Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion

KBAC: Knowledge-Based Admission Control

Doreid Ammar *, Thomas Begin *, Isabelle Guérin-Lassous * and Ludovic Noirie **

* UCB Lyon 1 / LIP (UMR ENS Lyon - INRIA - CNRS - UCBL) ** Alcatel-Lucent Bell Labs, Nozay, France

Semantic Networking project Common laboratory INRIA - Alcatel Lucent-Bell Labs

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	1/14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion

Motivation

Growing traffic volume

e.g., streaming, live video watching, P2P, video games

Satisfy QoS ? \Rightarrow Admission control

Accept or Reject a new incoming flow

- ► too many acceptances ⇒ performance collapse
- ► too many rejections ⇒ low level of resource utilization

Existing admission control solutions

- measurement algorithm & decision algorithm
- difficult to calibrate

Objective

- avoid the critical step of calibration
- Knowledge-Based Admission Control solution (KBAC)

		うべつ
Ammar et al.	AlgoTe	I 2012
KBAC: Knowledge-Based Admission Control		2/14

Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion

KBAC

Performance evaluation

Conclusion

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	3/14

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Motivation	Plan	KBAC ●00000	Performance evaluation	Conclusion

Our approach

Link behavior \iff mono-server queue

Which queue to chose?

- G/G/1 queue, but how to solve it?
- M/G/1 queue, simple solution for its steady-state but general enough ?

How to chose the queue parameter values?

in a dynamic and automatic way

Aı	mn	nar	et	al	

AlgoTel 2012

Motivation	Plan	KBAC 0●0000	Performance evaluation	Conclusion

Major steps

Measurement algorithm

- on short timescale, collect couples of (X,P)
- X = actual throughput
- P = packet delay or packet loss rate
- (X,P) = measurement point

Knowledge Plane

- too many data \Rightarrow *K*-means clustering method
- partition measurement points into k centroid points
- model the behavior by a mono-server queue (M/G/1 queue or M/G/1/K queue)
- *f_P* = the discovered queue

イロト イヨト イヨト イヨト

Motivation	Plan	KBAC 00●000	Performance evaluation	Conclusion

Illustration

Example

- here, P = packet delay
- the found *M/G/1* queue ($\mu = 5.01$, *CV* = 2.02 and *off* = 0.08)

Example of a Knowledge Plane

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	6/14

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Motivation	Plan	KBAC 000●00	Performance evaluation	Conclusion

Avoid the flood of information

Too many *measurement points* (X,P)

keep only 1000 points

But which of them?

- the 1000 last points are the most recent
- but very likely to all look alike \Rightarrow loss of information
- instead, we split the possible range of throughput in 10 intervals
- ▶ and we enforce the existence of 20 (*X*,*P*) in each throughput interval

★ 문 → ★ 문 →

Motivation	Plan	KBAC 0000●0	Performance evaluation	Conclusion

Illustration

Example

- here, P = packet delay
- the found *M/G/1* queue ($\mu = 5.01$, *CV* = 2.02 and *off* = 0.08)

Example of a Knowledge Plane

		 _	
Ammar et al.		AlgoTel	2012
KBAC: Knowledge-Based Admission Control			8/14

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Motivation	Plan	KBAC 00000●	Performance evaluation	Conclusion

Decision algorithm

Performance prediction

- new flow requesting admission, with a peak rate r
- the expected performance $\Rightarrow \hat{P} = f_P(X + r)$

A new flow is accepted if

- $\triangleright \quad \widehat{P} + \alpha \widehat{\sigma}_p < P^*$
- P* = target performance
- $\hat{\sigma}_p$ = standard deviation of \hat{P}
- α = tuning parameter (*Chebyshev's inequality* $Q = 75\% \Rightarrow \alpha = 1.7$)

Motivation	Plan	KBAC 000000	Performance evaluation ●○	Conclusion

Scenario

Initial source

- ▶ real traffic trace
- Average rate = 2.5 Mbps

Incoming flows (VBR)

- ► Sending rate = 64 Kbps
- Packet size = 190 bytes
- ► *CV* = 2.5
- Poisson arrivals

Single communication link

- ► Capacity, C = 10 Mbps
- Queue size = 60 ms
- Queueing discipline FIFO (First In First Out)
- Queue management algorithm Drop-Tail

		1
Ammar et al.	AlgoTel 2012	2
KBAC: Knowledge-Based Admission Control	10/14	1

Motivation	Plan	KBAC 000000	Performance evaluation ○●	Conclusion

$P^* = 10 \text{ms}$

	KBAC	MS	ENV.1	ENV.2	Ideal
% accepted flows	28%	19%	32%	24%	30%
% QoS violation	2%	0%	55%	0%	0%

Performance of admission control solutions

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	11/14

< □ > < □ > < □ > < □ > < □ > .

ъ

Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion

Conclusion

Knowledge-Based Admission Control solution (KBAC)

Data-driven and evolutive solution

- dynamic environement
- no assumption on the traffic

Performance

- avoids the critical step of precisely calibrating key parameters
- good trade-off between flow performance and resource utilization
- automatic adjustment of admission policy according to the actual variations on the traffic conditions

Futur work

extend to packet loss rate

< 注 > < 注 >

Image: A matrix

Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion

Questions ...

・ロト・「日・・日・・日・ うらぐ

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	13/14

Motivation	Plan	KBAC 000000	Performance evaluation	Conclusion
~				

\widehat{X} = the adjusted throughput

Why?

to avoid the erratic behavior of X

Estimation of the adjusted throughput \widehat{X}

- computed over the last M measurement windows
- ponderation of the peak rate + average value of the throughput

Ammar et al.	AlgoTel 2012
KBAC: Knowledge-Based Admission Control	14/14