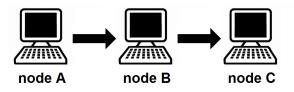
Limiting Byzantine Influence in Multihop Asynchronous Networks

Alexandre Maurer and Sébastien Tixeuil

March 12, 2012

Alexandre Maurer and Sébastien Tixeuil Limiting Byzantine Influence in Multihop Asynchronous Networks

Table of contents


Presentation of the problem

- Introduction
- Related works

Our algorithm

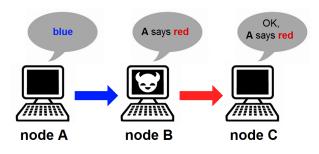
- Description
- Properties
- 3 Experimental evaluation
 - Methodology
 - Results

Introduction

Introduction

Broadcast in multihop networks

Introduction Related works


Introduction

Broadcast in multihop networks

Introduction Related works

Introduction

Problem: Byzantine failures

Introduction Related works

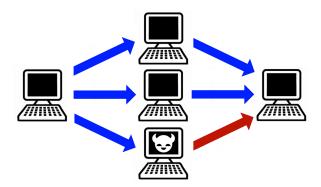
Different approaches

Cryptography

Voting system

Introduction Related works

Local voting system



Certified Propagation Algorithm

Requires less than 1 on 12 Byzantine in each neighborhood

Introduction Related works

Voting on multiple paths

Explorer

Requires (2k + 1)-connectivity to tolerate k Byzantine nodes

Our approach

Existing approaches

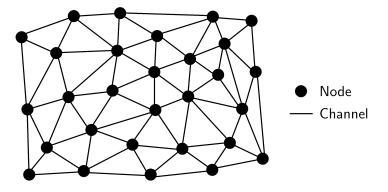
- All correct nodes communicate reliably
- Requires strong connectivity

Our approach

- Most correct nodes communicate reliably
- Enables weak connectivity

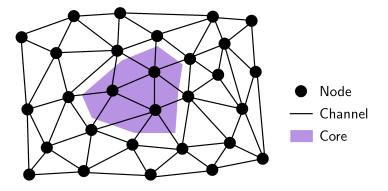
Preliminaries

Hypotheses

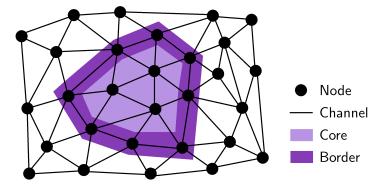

- Asynchronous message passing
- Local topology knowledge

Main idea

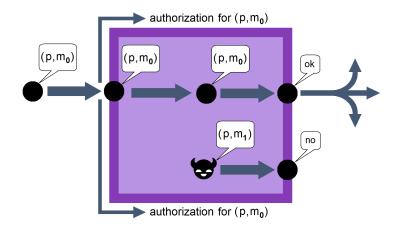
• Filtering Byzantine messages with Control Zones


Description Properties

Control Zone


Description Properties

Control Zone


Description Properties

Control Zone

Description Properties

Principle of a Control Zone

Principle of the Protocol

- Defining a large number of Control Zones to limit the diffusion of Byzantine messages
- Protocol described in the paper

Definitions

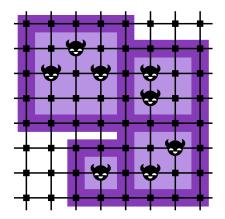
A set of nodes is

- Safe if no node accepts false messages
- Communicating if all nodes always communicate
- Reliable if both safe and communicating

Objective: For a given set of Byzantine nodes, determine a reliable node set

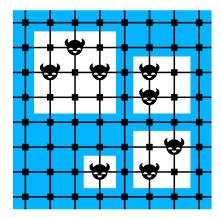
Description Properties

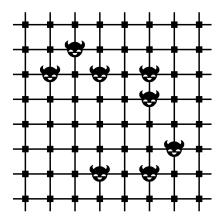
Safe node set


Theorem 1 If all Byzantine nodes are surrounded by a correct border, there exists a safe node set

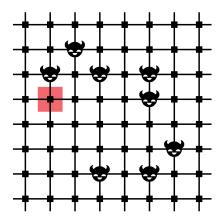
Description Properties

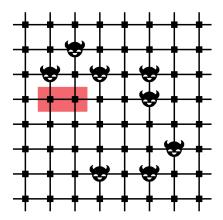
Safe node set

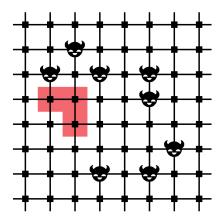

Theorem 1 If all Byzantine nodes are surrounded by a correct border, there exists a safe node set

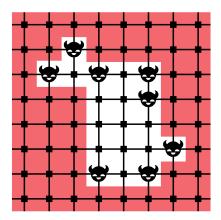

Description Properties

Safe node set

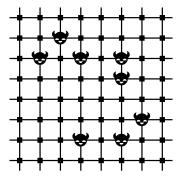

Theorem 1 If all Byzantine nodes are surrounded by a correct border, there exists a safe node set

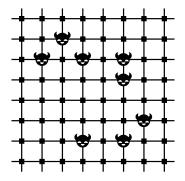

Theorem 2


Theorem 2

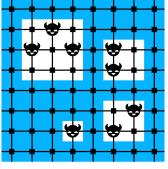

Theorem 2

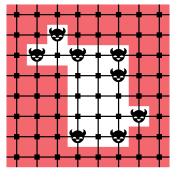
Theorem 2




Theorem 2

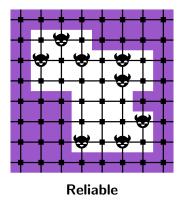
Description Properties


Reliable node set



Description Properties

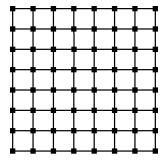
Reliable node set


Safe

Communicating

Description Properties

Reliable node set

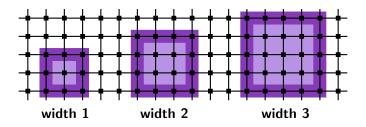

Experimental evaluation

To perform the evaluation, we need to:

- Choose a network topology
- Define a set of control zones

Methodology Results

Network topology



 $100\times100~\text{grid}$ network

Methodology Results

Control zones

Square control zones

Order N: all zones of width $\leq N$

Evaluation

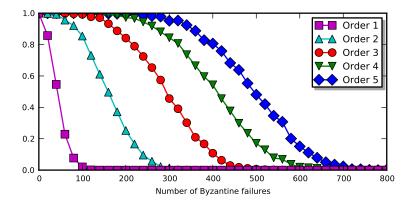
- Input: n randomly distributed Byzantine failures
- **Output:** *P*(*n*), probability that 2 randomly choosen correct nodes communicate reliably

We evaluate P(n) with a Monte-Carlo method

Simulations

One simulation

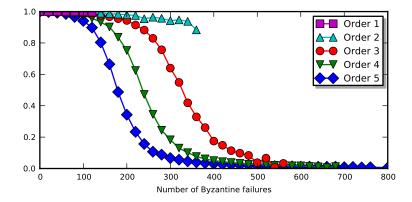
- Choose *n* Byzantine nodes (at random)
- Determine a reliable node set
- Choose 2 correct nodes (at random)
- If they are in the reliable set, the simulation is a succes


Many simulation

The fraction of successes converges to a lower bound of P(n)

Methodology Results

Results


Probability of existence of a reliable node set

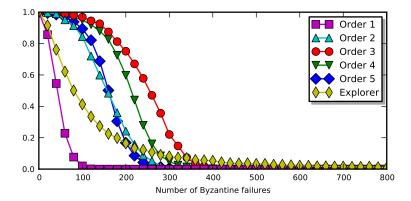
Methodology Results

Results


Mean size of the reliable node set, when it exists

Methodology Results

Results


Probability that 2 nodes communicate reliably

Methodology Results

Comparison

Probability that 2 nodes communicate reliably

Comparison

For a probability \geq 0.99, we can tolerate

- 5 Byzantine failures with Explorer
- 50 Byzantine failures with our protocol

Conclusion

- Our approach enables Byzantine resilience in sparse networks
- Open problems:
 - Defining optimal control zones in any network
 - Making the approach scalable

Questions ?