Tables (RT)

Border Gateway Protocol (BGP):	(AS network)	
RT's of size $O(n \log n)$ bits	"almost" the full topology	
problem to compute/update	\Rightarrow How to reduce their size?	

2/15

(日) (同) (三) (三)

(distributed) Routing in the Internet

Routing Schemeprotocol that directs the traffic in a networkpre-requisite:computation of Routing Tables (RT)

Border Gateway Protocol (BGP):(AS network)RT's of size $O(n \log n)$ bits"almost" the full topologyproblem to compute/update \Rightarrow How to reduce their size?Compact routing along shortest pathsGeneral graphs $\Omega(n \log n)$ bits required [FG'97] \Rightarrow need of structural properties

2/15

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs

Well known properties	graph parameters
small diameter (logarithmic)	$(\Rightarrow$ small hyperbolicity)
power law degree distribution	
high clustering coefficient	\Rightarrow few long induced cycles

Chordality

3/15

크

(日) (四) (三) (三)

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs

Well known properties	graph parameters
small diameter (logarithmic)	$(\Rightarrow$ small hyperbolicity)
power law degree distribution	
high clustering coefficient	\Rightarrow few long induced cycles

Chordality of a graph G: length of greatest induced cycle in G

< 🗇 > < 🖃 >

Chordality

Brief related work on chordality

Complexity

chordality $\leq k$?

NP-completeeasy reduction from hamiltonian cyclenot FPT [CF'07]no algorithm f(k).poly(n) (unless P = NP)FPT in planar graphs [KK'09]Graph Minor Theory

chordality $\leq k \Rightarrow$ treewidth $\leq O(\Delta^k)$ [Bodlaender, Thilikos'97]

Compact routing schemes in graphs with chordality $\leq k$

stretch	RT's size	computation time		
k+1	$O(k \log^2 n)$	poly(n)	[Dourisboure'05]	
header never changes				
k-1	$O(\Delta \log n)$	<i>O</i> (<i>D</i>)	[NRS'09]	
distributed protocol to compute RT's / no header				
$O(k \log \Delta)$	$O(k \log n)$	<i>O</i> (<i>m</i> ²)	[this paper]	

Names and Headers (if any) are of polylogarithmic size

From Cops and robber to Routing via Treewidth

From Cops and robber to Routing via Treewidth

5/15

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs

From Cops and robber to Routing via Treewidth

Kosowski, Li, Nisse, and Suchan k-Chordal Graphs

Our results

Theorem 1:

Cops and Robber games

k-1 cops are sufficient to capture a robber in k-chordal graphs

Theorem 2:

main result

6/15

There is a $O(m^2)$ -algorithm that, in any *m*-edge graph *G*,

- either returns an induced cycle larger than k,
- or compute a tree-decomposition with each bag being the closed neighborhood of an induced path of length ≤ k − 1.

 $(\Rightarrow \text{treewidth} \leq O(\Delta.k) \text{ and treelength} \leq k)$

Theorem 3: for any graph admitting such a tree-decomposition there is a compact routing scheme using RT's of size $O(k \log n)$ bits, and achieving additive stretch $O(k \log \Delta)$.

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

A (10) A (10)

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

A (10) A (10)

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

A (10) A (10)

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

A (10) A (10)

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

A (10) A (10)

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Initialization:

 ${}^{\scriptstyle 0}$ ${}^{\scriptstyle \mathcal{R}}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Cop number

cn(G)

minimum number of cops to capture any robber

8/15

< □ > < □ > < □ > < □ > < □ > < □ > = □

Determine cn(G) for the following graph G?

Cop number

cn(G)

minimum number of cops to capture any robber

 \leq 3

8/15

[Aigner, Fromme, 84]

Determine cn(G) for the following graph G?

Cops & robber games: the graph structure helps!!

• G with girth g (min induced cycle) and min degree d: $cn(G) \ge d^g$ [Frankl 87] • \exists *n*-node graphs *G* (projective plane): $cn(G) = \Theta(\sqrt{n})$ [Frankl 87] • G with **dominating set** k: $cn(G) \le k$ [folklore] **Planar graph** $G: cn(G) \leq 3$ [Aigner, Fromme, 84] ۲ **Minor free graph** G excluding a minor H: cn(G) < |E(H)|[Andreae, 86] • G with genus g: cn(G) < 3/2g + 3[Schröder, 01] • G with treewidth t: $cn(G) \leq t/2 + 1$ [Joret, Kaminsk,Theis 09] *G* random graph (Erdös Reyni): $cn(G) = O(\sqrt{n})$ [Bollobas et al. 08] • any *n*-node graph G: $cn(G) = O(\frac{n}{2^{(1+o(1))}\sqrt{\log n}})$ [Lu,Peng 09, Scott,Sudakov 10]

9/15

(ロ) (同) (E) (E) (E)

Theorem 1

G with chordality k: $cn(G) \leq k - 1$.

reduce the robber area

initialization: all k cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ **invariant:** Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ **algorithm:**

reduce the robber area

initialization: all *k* cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:

reduce the robber area

initialization: all k cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:retraction: if v_1 or v_i cannot be extended, else

reduce the robber area

initialization: all k cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:retraction: if v_1 or v_i cannot be extended, else

reduce the robber area

initialization: all k cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:retraction: if v_1 or v_i cannot be extended, else

reduce the robber area

initialization: all k cops in one arbitrary node $P = \{v_1\}$ invariant: Cops always occupy an induced path $P = \{v_1, \dots, v_i\}$ algorithm:retraction: if v_1 or v_i cannot be extended, else

Capture in *k*-chordal graphs: worm's strategy

 $\{v_1, \cdots, v_i\}$ occupied: if no retraction \Rightarrow induced cycle $\ge i + 1$

(unformal)

12/15

I ∃ ►

Pieces (subgraphs) with tree-like structure (bag=separator)

(unformal)

12/15

I ∃ ►

Pieces (subgraphs) with tree-like structure (bag=separator)

(unformal)

12/15

Usually, try to minimize the largest bag (treewidth)

(unformal)

Computation: find a separator with desired properties, then induction

Tree-decomposition with *k*-induced paths

From *k*-worm's strategy

Tree-decomposition with *k*-induced paths

k-worm strategy \Rightarrow decomposition with separator= k-caterpillar

In case of *k*-chordal graphs:

- \Rightarrow treewidth $\leq O(\Delta.k)$ (improves [Bodlaender, Thilikos'97] result)
- \Rightarrow treelength $\leq k$
- \Rightarrow hyperbolicity $\leq 3k/2$

・ロン ・回 と ・ ヨン ・ ヨン

Application to compact routing

stretch $O(k \log \Delta)$ with RT's of size $O(k \log n)$ bits

BFS-tree T, tree-decomposition D with k-caterpillar separators

Further work

Routing

improve the stretch of our routing scheme implementation in graphs with "few" long induced cycles

Decompositions

- complexity of computing decomposition with k-induced path, minimizing k
- algorithmic uses of such decompositions
- other structures of bags

Cops and robber

Conjecture: For any connected *n*-node graph *G*, $cn(G) = O(\sqrt{n})$. [Meyniel 87]