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PageRank is the average time-portion spent in a node
during an infinite random walk
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Webmaster

min
π∈Π

x1 such that x = P πx+ 1
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PageRank Iteration : how it works

0. Initialize: Choose an initial policy π0 (arbitrarily)

while πk 6= πk−1 do

1. Evaluate πk: compute the first return times xπk of the nodes:

xπk = P πkxπk + 1

2. Improve πk: greedily switch all free edges that enhance

the first return times such that:

P πk+1xπk ≤ P πkxπk

k → k + 1

end
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In practice, PRI converges in a linear number of iterations
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In theory, PRI might need an exponential number of
iterations to converge

There are examples on which Policy Iteration needs an exponential
number of iterations to converge [Fearnley, 2010]

These examples do not apply to deterministic MDPs or to discounted
MDPs with a fixed discount factor.

Do they apply to PageRank Optimization?

⇒ The answer is no, but almost...
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Fearnley’s example.
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Transform Fearnley’s example into a PRO problem.
Small transition probabilities?

x

y

1− 1
(10n+4)2n

1
(10n+4)2n

⇒

⇒

x

x

y

2n new nodes 10n+ 4
new nodes

An exponentially small transition probability can be replaced by a
polynomial sized structure with uniform transition probabilities.
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Transform Fearnley’s example into a PRO problem.
High costs?

foo

x y
(10n+ 4)2n

foo

⇒ x Hn Hn · · · Hn y

repeated (10n+ 4) times

1 1 1 1 1

Gk ≡ 1 2 · · · k ⇒
{
cost = 2k + 2k−1

# nodes = k + 2

1 1 1 1 1

1

Hk ≡ Gk−1 Gk−3 · · · G1 ⇒
{
cost = 2k

# nodes = 3
4
k2 + k + 1

1 1 1 1
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Transform Fearnley’s example into a PRO problem.
From actions to free edges?

x y

z

It works for some ε < 1

2O(n2)

⇓

x y

z

(1− ε)

(ε)

foo

⇒ x y

z

1− εε

1− ε

ε
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Transform Fearnley’s example into a PRO problem.
What about zero and negative costs?
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Our main result.

Theorem

If +1 and −1 costs are allowed, then there exists an infinite family of
PageRank Optimization problems on which the number of iterations that
PI takes is lower bounded by an exponential function of the size of the
problem.
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PRI runs in polynomial time in some particular cases.

1 If zapping is included in the problem,
then PRI runs in weakly polynomial time.
Google’s case!

2 If every free edge leaves either the target node or some other node,
then PRI runs in strongly polynomial time.
The case of a webmaster with one friend...
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Take home messages.

PageRank Optimization modelizes most problems that consist in
optimizing centrality.

PageRank Optimization is polynomially equivalent to MDPs with
only positive costs, provided some regularity assumptions.

PageRank Iteration is efficient in practice for solving large instances.

Optimizing PageRank is essentially useful when one seeks to improve
the ranking and not the absolute value of its PageRank.
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Thanks for your attention!




