GRAPHES D'ACCESSIBILITÉ DYNAMIQUES

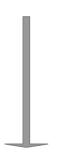
J. WHITBECK, M. AMORIM, V. CONAN, J. GUILLAUME

ALGOTEL 2012

jean-loup.guillaume@lip6.fr Équipe Complex Networks LIP6 - CNRS - Université Pierre et Marie Curie

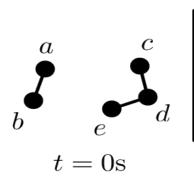
Graphes de connectivité temporels

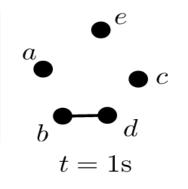
Trace de contacts

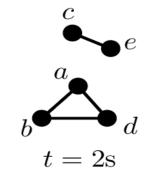


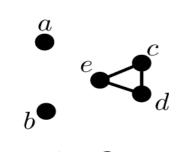
Graphe dynamique

Temps	Noeud 1	Noeud 2	Evénement
0	а	b	UP
0	d	е	UP
0	С	е	UP
1	а	b	DOWN
1	d	е	DOWN
1	С	е	DOWN
1	b	d	UP
2	а	b	UP









Graphes de connectivité temporels

- Pas de reformulation simple des propriétés de graphes :
 - Plus "court" chemin dans un graphe dynamique ?
 - Certains problèmes simples deviennent compliqués
- Approches classiques :
 - Suivi de propriétés classiques au cours du temps
 - Durée de vie des liens ?
 - Nouvelles propriétés sur la dynamique
 - e.g. contacts et inter contacts : très hétérogènes
- Propriétés agrégés donnent peu d'information :
 - Hétérogénéité globale mais homogénéité par lien
- Connectivité multi-sauts ?

Graphes d'accessibilité dynamiques

Dans un (τ, δ) -graphe d'accessibilité, un arc existe de A vers B à l'instant t s'il existe un chemin spatio-temporel qui parte de A au plus tôt à t et qui arrive en B au plus tard à t+ δ sachant que chaque saut prend un temps τ .

Delay Tolerance (δ)	$\begin{array}{c c} TRG \\ at \ t = 0s \end{array}$	$ \begin{array}{c c} \text{TRG} \\ \text{at } t = 1\text{s} \end{array} $	TRG at $t = 2s$
$\delta = 1s$	$e \xrightarrow{a} b$ $d \xrightarrow{c} c$	$e \overset{a}{\underbrace{\hspace{1cm}} b} b$	$e \xrightarrow{a \atop b} b$
$\delta = 2s$	$\begin{bmatrix} e & a \\ d & c \end{bmatrix}$	$e \xrightarrow{a} b$	

Motivations

- A partir du GAD, des questions de performance de routage deviennent "faciles" :
 - Borne sup du taux d'acheminement moyen à l'instant t ?
 - Point-a-point, broadcast, ...
 - Taille de l'ensemble dominant à l'instant t ?
 - Offloading
- Nouveaux angles d'analyse des graphes de connectivité :
 - Phases de connectivité asymétrique/symétrique
 - Bon diffuseur = grand degré sortant
 - Bon receveur = grand degré entrant

Traces considérées

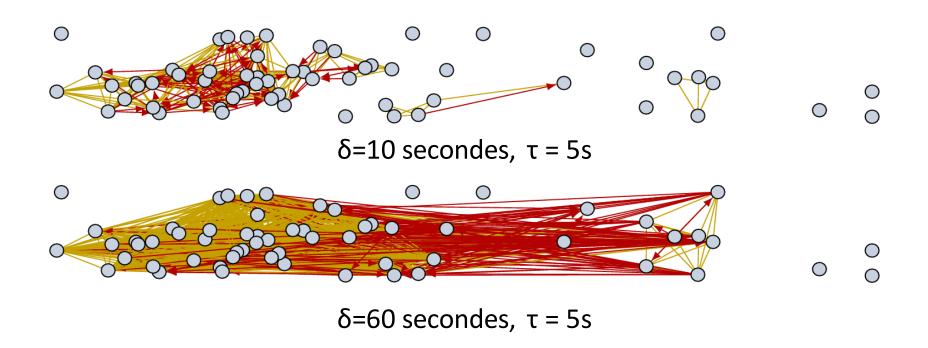
Rollernet

- 62 participants d'une randonnée roller autour de Paris
- Capteurs Bluetooth
- Scans de voisinage toutes les 15 secondes

Stanford High

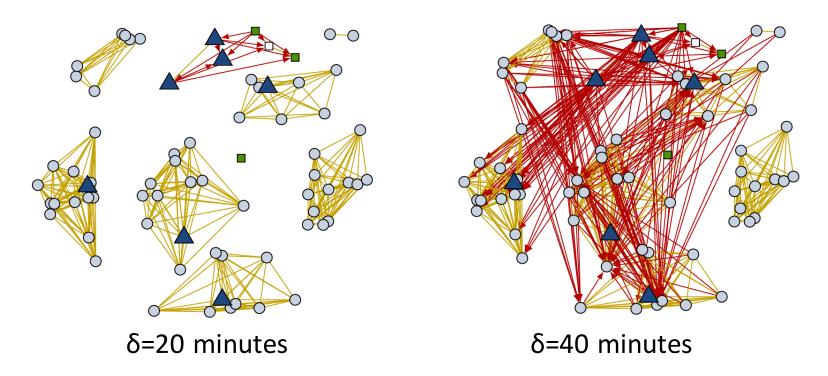
- 789 participants (élèves, professeurs, personnel d'un lycée américain)
 pendant une journée complète de cours
- Capteurs ZigBee
- Beacons envoyés toutes les 20 secondes

Exemple 1 : Rollernet



- GAD pendant un étirement de la trace :
 - Effet d'accordéon
 - Liens asymétriques vers l'arrière de la trace

Exemple 2: Stanford High



- GAD pendant les cours du matin (triangles = enseignants) :
 - Mise en évidence des salles de classe si δ est faible
 - Diffusion pendant les pauses/repas

Composition de GADs

Soit \mathcal{G} un graphe dynamique τ -régulier avec un temps de traversée unitaire τ et \mathcal{R}_{δ} et \mathcal{R}_{μ} deux de ses graphes d'accessibilité. On définit $\mathcal{R}_{\delta} \oplus \mathcal{R}_{\mu}$, le graphe d'accessibilité τ -régulier tel que pour chaque instant $t = k\tau, k \in \mathbb{N}$:

$$(u, v) \in (\mathcal{R}_{\delta} \oplus \mathcal{R}_{\mu})(t) \Leftrightarrow \begin{cases} (u, v) \in \mathcal{R}_{\delta}(t), \text{ ou} \\ (u, v) \in \mathcal{R}_{\mu}(t + \delta), \text{ ou} \\ \exists w \in V, (u, w) \in \mathcal{R}_{\delta}(t) \text{ et } (w, v) \in \mathcal{R}_{\mu}(t + \delta) \end{cases}$$

• Dans le cas particulier où le pas de temps minimal d'évolution du graphe τ est égal au temps de traversée d'un arc (τ-régularité)

Composition de GADs

Théorème d'additivité. Soit \mathcal{G} un graphe dynamique τ -régulier avec un temps de traversée unitaire τ et \mathcal{R}_{δ} et \mathcal{R}_{μ} deux de ses graphes d'accessibilité. Si $\exists (d,m) \in \mathbb{N} \times \mathbb{N}$, tel que $\delta = d\tau$ et $\mu = m\tau$, alors :

$$\forall k \in \mathbb{N}, (\mathcal{R}_{\delta} \oplus \mathcal{R}_{\mu})(k\tau) = \mathcal{R}_{\delta+\mu}(k\tau)$$

- Calcul du GAD δ+μ à partir des GADs δ et μ
 - Calcul efficace avec un algorithme d'exponentiation rapide
- Cas particulier de τ -régularité et δ et μ bien choisis

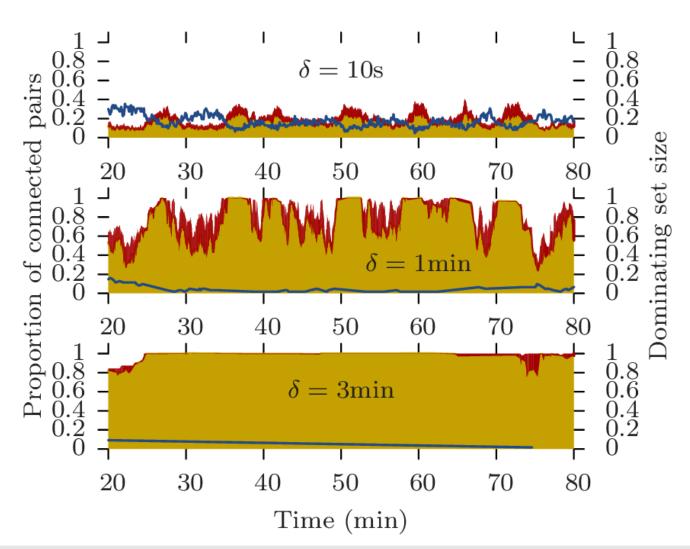
Composition de GADs

- Dans le cas général c'est plus compliqué :
 - On ne part pas toujours au bon moment
 - Le graphe peut bouger plus vite que les transmissions
- Pour t ≠ kτ, composition approchée du GAD par :
 - Une borne supérieure qui contient quelques arcs en trop
 - Une borne inférieure à qui il manque quelques arcs
 - Égales si t= kτ
- Lorsque le temps τ de traversée d'un arc est supérieur au temps d'évolution du graphe dynamique :
 - Composition sur des familles de GADs avec délais inférieurs et supérieurs.
 - Multiples compositions de familles de GAD en parallèle

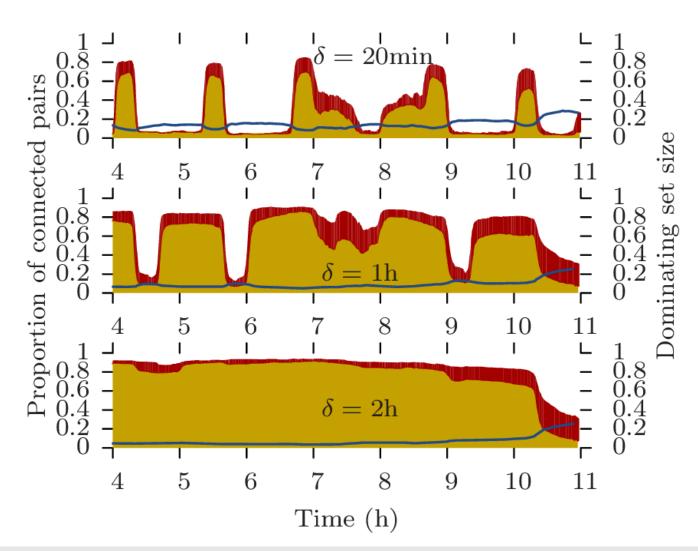
Résultats

- Propriétés étudiées :
 - Densité et asymétrie : taux d'acheminement
 - Ensemble dominant (approximation) : offloading
- Étude de l'évolution de ces propriétés
- Comparaison avec des modèles de mobilité (cf version longue) :
 - Random Way Point
 - Random Way Point + Communities

Rollernet (τ =5s)



Stanford High $(\tau=1s)$



Conclusions

- Formalisme des graphes d'accessibilité dynamiques
- Algorithme de calcul efficace (code en ligne bientôt)
- Nouveaux angles d'analyse (a posteriori) sur les graphes de connectivité
 - Bornes de performances de routage :
 - Densité = taux d'acheminement maximal
 - Taille de l'ensemble dominant = ratio d'offload minimal
 - Asymétrie
 - Bons diffuseurs, bons receveurs
- Traces réelles : généralement pas possible d'avoir un acheminement de 100% mais offloading possible

Perspectives

- Amélioration de l'implémentation (hadoop)
- Mise en évidence d'une structure communautaire :
 - Non visible directement dans les traces du fait de l'instabilité des liens
 - Proposition de nouvelles méthodes dans ce contexte
- Analyse statistique dynamique des :
 - Degrés entrants/sortants
 - Durée des liens, etc.
- Modélisation des GADS plutôt que des graphes de contact ?

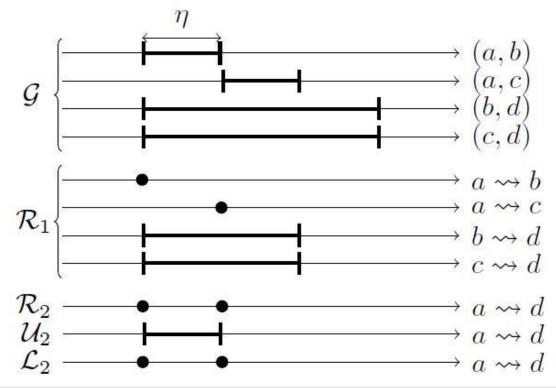
MERCI

QUESTIONS?

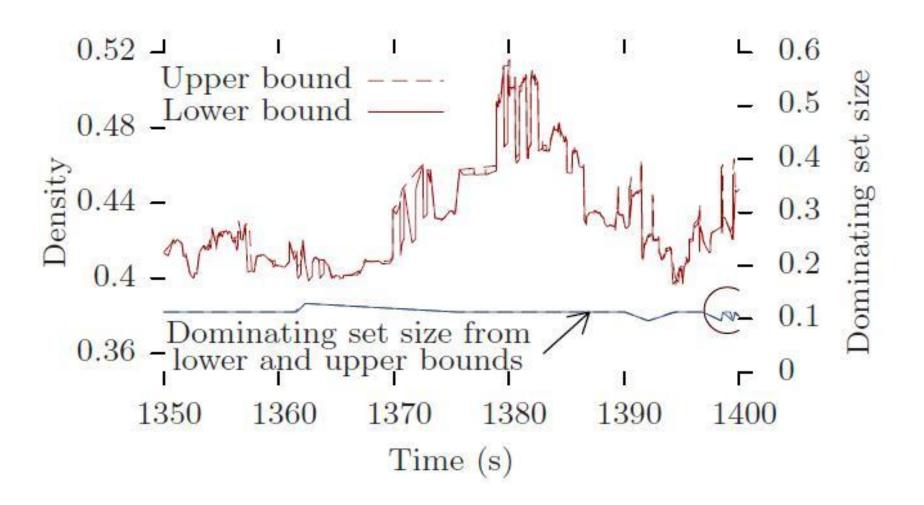
Projet supporté par : **ANR-10-JCJC-0202** DiRe (Emergence ville de Paris) **Thalès**

Borne supérieure

- Deux chemins de a vers d en 2 pas de temps (abd, acd)
 - Un seul instant de départ pour chacun
 - Borne sup suppose que si on peut partir à t et à t+τ, on peut partir entre les deux.



Écart entre les bornes



Théorème de décomposition

THEOREM 1 (**DECOMPOSITION**). Let \mathcal{G} be a TVG with edge traversal time τ and $\bar{\mathcal{R}} = \{\mathcal{R}_{\delta}\}_{\delta \geq 0}$ the set of all its reachability graphs. Let $\delta \geq 0$ and $\mu \geq \tau$. Then:

$$\mathcal{R}_{\delta+\mu} = \bigcup_{0 \le \epsilon < 1} \mathcal{R}_{\delta+\epsilon\tau} \otimes \mathcal{R}_{\mu-\epsilon\tau}.$$

• Si le théorème simple ne s'applique pas, cela signifie que l'on est en train de traverser un lien à $t+\delta$ (pas τ -régulier).

