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Motivation

Growing traffic volume
I e.g., streaming, live video watching, P2P, video games

Satisfy QoS ?⇒ Admission control

Accept or Reject a new incoming flow
I too many acceptances⇒ performance collapse
I too many rejections⇒ low level of resource utilization

Existing admission control solutions
I measurement algorithm & decision algorithm
I difficult to calibrate

Objective
I avoid the critical step of calibration
I Knowledge-Based Admission Control solution (KBAC)
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Our approach

Link behavior⇐⇒ mono-server queue
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Which queue to chose ?
I G/G/1 queue, but how to solve it ?
I M/G/1 queue, simple solution for its steady-state but general enough ?

How to chose the queue parameter values ?
I in a dynamic and automatic way
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Major steps

Measurement algorithm
I on short timescale, collect couples of (X,P)
I X = actual throughput
I P = packet delay or packet loss rate
I (X,P) = measurement point

Knowledge Plane
I too many data⇒ K-means clustering method
I partition measurement points into k centroid points
I model the behavior by a mono-server queue (M/G/1 queue or M/G/1/K queue)
I fP = the discovered queue
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Illustration

Example

I here, P = packet delay
I the found M/G/1 queue (µ = 5.01, CV = 2.02 and off = 0.08)
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recently collected measurement points
centroids points
queueing model

Example of a Knowledge Plane
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Avoid the flood of information

Too many measurement points (X,P)
I keep only 1000 points

But which of them ?
I the 1000 last points are the most recent
I but very likely to all look alike⇒ loss of information
I instead, we split the possible range of throughput in 10 intervals
I and we enforce the existence of 20 (X,P) in each throughput interval
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Illustration

Example

I here, P = packet delay
I the found M/G/1 queue (µ = 5.01, CV = 2.02 and off = 0.08)
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Decision algorithm

Performance prediction
I new flow requesting admission, with a peak rate r
I the expected performance⇒ P̂ = fP(X + r)

A new flow is accepted if
I P̂ + ασ̂p < P∗

I P∗ = target performance
I σ̂p = standard deviation of P̂
I α = tuning parameter (Chebyshev’s inequality Q = 75%⇒ α = 1.7)
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Scenario

Initial source

I real traffic trace

I Average rate = 2.5 Mbps

Incoming flows (VBR)

I Sending rate = 64 Kbps

I Packet size = 190 bytes

I CV = 2.5

I Poisson arrivals

Single communication link

Incoming flows
requesting admission

Initial source

Aggregation of accepted 
VBR flowsAggregation of accepted 
VBR flows

   Real traces

I Capacity, C = 10 Mbps
I Queue size = 60 ms
I Queueing discipline

FIFO (First In First Out)
I Queue management algorithm

Drop-Tail
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P∗ = 10ms

KBAC MS ENV.1 ENV.2 Ideal

% accepted flows 28% 19% 32% 24% 30%
% QoS violation 2% 0% 55% 0% 0%

Performance of admission control solutions

Ammar et al. AlgoTel 2012

KBAC: Knowledge-Based Admission Control 11 / 14



Motivation Plan KBAC Performance evaluation Conclusion

Conclusion

Knowledge-Based Admission Control solution (KBAC)

Data-driven and evolutive solution
I dynamic environement
I no assumption on the traffic

Performance
I avoids the critical step of precisely calibrating key parameters
I good trade-off between flow performance and resource utilization
I automatic adjustment of admission policy according to the actual variations on

the traffic conditions

Futur work
I extend to packet loss rate
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Questions . . .
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X̂ = the adjusted throughput

Why ?
I to avoid the erratic behavior of X

where fP defines the evolution of P against the output rate
X , and �X reflects the adjusted output rate of the on-going
traffic. We will explain later how �X is actually computed.

Then we can simply formalize our decision algorithm as :
a new flow is accepted if

�P + α�σp < PT (8)

where PT represents the target performance (typically a maxi-
mum tolerable delay or loss rate), �σp is the standard deviation
of P , as delivered by the discovered queueing model, and α
is a conservativeness tuning parameter.

In our method, the performance target can either be the
loss rate or the packet delay. Note that we did not consider
the case where the target loss rate and the target delay are
both specified since, following the queueing theory analysis,
meeting a target loss rate implies an unknown but fixed target
queuing delay, and vice versa. In this paper, we limit our focus
on the delay.

We now detail carefully the parameters listed above. The
value of α is set so that on-going flows do not exceed the
QoS target, with a probability Q. We define α using the one-
sided Chebyshev’s inequality.

Fig. 2. Measurement of the adjusted output rate �X

�X is computed over the last M measurement windows of
length, WT , as follows:
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where Xm is the value of the output rate computed over the
mth measurement window, F is the number of accepted flows
over the mth measurement window and rf

m is the estimated
peak rate of the f th new flow in the mth measurement window.
Figure 2 illustrates the computation of �X . By doing so, we
compute an accurate value of �X , since we take into account
a ponderation of the peak rate of the accepted flows added to
the average value of the output rate.

The value of �X is frequently updated. In our case we update
its value at the end of each measurement window WT . We also
provide a means to accommodate the potential burstiness of
traffic (i.e., several new flows arrive within a measurement
window WT ). Whenever a new flow, with a peak rate r, is
accepted, the value of �X is immediately updated to be �X + r.

D. Avoid the flood of information while ensuring centroids
diversity

As said above, the Knowledge Plane maintains in real time
an up-to-date wide view of the link state. This knowledge

is obtained though the measurement points. Given the huge
number of collected measurement points (e.g., 300 new mea-
surement points per minute if the length of the measurement
window, WT , is set to 200 ms), our SBAC solution will rapidly
be overwhelmed by using all collected measurement points to
compute centroids points. To avoid this flood of information,
we limit our focus to a subset made of n of these points.

However limiting the number of measurement points may
cause a loss of information. To cope with this problem, the
simplest approach that would consist in limiting our focus to
the last n measurement points. Instead, we split the output rate
interval [0, Xmax] into S intervals of equal length, denoted
by ls. Then, each point will necessary belong to one of these
intervals. After each measurement window WT , we replace the
oldest measurement point by the latest computed measurement
point, but with ensuring that there are at least ns measurement
points within each output rate interval. By doing so, we avoid
the flood of information while ensuring the centroids diversity
which is required for adequately discovering the queueing
model. Figure 1 illustrates how we ensure the centroids di-
versity. Although we do not have any measurement points at
the lowest level of the output rate, we are able to maintain a
centroids point.

In our experiments, we limit the number of measurement
points to 1000 (n = 1000) and we select ls = 1 packets/ms
and ns = 20.

E. Temporal coherence and system update

Our solution relies on the assumption of a strong tempo-
ral coherence of the behavior of a communication link. We
suppose that, within a certain time scale of length Tkp, the
observed performance afford a precious information for accu-
rately predicting the future performance of the system. Said
differently, this temporal coherence can be expressed as:

∀(t1, t2) ∈ [t, t + Tkp]
2, if Xt1 = Xt2 ⇒ Pt1 = Pt2 (10)

where Pt1 (resp. Pt2 ) is the performance parameter at time t1
(resp. t2), and Xt1 (resp. Xt2 ) represents the output rate of
the on-going traffic over the communication link at time t1
(resp. t2).

In this work, we select Tkp = 20 s.

F. SBAC complexity

todo ...

IV. METHODOLOGY

The performance evaluation of an admission control can
be handled through different aspects. One can consider the
overhead costs for network nodes in terms of CPU time or
memory consumption, the ease of configuration or the quality
of the decision. Many studies comparing admission control
solutions ([10], [4], [12]) aimed to quantify, for a given exper-
imental scenario, the attained trade-off between of utilization
of the link and the packet loss rate or delay.

In our work, we aim at highlighting the ability of our new
SBAC solution to achieve the maximum level of utilization
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This measurement-based admission control solution consists
of two parts: a short time scale test that ensures that no packet
is too long delayed, and a long time scale test that checks
that the flow requesting admission does not exceed the link
capacity. Note that envelopes are used only to check the first
condition. A new flow requesting admission with a peak rate
r is accepted if and only if:

max
k=1,...,t

{kτ(Rk + r + αEσk − C)} ≤ C × D (4)

and
Rt + r + αEσt ≤ C (5)

where D is the maximum delay requirement and αE is a
constant specifying the confidence level, Φ(αE), that on-going
flows do not experience any packet loss. Φ(αE) is defined as:

Φ(αE) ≈ 1√
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III. SEMANTIC-BASED ADMISSION CONTROL SCHEME

As said previously, our new admission control solution is
based on a semantic approach. In such approach, we acquire
knowledge on existing flows via an analysis of the on-going
traffic, and feed it to the Knowledge Plane. The Knowledge
Plane holds a global picture of link status and distributes it to
the admission control, which in charge of deciding for each
new flow, whether it accepts or rejects it.

As opposed to MBAC solutions, our SBAC solution in-
cludes an additional step, namely the Knowledge Plane. More
specifically, our SBAC solution is made up of three parts: a
measurement algorithm; a Knowledge Plane; and a decision
algorithm.

A. Measurement algorithm

In our solution, we continuously monitor the activity of
the communication link so as to collect measurement data.
These data measured on a short time scale WT reflect the
actual behavior of the on-going traffic. For each time window,
WT , we measure the actual output rate of the on-going traffic,
denoted by X (packets/ms), and another QoS performance
parameter, say P . P may correspond to the packet delay
(including queueing delay in the buffer and transmission time),
denoted by R, or to the packet loss rate L. The measured
values of X and P are gathered together into one pair of
measurements. We refer to the pairs of measurements, (X , P ),
as measurement points.

B. Knowledge Plane

Once measurement points have been collected, we aim at
characterizing the evolution of P as a function of X , denoted
by P = fP (X). This second part of our SBAC solution
consists itself of two phases.
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Fig. 1. Example of a Knowledge Plane, where P is the packet delay

First, we aim to partition n measurement points into k clus-
ters in which each measurement point belongs to the cluster
with the nearest mean. To do this, we use K-means clustering
method. Elements within a cluster are represented by a single
point, denoted by centroid point. We thus end up with k
centroids points.

Second, using Begin et al. method [3], we attempt to auto-
matically discover a queueing model that correctly reproduces
the behavior exhibited by centroids points. The parameters
of the discovered queueing model are automatically selected
accordingly. In our work, we limit the search for the model
to one single server queue model, namely, the M/G/1 queue
when we deal with the packet delay, and the M/G/1/K queue
when we deal with the packet loss rate. The discovered queue
supplies the function fP , which is of utmost importance for
our Knowledge Plane.

Figure 1 illustrates the measurement methodology described
above. It shows an example of how we discover a queueing
model, fP , whose performance parameters match as closely
as possible those known from the centroids points. We ob-
serve that a single M/G/1 queue (with a mean service time of
5.01 packets/ms, a coefficient of variation equal to 2.02 and
an offset equal to 0.08, see [3] for its definition) adequately
reproduces the behavior exhibited by centroids points. Note
that, in this example, P represents the packet delay.

C. Decision algorithm

Our algorithm makes its decision whether to accept or not
a flow based on a performance prediction. It attempts to ad-
equately estimate the expected performance of the link if the
traffic workload was to be increased by this new flow. To do
this, it relies on of fP as delivered by the queueing model.

Let �P be the expected value of P if a new flow requesting
admission, with a peak rate r, is accepted. Then we have:

�P = fP ( �X + r) (7)
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Estimation of the adjusted throughput X̂

I computed over the last M measurement windows
I ponderation of the peak rate + average value of the throughput
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