Caching performance of CCN under multipath routing (and more...)

Giuseppe Rossini (speaker) Dario Rossi

About this presentation

Goals

- Hands on assessment of several CCN aspects via simulation
- Evaluation scenario realistic (and large scale) as possible
- Large scale, realistic scenarios in terms of
 - Chunk, File, Cache sizes
 - Network topologies
 - Content Popularity

Introduction

- What is CCN?
- New networking Paradigm
 - Files subdivided in chunks
 - Data transfer receiver oriented
 - From a network of routers to a network of caches
- How does it work?
 - A client sends an interest for a data chunk
 - The interest if forwarded along one or more paths toward the content
 - The data is given back either from one of the repositories or from a cache along the path

Caching scenarios

- Large spectrum of values among the whole literature, but not all very sound
- Sometimes very easy job for caches
 - "Easy" popularity model parameters
 - Large caches with respect to catalog size
- First goal: build a reasonable, fairly large scale scenario
- Second goal: play with several CCN design decisions

Caching scenarios(2)

С	Chunk size	10 KB
F	File size	Up to 10 ⁴ chunks (10MB) (geom distributed)
F	Number of files	Up to 10 ⁸
F F	Catalog size (in bytes)	Up to 10 ¹⁵ bytes (1PB)
С	Cache size	Up to 10 ⁶ chunks (10 GB)
C/ F F	Cache/catalog ratio	[10 ⁻⁵ ,10 ⁻¹]
α	Zipf shaping factor	[0.5,2.5]
q	Mzipf plateau	{0,5,50}
λ	Arrival rate	[1,10]Hz
W	Control window width	1 chunk
R	Number of paths	{1,2}
C _R	Cache replacement policy	FIFO, LRU,UNIF, BIAS
C _D	Cache decision policy	LCE,LCD, FIX(P)
Net	Network topology	Geant, Abilene, Dtelekom, Tiger, Qwest, Level3

Popularity model

- Really hard to find a dial on the right model
- Mandelbrot Zipf seems the most accreditate
- $P(i) = C/(i+q)^{\alpha}$
 - q = plateau
 - α = shaping factor

Caching scenario

- Often in the following we will refer to the Youtube scenario. This means
 - A catalog of 10⁸ files
 - File size average 10MB (geometrically distributed)
- Common used values for the system of caches will be
 - 10KB chunk size
 - 10GB caches
 - Thus a cache/catalog ratio of 10⁻⁵

Topology and routing

Single (Dijkstra) vs multipath

- Shortest path toward the closest repository
- Multiple paths toward the closest repository
- Shortest paths toward multiple repositories
- Different strategies to dial with multiple paths
 - Parallel (using multiple paths at the same time)
 - Alternate
 - Retention of the strategy for the first chunk(s)
- Topologies
 - Traditional 15-nodes tree
 - Realistic topologies

Decision vs Replacement policies

- Replacement policies: "decide which element should be replaced by the new one"
 - Random
 - FIFO
 - LRU (Least Recently Used)
 - BIAS (mixed RANDOM & LFU)
- Decision policies:"decide if caching or not an incoming element"
 - LCE (Leave Copy Everywhere)
 - LCD (Leave Copy Down)
 - Fixed probability P

Performance: appetizer

- Non trivial dependencies (C/F, C/F|F|) cannot scale down the problem
- The problem is indeed trivial or impossible depending on what are the reasonable values for the scenario

Cache over catalog ratio C/(IFIF)

Performance: appetizer

- Non trivial dependencies (C/F, C/F|F|) cannot scale down the problem
- The problem is indeed trivial or impossible depending on what are the reasonable values for the scenario

Performance at a glance

- Geant topology, Youtube scenario
- On the average, shaping factor influences most
- Varying the plateau has a borderline effect
- What about varying policies and topologies?

Performance: topologies

- Zipf shaping factor α = 1.5
- On the average not very influenced by the topology
- Even the choice of different policies seems not affecting too much

Performance: decision/replacement

- Different decision/replacement policies have little impact on the performance
- This is a good news, as simple LCE/RND policy can be employed
- This is a bad news, as for coarse scenarios few can be improved

Decision

Replacement

Performance: multipath

- Zipf shaping factor
 α = 1
- Having multiple paths may lower performance
- In fact, having longer paths will surely increase the average distance
- Difference between multi-{rep,path} is quite slight

Summary

- Simple replacement policies achieve comparable performance to usual reference
- Multipath can be potentially harmful for caching
- The crucial point is the understanding of the popularity models

Thanks for your attention

