Puissance de l'attente aux stations pour l'exploration des réseaux de transport public

Ahmed Wade David Ilcinkas

LaBRI, CNRS & Université de Bordeaux I

ALGOTEL, 01 Juin 2012

Sommaire

- Introduction
 - Le problème
 - Etat de l'art
 - Nos résultats

Exploration de graphes par un agent

- Problème classique très étudié.
- La complexité en temps, en espace ou l'impact d'une connaissance à priori

Exploration de graphes par un agent

- Problème classique très étudié.
- La complexité en temps, en espace ou l'impact d'une

Exploration de graphes par un agent

- Problème classique très étudié.
- La complexité en temps, en espace ou l'impact d'une connaissance à priori

Graphes dynamiques

- Modélisent les nouvelles générations d'environnements interconnectés, très dynamiques.
- Des chercheurs ont commencé à étudier ces réseaux dynamiques.

- Un PV-graphe est un ensemble de trajets et de transporteurs suivant ces trajets de façon périodique.
- Ils modélisent en particulier les systèmes de transport publics (bus. métro. . . .)

Graphes dynamiques

- Modélisent les nouvelles générations d'environnements interconnectés, très dynamiques.
- Des chercheurs ont commencé à étudier ces réseaux dynamiques.

- Un PV-graphe est un ensemble de trajets et de transporteurs suivant ces trajets de façon périodique.
- Ils modélisent en particulier les systèmes de transport publics (bus, métro, ...)

Graphes dynamiques

- Modélisent les nouvelles générations d'environnements interconnectés, très dynamiques.
- Des chercheurs ont commencé à étudier ces réseaux dynamiques.

- Un PV-graphe est un ensemble de trajets et de transporteurs suivant ces trajets de façon périodique.
- Ils modélisent en particulier les systèmes de transport publics (bus, métro, ...)

Graphes dynamiques

- Modélisent les nouvelles générations d'environnements interconnectés, très dynamiques.
- Des chercheurs ont commencé à étudier ces réseaux dynamiques.

- Un PV-graphe est un ensemble de trajets et de transporteurs suivant ces trajets de façon périodique.
- Ils modélisent en particulier les systèmes de transport publics (bus, métro, ...)

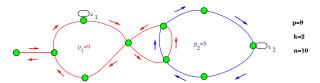
- Un PV-graphe est défini par la paire (S, C).
- $S = \{s_1, \dots, s_n\}$ est l'ensemble des sites (nœuds).
- $C = \{c_1, c_2, \dots, c_k\}$ est l'ensemble des transporteurs.
- Chaque transporteur c a un identifiant Id(c) et parcourt une

- Un PV-graphe est défini par la paire (S, C).
- $S = \{s_1, \dots, s_n\}$ est l'ensemble des sites (nœuds).
- $C = \{c_1, c_2, \dots, c_k\}$ est l'ensemble des transporteurs.
- Chaque transporteur c a un identifiant Id(c) et parcourt une

- Un PV-graphe est défini par la paire (S, C).
- $S = \{s_1, \dots, s_n\}$ est l'ensemble des sites (nœuds).
- $C = \{c_1, c_2, \dots, c_k\}$ est l'ensemble des transporteurs.
- Chaque transporteur c a un identifiant Id(c) et parcourt une

- Un PV-graphe est défini par la paire (S, C).
- $S = \{s_1, \dots, s_n\}$ est l'ensemble des sites (nœuds).
- $C = \{c_1, c_2, \dots, c_k\}$ est l'ensemble des transporteurs.
- Chaque transporteur c a un identifiant Id(c) et parcourt une séquence ordonnée R(c) de sites, appelée route, de manière périodique.

- Un PV-graphe est défini par la paire (S, C).
- $S = \{s_1, \dots, s_n\}$ est l'ensemble des sites (nœuds).
- $C = \{c_1, c_2, \dots, c_k\}$ est l'ensemble des transporteurs.
- Chaque transporteur c a un identifiant Id(c) et parcourt une séquence ordonnée R(c) de sites, appelée route, de manière périodique.



Définitions

Un PV-graphe est dit

- anonyme si les noeuds n'ont pas d'identifiant, ou l'agent ne peut pas les voir.
- étiqueté si les noeuds ont des identifiants distincts et l'agent peut les voir et les mémoriser.
- homogène si tous les transporteurs ont la même période.

Définitions

Un PV-graphe est dit

- anonyme si les noeuds n'ont pas d'identifiant, ou l'agent ne peut pas les voir.
- étiqueté si les noeuds ont des identifiants distincts et l'agent peut les voir et les mémoriser.
- homogène si tous les transporteurs ont la même période.

Définitions

Un PV-graphe est dit

- anonyme si les noeuds n'ont pas d'identifiant, ou l'agent ne peut pas les voir.
- étiqueté si les noeuds ont des identifiants distincts et l'agent peut les voir et les mémoriser.
- homogène si tous les transporteurs ont la même période.

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal.

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal.

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal.

- Une entité, appelée agent, opère sur ces PV-graphes
 - Il peut voir les transporteurs et leurs identifiants
 - Il peut monter sur un transporteur pour aller d'un site à un autre
 - Il peut également quitter un transporteur pour monter sur un autre transporteur
- Nous ne faisons aucune restriction sur :
 - la taille de la mémoire de l'agent
 - ses capacités de calcul
- Nous disons qu'un agent explore un PV-graphe si et seulement si, commençant au temps 0 sur le site de départ, l'agent visite éventuellement tous les sites du PV-graphe et se met dans un état terminal.

[Paola Flocchini, Bernard Mans et Nicola Santoro, ISAAC 2009]

PV-Graphes anonymes

La connaissance d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

PV-Graphes étiquetés

Connaissance du nombre de nœuds ou d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

[Paola Flocchini, Bernard Mans et Nicola Santoro, ISAAC 2009]

PV-Graphes anonymes

La connaissance d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

PV-Graphes étiquetés

Connaissance du nombre de nœuds ou d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

[Paola Flocchini, Bernard Mans et Nicola Santoro, ISAAC 2009]

PV-Graphes anonymes

La connaissance d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

PV-Graphes étiquetés

Connaissance du nombre de nœuds ou d'une borne supérieure sur la plus grande période est nécessaire et suffisante.

[Paola Flocchini, Bernard Mans et Nicola Santoro, 2009]

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Omega(kp^2)$ mouvements et unités de temps.
- $O(kB^2)$ mouvements et unités de temps.

PV-graphes homogènes

- $\Omega(kp)$ mouvements et unités de temps.
- O(kB) mouvements et unités de temps.

[Paola Flocchini, Bernard Mans et Nicola Santoro, 2009]

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Omega(kp^2)$ mouvements et unités de temps.
- O(kB²) mouvements et unités de temps.

PV-graphes homogènes

- $\Omega(kp)$ mouvements et unités de temps.
- O(kB) mouvements et unités de temps.

[Paola Flocchini, Bernard Mans et Nicola Santoro, 2009]

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Omega(kp^2)$ mouvements et unités de temps.
- O(kB²) mouvements et unités de temps.

PV-graphes homogènes

- $\Omega(kp)$ mouvements et unités de temps.
- O(kB) mouvements et unités de temps.

[FMS09] ont considéré que l'agent ne peut pas quitter le transporteur pour rester sur un site.

Remarque

Dans la plupart des systèmes de transport public, il est possible pour l'agent (humain ou non) de rester sur un site afin d'attendre un transporteur (éventuellement différent).

[FMS09] ont considéré que l'agent ne peut pas quitter le transporteur pour rester sur un site.

Remarque

Dans la plupart des systèmes de transport public, il est possible pour l'agent (humain ou non) de rester sur un site afin d'attendre un transporteur (éventuellement différent).

Nos résultats

Notre contribution

Nous étendons le travail de Flocchini, Mans et Santoro [FMS09] dans le cas où l'agent peut descendre d'un transporteur et rester sur un site.

- de pouvoir explorer même les PV-graphes qui sont moins
- de réduire, dans le cas général, la complexité en temps et en
- d'avoir un algorithme qui en plus de l'exploration, fournit la

Nos résultats

Notre contribution

Nous étendons le travail de Flocchini, Mans et Santoro [FMS09] dans le cas où l'agent peut descendre d'un transporteur et rester sur un site.

Montrer que cette possibilité permet

- de pouvoir explorer même les PV-graphes qui sont moins connectés dans le temps.
- de réduire, dans le cas général, la complexité en temps et en
- d'avoir un algorithme qui en plus de l'exploration, fournit la

Nos résultats

Notre contribution

Nous étendons le travail de Flocchini, Mans et Santoro [FMS09] dans le cas où l'agent peut descendre d'un transporteur et rester sur un site.

Montrer que cette possibilité permet

- de pouvoir explorer même les PV-graphes qui sont moins connectés dans le temps.
- de réduire, dans le cas général, la complexité en temps et en mouvements.
- d'avoir un algorithme qui en plus de l'exploration, fournit la

Nos résultats

Notre contribution

Nous étendons le travail de Flocchini, Mans et Santoro [FMS09] dans le cas où l'agent peut descendre d'un transporteur et rester sur un site.

Montrer que cette possibilité permet

- de pouvoir explorer même les PV-graphes qui sont moins connectés dans le temps.
- de réduire, dans le cas général, la complexité en temps et en mouvements.
- d'avoir un algorithme qui en plus de l'exploration, fournit la carte du PV-graphe.

11

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Theta(\min\{kp, np, n^2\})$ mouvements.
- $\Omega(np)$ unités de temps.
- O(nB) unités de temps.

PV-graphes homogènes ou hautement connexes

• la complexité en temps et en mouvements reste la même.

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Theta(\min\{kp, np, n^2\})$ mouvements.
- $\Omega(np)$ unités de temps.
- O(nB) unités de temps.

PV-graphes homogènes <u>ou</u> hautement connexes

• la complexité en temps et en mouvements reste la même.

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

Cas général

- $\Theta(\min\{kp, np, n^2\})$ mouvements.
- $\Omega(np)$ unités de temps.
- O(nB) unités de temps.

PV-graphes homogènes <u>ou</u> hautement connexes

• la complexité en temps et en mouvements reste la même.

- k : nombre de bus
- p : période de la plus grande route
- B : borne supérieure sur p que l'on donne à l'agent

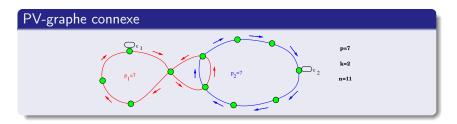
Cas général

- $\Theta(\min\{kp, np, n^2\})$ mouvements.
- $\Omega(np)$ unités de temps.
- O(nB) unités de temps.

PV-graphes homogènes ou hautement connexes

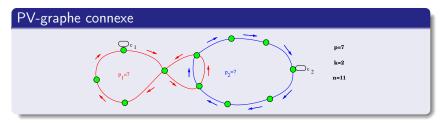
la complexité en temps et en mouvements reste la même.

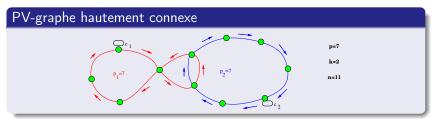
Définitions : notion de connexité



PV-graphe hautement connexe

Définitions : notion de connexité





- B = O(p)
- [FMS09] (l'agent ne peut pas quitter le transporteur)
- Nos résultats (l'agent peut quitter le transporteur)

	Connexe	<i>Haut^t</i> connexe
	Impossible	$\Theta(kp^2)$ mouvements
Cas général		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	$\Theta(np)$ unités de temps
	Impossible	$\Theta(kp)$ mouvements
Homogène		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	(□) (@) (E) (E)

- B = O(p)
- [FMS09] (l'agent ne peut pas quitter le transporteur)
- Nos résultats (l'agent peut quitter le transporteur)

	Connexe	<i>Haut^t</i> connexe
	Impossible	$\Theta(kp^2)$ mouvements
Cas général		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	$\Theta(np)$ unités de temps
	Impossible	$\Theta(kp)$ mouvements
Homogène		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	←□→ ←◎→ ←◎→ ←◎→

- B = O(p)
- [FMS09] (l'agent ne peut pas quitter le transporteur)
- Nos résultats (l'agent peut quitter le transporteur)

	Connexe	<i>Haut^t</i> connexe
	Impossible	$\Theta(kp^2)$ mouvements
Cas général		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	$\Theta(np)$ unités de temps
	Impossible	$\Theta(kp)$ mouvements
Homogène		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	↓□▶ ∢@▶ ∢≧▶ ∢불 ▶

- B = O(p)
- [FMS09] (l'agent ne peut pas quitter le transporteur)
- Nos résultats (l'agent peut quitter le transporteur)

	Connexe	<i>Haut^t</i> connexe
	Impossible	$\Theta(kp^2)$ mouvements
Cas général		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	$\Theta(np)$ unités de temps
	Impossible	$\Theta(kp)$ mouvements
Homogène		et unités de temps
	$\Theta(\min\{kp, np, n^2\})$	$\Theta(\min\{kp, np, n^2\})$
	mouvements	mouvements
	$\Theta(np)$ unités de temps	

Sommaire

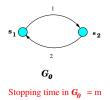
- Introduction
- 2 Solvabilité
- Bornes inférieures
- 4 Bornes supérieures
- Conclusion

Solvabilité

Un agent sans information sur les PV-graphes à explorer ne peut pas explorer tous les PV-graphes.

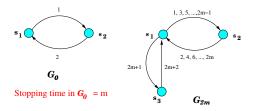
Solvabilité

Un agent sans information sur les PV-graphes à explorer ne peut pas explorer tous les PV-graphes.



Solvabilité

Un agent sans information sur les PV-graphes à explorer ne peut pas explorer tous les PV-graphes.



Sommaire

- Bornes inférieures
 - Mouvements
 - Temps

17

Théorème

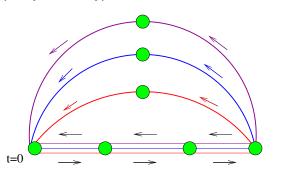
- Pour tout n, k et p, il existe un PV-graphe étiqueté, homogène et hautement connexe tel que tout agent doit faire au moins $\Omega(\min\{kp, np, n^2\})$ mouvements pour l'explorer.
- Ce résultat reste vrai même si l'agent connaît le PV-graphe, et a une mémoire illimitée.

Théorème

- Pour tout n, k et p, il existe un PV-graphe étiqueté, homogène et hautement connexe tel que tout agent doit faire au moins $\Omega(\min\{kp, np, n^2\})$ mouvements pour l'explorer.
- Ce résultat reste vrai même si l'agent connaît le PV-graphe, et a une mémoire illimitée.

Eléments de la preuve

Il existe un PV-graphe ou l'agent doit faire au moins $\Omega(\min\{kp, np, n^2\})$



 $k \ge n/2$

p >=5 n/2

n=7

Borne inférieure sur le temps

Le temps (en unités de temps) \neq Nombre de mouvements

Lemme

- Pour tout n, k, p, il existe une famille de PV-graphes homogènes $\mathcal{G}_{n,p,k}$ tel que pour tout agent, il existe un PV-graphe de la famille où il utilisera au moins $\Omega(np)$ unités de temps pour l'explorer.

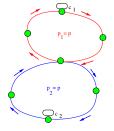
Borne inférieure sur le temps

Le temps (en unités de temps) \neq Nombre de mouvements

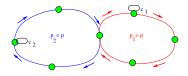
Lemme

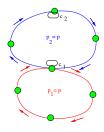
- Pour tout n, k, p, il existe une famille de PV-graphes homogènes $\mathcal{G}_{n,p,k}$ tel que pour tout agent, il existe un PV-graphe de la famille où il utilisera au moins $\Omega(np)$ unités de temps pour l'explorer.
- Ce résultat reste vrai même si l'agent connaît la famille de PV-graphe, et a une mémoire illimitée.

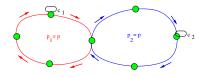
Pour tout agent, il existe un PV-graphe $\in \mathcal{G}_{n,p,k}$ où il utilisera au moins $\Omega(np)$ unités de temps pour l'explorer.

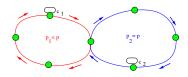


21

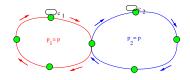


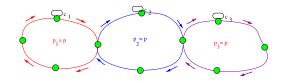


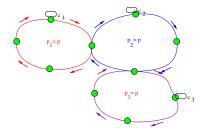


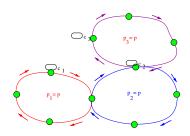


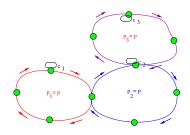


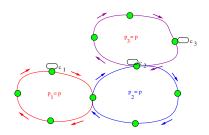












Sommaire

- Bornes supérieures
 - Notre algorithme
 - Complexitiés

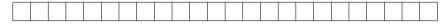
22

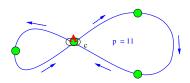
• B une borne supérieure sur la plus grande route

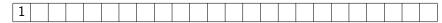
L'algorithme EXPLORE-AVEC-ARRET explore n'importe quel PV-graphe, en un temps fini, en connaissant une borne supérieure sur la période de la plus grande route.

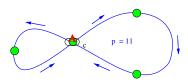
• B une borne supérieure sur la plus grande route

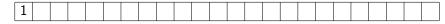
L'algorithme EXPLORE-AVEC-ARRET explore n'importe quel PV-graphe, en un temps fini, en connaissant une borne supérieure sur la période de la plus grande route.

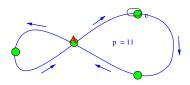


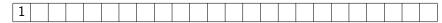


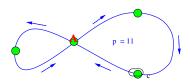




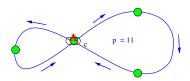


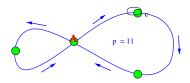




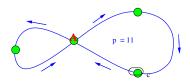


1			1																				
---	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

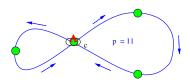


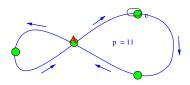


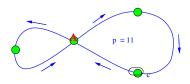
1			1																				
---	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--



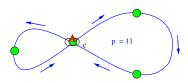
1			1			1																	
---	--	--	---	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--



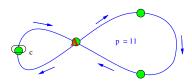




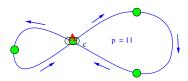
|--|



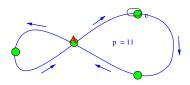
|--|



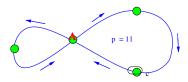
|--|



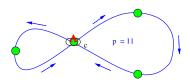
1		1		1		1	1						
1		1		I		T	1						



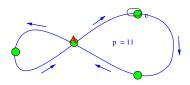
	1			1			1			1		1												
--	---	--	--	---	--	--	---	--	--	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--



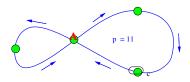
1			1			1			1		1			1									
---	--	--	---	--	--	---	--	--	---	--	---	--	--	---	--	--	--	--	--	--	--	--	--



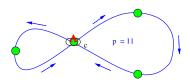
|--|



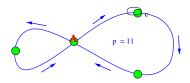
1			1			1			1		1			1									
---	--	--	---	--	--	---	--	--	---	--	---	--	--	---	--	--	--	--	--	--	--	--	--



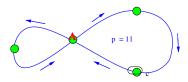
1		-1		-1		-1	1 1		-1		-1			 ı
1 1														 ı
														 1



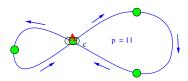
1		-1		-1		-1	1 1		-1		-1			 ı
1 1														 ı
														 1



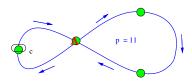
1		-1		-1		-1	1 1		-1		-1			 ı
1 1														 ı
														 1



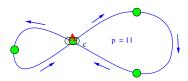
1		1		1		1	1		1		1		1		



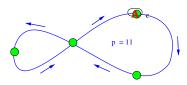
-					-			 l	-		-		ı
								l					ı
1 1			. т					 l					ı
								l					ı



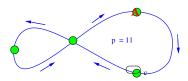
1		1		1		1	1		1		1		1	1	



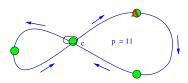
-	$ \sim $	-1		-1		-1	-1		-1		-1		-1	- 1	
1 1	'									l					
	-									l					



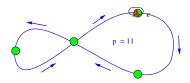
-	$ \sim $	-1		-1		-1	-1		-1		-1		-1	- 1	
1 1	'									l					
	-									l					



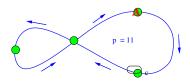
1	つ	1		1		1	1 1		1		1		1	1	
+		1		т		_	+		т		1		т.	1	



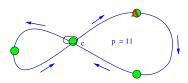
1 2 $ 1 2 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $	1	1	1	\sim	1 1		1	1 1		1		1		1	1 1	
		12	I I	2										 		
	-	ı –	- 1	_			_					_		-	- 1	



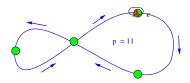
-	-	- 1	\sim	- 1		- 1	-1		-1		-1		-1	- 1	
1 1	12		· /												
-	-		_								_		_		



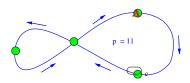
-	-	- 1	\sim	- 1		- 1	-1		-1		-1		-1	- 1	
1 1	12		· /												
-	-		_								_		_		



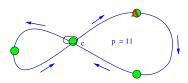
		_	_	_	_		_	_	 _	_	_	_	_	_		_	_		_		
1 1	\sim	1 1	1		1	1		1	1			1			1			1		1 1	
111	_	1 1													- 1						
I - I	_	_	_		_	_		_	_			_			_			_		_	



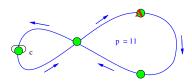
_																
	1	1	1	2	1	2	1	1 1		1		1		1	1 1	
	1		I		I		L	I		L		I I		- Т	I	



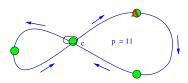
_																
	1	1	1	2	1	2	1	1 1		1		1		1	1 1	
	1		I		I		L	I		L		I I		- Т	I	



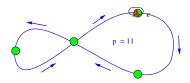
1	2	1	2	1	2	1	1		1		1		1	1	



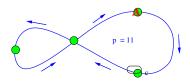
_																
	1	1	1	2	1	2	1	1 1		1		1		1	1 1	
	1		I		I		L	I		L		I I		- Т	I	



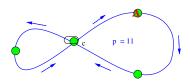
_			 		 		 	 		 			 		 	
	-	\sim		\sim		_	-1		_	-1				-	-1	
		· /		· /		· /			Z			I I		I I		
	-	_	-	_	-	_	-	-	-	-		-		-	-	



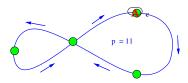
_												_	_			 	_
1	1		1 1	\sim	1	\sim	1	1	\sim	1			1		1	1	ı
	1 / 1	l 1									l						1
-	-			_	-	_	-	-	_	-			-		-	- 1	ı



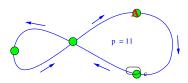
_												_	_			 	_
1	1		1 1	\sim	1	\sim	1	1	\sim	1			1		1	1	ı
	1 / 1	l 1									l						1
-	-			_	-	_	-	-	_	-			-		-	- 1	ı



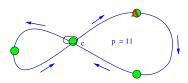
_	_			_		_	_	_		_	_		_	_	_		_	_		_
1	つ	1	2		1	2		1	1	2		1	2		1 1		1		1	
I	_	_ T	_		_ T			т .	_ T			_ T			Т		Т.		1	



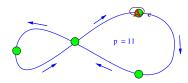
_																
	- 1	\sim		_	-	_	-		_	-	_	-		-	- 1	
	1 1	' <i>)</i>		')		')			· '		ーン					
	-	_		_		_			_		_	_		_		



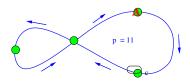
_																
	1	\sim	1	\sim	1	\sim	1	1 1	\sim	1	_	1 1		1 1	1	l
	1	2	1 I		I		I	1 I		1 I	2	I		1 I	I	l
	_	_	-	_		_		-	_	_	_	_		-	_	l



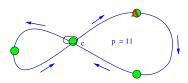
	_			_		_	_	_	 _		_		_	_				_		
1	1	1	2		1	2		1	1 1	2		1	2		1	2	1		1 1	
1 I	_	I						I I	I			I I					I		I	



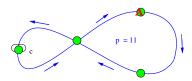
_												_	_			 	
1	1 0		1	\sim	1	\sim	1 1	1	\sim	1	\sim		1	^	1	1 1	
_ _																	
-	-	l	-	_		_		-	_	-			-	_	-	- 1	



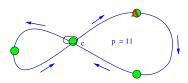
	_			_		_	_	_	 _		_		_	_				_		
1	1	1	2		1	2		1	1 1	2		1	2		1	2	1		1 1	
1 I	_	I						I I	I			I I					I		I	



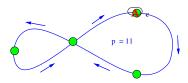
_												_	_			 	
1	1 0		1	\sim	1	\sim	1 1	1	\sim	1	\sim		1	^	1	1 1	
_ _																	
-	-	l	-	_		_		-	_	-			_	_	-	- 1	



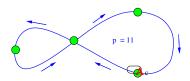
	_			_		_	_	_	 _		_		_	_				_		
1	1	1	2		1	2		1	1 1	2		1	2		1	2	1		1 1	
1 I	_	I						I I	I			I I					I		I	



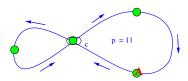
_			 		 		 	 		 		 		 	 	
	- I	\sim	-1	_	-1	\sim	-1	- 1	\sim	-1	\sim	-1	\sim	-		\sim
	1 1	- /		Z		7			7		7		1	I I	I I	1
	-	-		-		_	_	-	_	_	_	_	_	-		_



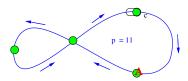
_																	
	-1	\sim	2	-1	_	-1	\sim	-1	- 1	\sim	-1	_	-1	\sim	-1		_
		- 7 I	١ ٢		Z		7			7		· /		1		I I	1
	-	_	_	_	-		_	_	-	_	_	_	_	_	-		_
L																	



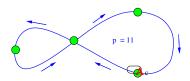
1	2	3	1	2	1	2	1	1	2	1	2	1	2	1	1	2
		,				4	-		_		_	-	4	4		_



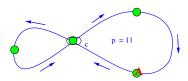
1	2	3	1	2	1	2	1	1	2	1	2	1	2	1	1	2
		,				4	-		_		_	-	4	4		_



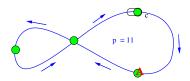
_																		
ſ	1	5	3	1	2	3	1	2	1	1	S	1	2	1	2	1	1	2
L	_	_	•	_	_	•		_			_		_		_			_



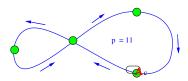
_									 	 		 		 		 	 	
	1	2	2	1	2	2	1	2	1	1	2	1	2	1	2	1	1 1	1 2
	Τ		S	T		S	T		I	T		T		T		I	I	_
L																		



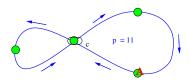
_									 	 		 		 		 	 	
	1	2	2	1	2	2	1	2	1	1	2	1	2	1	2	1	1 1	1 2
	Τ		S	_ T		S	T		I	T		T		T		I	I	_
L																		



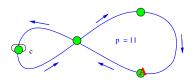
	-1	\sim	2		\sim	2		\sim	1 a	-1	- 1	\sim	-1	_	-1	\sim	-	-1	^
		Z	۲.		· /	١ ٢		7	1			7		· /		1	I I		1
	-	-	9	-	_	_	-	_	-	-	+	_	-	-	-	_	-	-	_
·																			



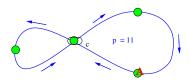
1	2	3	1	2	2	1	2	2	1	1	2	1	2	1	2	1	1	2
)		_)		_				_		_		4	-		_



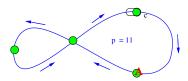
	1	2	3	1	2	3	1	2	3	1	1	2	1	2	1	2	1	1	2
l																			



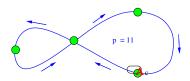
1	2	3	1	2	2	1	2	2	1	1	2	1	2	1	2	1	1	2
)		_)		_				_		_		4	-		_



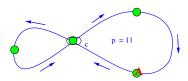
1	2	3	1	2	2	1	2	2	1	1	2	1	2	1	2	1	1	2
)		_)		_				_		_		4	-		_



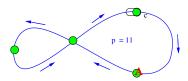
-1	\sim	2	1	1	2	1	\sim	ച	1	1	\sim	2	1	<u> </u>	1	^	1	1	\sim
		.3			.3			.5				.5							
-	-	_	-	_	•	-	_	~	-	-	_		-	_	-	_	-	-	_

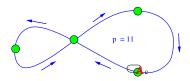


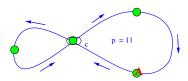
1	2	2	1	2	3	1	2	2	1	1	2	2	1	2	1	2	1	1	2
1)	1	_)		4)		1	4)	1	4	1	۷	1	1	۷

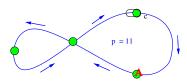


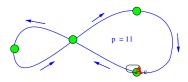
1	2	3	1	2	3	1	2	2	1	1	2	2	1	2	1	2	1	1	2
)		_	١			١				١		_		4	-		

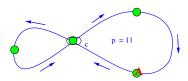


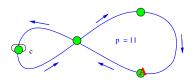


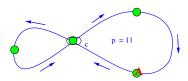


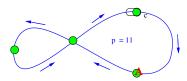


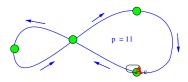


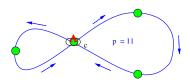


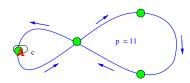


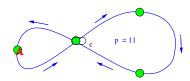


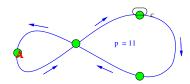


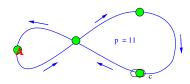


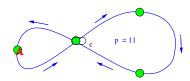


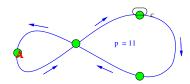


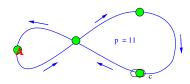


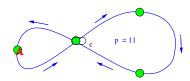


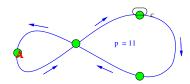


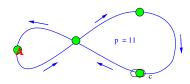


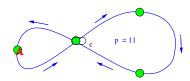


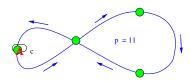












Avec l'algorithme EXPLORE-AVEC-ARRET

- l'agent fait au plus $O(\min\{kp, np, n^2\})$ mouvements pour explorer n'importe quel PV-graphe.
- l'agent explore n'importe quel PV-graphe en O(nB) unités de temps.

Avec l'algorithme EXPLORE-AVEC-ARRET

- l'agent fait au plus $O(\min\{kp, np, n^2\})$ mouvements pour explorer n'importe quel PV-graphe.
- l'agent explore n'importe quel PV-graphe en O(nB) unités de temps.

Sommaire

- Introduction
- 2 Solvabilité
- Bornes inférieures
- Bornes supérieures
- Conclusion

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins $\Theta(p)$.

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins ⊖(p).
- Réduction de la complexité en temps de $\Theta(kp^2)$ à $\Theta(np)$.
- Algorithme optimal et qui permet aussi de construire la carte du PV-graphe

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins ⊖(p).
- Réduction de la complexité en temps de $\Theta(kp^2)$ à $\Theta(np)$.
- Algorithme optimal et qui permet aussi de construire la carte du PV-graphe

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins ⊖(p).
- Réduction de la complexité en temps de $\Theta(kp^2)$ à $\Theta(np)$.
- Algorithme optimal et qui permet aussi de construire la carte du PV-graphe

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins ⊖(p).
- Réduction de la complexité en temps de $\Theta(kp^2)$ à $\Theta(np)$.
- Algorithme optimal et qui permet aussi de construire la carte du PV-graphe

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

- Réduction du nombre de mouvements d'un facteur multiplicatif d'au moins ⊖(p).
- Réduction de la complexité en temps de $\Theta(kp^2)$ à $\Theta(np)$.
- Algorithme optimal et qui permet aussi de construire la carte du PV-graphe

- Utilisation de plusieurs agents
- Borner la mémoire de l'agent
- Etudier d'autres modèles de graphe dynamique

Merci de votre attention