k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth ${ }^{1}$

Adrian Kosowski ${ }^{1} \quad \mathrm{Bi} \mathrm{Li}^{2,3} \quad$ Nicolas Nisse ${ }^{2}$ and Karol Suchan ${ }^{4,5}$

${ }^{1}$ CEPAGE, INRIA, Univ. Bordeaux 1, France
${ }^{2}$ MASCOTTE, INRIA, I3S (CNRS, UNS) Sophia Antipolis, France
${ }^{3}$ AMSS, CAS, China
${ }^{4}$ Univ. Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago, Chile
${ }^{5}$ WMS, AGH - Univ. of Science and Technology, Krakow, Poland

AlgoTel, la Grande Motte, $31^{\text {st }}$ May, 2012

(distributed) Routing in the Internet

Routing Scheme pre-requisite:
protocol that directs the traffic in a network computation of Routing Tables (RT)

(distributed) Routing in the Internet

Routing Scheme pre-requisite:
protocol that directs the traffic in a network computation of Routing Tables (RT)

(AS network)

RT's of size $O(n \log n)$ bits problem to compute/update
"almost" the full topology \Rightarrow How to reduce their size?

(distributed) Routing in the Internet

Routing Scheme pre-requisite:
protocol that directs the traffic in a network computation of Routing Tables (RT)

RT's of size $O(n \log n)$ bits problem to compute/update
"almost" the full topology \Rightarrow How to reduce their size?

Compact routing along shortest paths
General graphs
$\Omega(n \log n)$ bits required [FG'97]
\Rightarrow need of structural properties

Properties of large scale networks

Chordality

Well known properties small diameter (logarithmic) power law degree distribution high clustering coefficient
graph parameters
(\Rightarrow small hyperbolicity)
\Rightarrow few long induced cycles

Properties of large scale networks

Chordality

Well known properties
small diameter (logarithmic) power law degree distribution high clustering coefficient
graph parameters
(\Rightarrow small hyperbolicity)
\Rightarrow few long induced cycles

Chordality of a graph G : length of greatest induced cycle in G not induced cycle (chords)

Brief related work on chordality

Complexity chordality $\leq k ?$
NP-complete
easy reduction from hamiltonian cycle not FPT [CF'07] no algorithm $f(k)$.poly (n) (unless $P=N P$) FPT in planar graphs [KK'09] Graph Minor Theory chordality $\leq k \Rightarrow$ treewidth $\leq O\left(\Delta^{k}\right) \quad$ [Bodlaender, Thilikos'97]

Compact routing schemes in graphs with chordality $\leq k$

stretch	RT's size	computation time	
k+1	$O\left(k \log ^{2} n\right)$	poly (n)	[Dourisboure'05]
header never changes			
k-1	$O(\Delta \log n)$	$O(D)$	[NRS'09]
distributed protocol to compute RT's / no header			
$O(k \log \Delta)$	$O(k \log n)$	$O\left(m^{2}\right)$	[this paper]

Names and Headers (if any) are of polylogarithmic size

From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k -chordal graphs

From Cops and robber to Routing via Treewidth

From Cops and robber to Routing via Treewidth

Study of Cops and Robber games in k -chordal graphs
design of a strategy to capture a robber
derived into a graph decomposition
\downarrow

Compact routing scheme
using structure of k -chordal graphs

Our results

Theorem 1:

Cops and Robber games
$k-1$ cops are sufficient to capture a robber in k-chordal graphs

Theorem 2:

There is a $O\left(m^{2}\right)$-algorithm that, in any m-edge graph G,

- either returns an induced cycle larger than k,
- or compute a tree-decomposition with each bag being the closed neighborhood of an induced path of length $\leq k-1$. (\Rightarrow treewidth $\leq O(\Delta . k)$ and treelength $\leq k$)

Theorem 3: for any graph admitting such a tree-decomposition there is a compact routing scheme using RT's of size $O(k \log n)$ bits, and achieving additive stretch $O(k \log \Delta)$.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cops \& robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

(1) \mathcal{C} places the cops;
(2) \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop occupies the same vertex as the robber.

Cop number

cn(G) minimum number of cops to capture any robber Determine $c n(G)$ for the following graph G ?

Cop number

cn(G) minimum number of cops to capture any robber
Determine $c n(G)$ for the following graph G ?

$c n(G) \leq 3$ for any planar graph G
[Aigner, Fromme, 84] 8/15

Cops \& robber games: the graph structure helps!!

- G with girth g (\min induced cycle) and $\boldsymbol{m i n}$ degree $d: c n(G) \geq d^{g} \quad$ [Frankl 87]
- $\exists n$-node graphs G (projective plane): $c n(G)=\Theta(\sqrt{n})$
- G with dominating set $k: c n(G) \leq k$
[Frankl 87] [folklore]
[Aigner, Fromme, 84]
- Minor free graph G excluding a minor $H: c n(G) \leq|E(H)|$
- G with genus $g: c n(G) \leq 3 / 2 g+3$
- G with treewidth $t: c n(G) \leq t / 2+1$
- G random graph (Erdös Reyni): $c n(G)=O(\sqrt{n})$
- any n-node graph $G: c n(G)=O\left(\frac{n}{2(1+o(1)) \sqrt{\log n}}\right)$ [Lu,Peng 09, Scott,Sudakov 10]

Theorem 1

G with chordality k : $c n(G) \leq k-1$.

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
retraction: if v_{1} or v_{i} cannot be extended, else extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
retraction: if v_{1} or v_{i} cannot be extended, else extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
retraction: if v_{1} or v_{i} cannot be extended, else extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Worm's strategy

reduce the robber area

initialization: all k cops in one arbitrary node $P=\left\{v_{1}\right\}$ invariant: Cops always occupy an induced path $P=\left\{v_{1}, \cdots, v_{i}\right\}$ algorithm:
retraction: if v_{1} or v_{i} cannot be extended, else extension: if $w \in N\left(v_{1}\right) \cup N\left(v_{i}\right), P w$ induced and $N(w) \cap C_{\text {robber }} \neq \emptyset$

Capture in k－chordal graphs：worm＇s strategy

$\left\{v_{1}, \cdots, v_{i}\right\}$ occupied：if no retraction \Rightarrow induced cycle $\geq i+1$

Theorem 1
greedy algorithm
worw＇s strategy uses $\leq k-1$ cops in k－chordal graphs

Tree-decomposition/treewidth

(unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

Tree-decomposition/treewidth

(unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

Tree-decomposition/treewidth

(unformal)

Pieces (subgraphs) with tree-like structure

(bag=separator)

Usually, try to minimize the largest bag (treewidth)

Tree-decomposition/treewidth

(unformal)

Pieces (subgraphs) with tree-like structure

(bag=separator)

Computation: find a separator with desired properties, then induction

Tree-decomposition with k-induced paths

From k-worm's strategy

Tree-decomposition with k-induced paths

k-worm strategy \Rightarrow decomposition with separator $=k$-caterpillar

Theorem 2:
 There is a $O\left(m^{2}\right)$-algorithm that, in any m-edge graph G,

main result

- either returns an induced cycle larger than k,
- or compute a tree-decomposition with each bag being the closed neighborhood of an induced path of length $\leq k-1$.

In case of k-chordal graphs:
\Rightarrow treewidth $\leq O(\Delta . k)$ (improves [Bodlaender, Thilikos'97] result)
\Rightarrow treelength $\leq k$
\Rightarrow hyperbolicity $\leq 3 k / 2$

Application to compact routing

stretch $O(k \log \Delta)$ with RT's of size $O(k \log n)$ bits
BFS-tree T, tree-decomposition D with k-caterpillar separators
From s to d
(1) follow the path to r in T until find x such that B_{x} is an ancestor of B_{d} in D stretch: $+k$
(2) in B_{x}, find y an ancestor of d in T
stretch: $+k \log \Delta$
(3) follow the path to d in T stretch: $+k$

Further work

Routing

improve the stretch of our routing scheme implementation in graphs with "few" long induced cycles

Decompositions

- complexity of computing decomposition with k-induced path, minimizing k
- algorithmic uses of such decompositions
- other structures of bags

Cops and robber

Conjecture: For any connected n-node graph $G, c n(G)=O(\sqrt{n})$. [Meyniel 87]

