
A geometric (and partial) introduction to

Dimensionality Reduction

ENS Lyon January 2010

F. Chazal
Geometrica Group

INRIA Saclay

To download these slides:
http://geometrica.saclay.inria.fr/team/Fred.Chazal/Teaching/Dim Reduction.pdf

If you have any question:
frederic.chazal@inria.fr

Introduction

• More and more available data represented by point clouds in high dimen-
sional spaces:
- measurement and data storage capacities are growing very fast,
- e.g. images databases, astronomic data,...

• Data often depends upon a small numbers of “independant” parameters
(e.g. number of degrees of freedom of an observed system):
- data sampled around low dimensional shapes (manifolds).
- underlying manifolds may be highly non linear.

Introduction

• Need to analyze and visualize these data.

• Dimensionality reduction methods intend to embedded the data in low dimen-
sional spaces while preserving as well as possible (some of) their geometric
properties. ⇒ many different approaches that gave rise to a huge literature in
the last decade...

• In this talk:
- a very incomplete and partial introduction to dimensionality reduction,
- a focus on a small set of geometric-motivated methods (trying to avoid as
most as possible technical details).

Preliminaries and notations

The following notations and assumptions are used all along the talk.

• Data: X = {x1, x2, · · · , xN} ⊂ RD a finite point cloud with mean
vector

x =
N∑
n=1

xi ∈ RD

X =

x11 x12 . . . x1D

x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

• N : number of data points

• D: ambient dimension

• Underlying/latent manifold: M ⊂ RD is a d-dimensional submanifold
of RD. The points of X are assumed to be sampled on or around M .

Preliminaries and notations

Different “equivalent” points of view:

1. M ⊂ RD is a submanifold and one intends to find an embedding Y of
X in some low dimensional space such that the “geometry” of Y is as
similar as possible as the one of M in some sense,

2. M = f(N) where N is some d-dimensional manifold (the latent man-
ifold - in general N is expected to be an open subset of Rd) and
f : N → RD an embedding with some specified properties (isome-
try, conformal,...). One then intends to find Y such that X = f(Y).
The coordinates of Y are known as the latent variables.

3. In some statistical/probabilistic approaches (not considered in this talk):
X = f(Y) + ε(Y) where ε is some noise model.

PCA

Find the d-dimensional subspace of RD
that best approximates X in a least
square sense (and then project X on this
subspace)

Let V be a d-dimensional subspace of RD and let u1, · · ·uD be an orthonormal
basis s.t. u1, · · ·ud is a basis of ~V .

Approximate each point xn by x̃n =
d∑
i=1

αniui +
D∑

i=d+1

biui

Minimize E =
1
N

N∑
n=1

‖xn − x̃n‖2
Independent of n

u1, · · ·ud

ud+1, · · ·uD

PCA

u1, · · ·ud

ud+1, · · ·uD

x̃n =
d∑
i=1

αniui +
D∑

i=d+1

biui

E =
1
N

N∑
n=1

‖xn − x̃n‖2

Minimizing E with respect to αni and bi leads to

xn − x̃n =
D∑

i=d+1

{(xn − x)Tui}ui

⇒ Given ~V the best affine subspace V is the one passing through x and x̃n
is the orthogonal projection on V .

PCA

u1, · · ·ud

ud+1, · · ·uD

xn − x̃n =
D∑

i=d+1

{(xn − x)Tui}ui

E =
1
N

N∑
n=1

‖xn − x̃n‖2

Now E only depends on ui:

E =
1
N

N∑
n=1

D∑
i=d+1

(xTnui − xTui)2 =
D∑

i=d+1

uTi Cui

where

C =
1
N

N∑
n=1

(xn − x)(xn − x)T is the covariance matrix of X

PCA

Find the d-dimensional subspace of RD
that best approximates X in a least
square sense (and then project X on this
subspace)

Solution: the space spanned by the d eigenvectors corresponding to the d
largest eigenvalues of the covariance matrix

C =
1
N

N∑
n=1

(xn − x)(xn − x)T

1

uD

u1, · · ·uD−1

vTCv = cte

PCA: example

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

Multidimensional Scaling (MDS)

Find a low dimensional “projection”
Y ⊂ Rd of the data X such as to pre-
serve, as closely as possible, the pair-
wise distances between data points.

Without loss of gen. we assume that
x = 0 (and y = 0).

• The N ×N matrix of squared pairwise distance: D = DX = (‖xi − xj‖2)

• Relationship between D and the Gram matrix: G = GX = (xTi xj) = XXT :

G = −1
2
JDJ where J = IdN −

1
N

11T = (δij −
1
N

)

• Goal: Find Y = {y1, · · · yN} ⊂ Rd minimizing

ρ(DX , DY) = ‖GX −GY ‖22 = ‖1
2
J(DX −DY)J‖22

RD Rd

X Y

Multidimensional Scaling (MDS)

Find a low dimensional “projection”
Y ⊂ Rd of the data X such as to pre-
serve, as closely as possible, the pair-
wise distances between data points.

Without loss of gen. we assume that
x = 0 (and y = 0).

RD Rd

X Y

Solution:

• Let λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 be the eigenvalues of GX and
{v1, · · ·vN} ⊂ RN an orthonormal eigenbasis.

• Y ⊂ Rd minimizing ρ(DX , DY) is given by the columns of the d ×N
matrix

Y =

√
λ1vT1√
λ2vT2

...√
λdvTd

Multidimensional Scaling (MDS)

Justification:

min
Y
‖GX −GY ‖22 = min

Y
‖XXT − Y Y T ‖2

= min
Y

N∑
i=1

N∑
j=1

(xTi xj − yTi yj)2

= min
Y

Tr((XXT − Y Y T)2)

XXT and Y Y T are semidefinite positive: XXT = V ΛV T and Y Y T = WΛ′WT where
- V V T = WWT = IdN ,
- Λ = Diag(λ1, · · · , λN) is diagonal with λ1 ≥ λ2 · · · ≥ λN ,
- Λ′ = Diag(λ′1, · · ·λ′d, 0, · · · , 0) is diagonal with λ′1 ≥ · · · ≥ λ′d ≥ 0 because Y ⊂ Rd.

min
Y

Tr((XXT − Y Y T)2) = min
W,Λ′

Tr(Λ− V TWΛ′WTV)2 (use Tr(AB) = Tr(BA))

= min
Q,Λ′

Tr(Λ−QΛ′QT)2 with Q = V TW

= min
Q,Λ′

Tr(Λ2) + Tr(QΛ′QTQΛ′QT)− 2Tr(ΛQΛ′QT)

Multidimensional Scaling (MDS)

Justification:

min
Y

Tr((XXT − Y Y T)2) = min
W,Λ′

Tr(Λ− V TWΛ′WTV)2 (use Tr(AB) = Tr(BA))

= min
Q,Λ′

Tr(Λ−QΛ′QT)2 with Q = V TW

= min
Q,Λ′

Tr(Λ2) + Tr(QΛ′QTQΛ′QT)− 2Tr(ΛQΛ′QT)

= min
Λ′

Tr(Λ2 + Λ′2 − 2ΛΛ′)

= min
Λ′

Tr(Λ− Λ′)2

• The minimum is thus obtain for Λ′ = Diag(λ1, · · · , λd, 0, · · · , 0) and one can choose
Q = V TW = IdN (⇒W = V).

• Since Y Y T = WΛ′WT , one has Y = WΛ′
1
2 = V Λ′

1
2 .

MDS: example

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

MDS: remarks

• Let v ∈ RD be an eigenvector of C with eigenvalue λ. One has

GXv = XXTXv = XCv = λXv

so Xv ∈ RN is an eigenvector of G with eigenvalue λ. Equivalently if w ∈ RN
is an eigenvector of G with eigenvalue µ, XTw ∈ RD is an eigenvector of C
with eigenvalue µ.

• IMPORTANT: MDS does not require the knowledge of the coordinates of the
points of X. If only the matrix D of the pairwise squared distances between
the data points is known, one can still apply MDS by first “double centering”
D: G = − 1

2
JDJ .

• IMPORTANT: If D is not obtained from a point cloud X ⊂ RD, one can still
apply MDS but G may have negative eigenvalues (indeed negative eigenvalues
signify that D is non Euclidean). The d-dimensional embedding YMDS given
by MDS is the one that have the Gram matrix that best approximates G =
− 1

2
JDJ (Eckart and Young ’36): for any Y ⊂ Rd,

‖YMDSY
T
MDS −G‖ ≤ ‖Y Y T −G‖

Turning non linear

• (Classical) PCA and MDS become inefficient when the data is located
around highly non linear manifolds.

• From now on, we assume that the observed data lie on or are close to
a d-dimensional submanifold M ⊂ RD.

Turning non linear

• (Classical) PCA and MDS become inefficient when the data is located
around highly non linear manifolds.

• From now on, we assume that the observed data lie on or are close to
a d-dimensional submanifold M ⊂ RD.

A subset M ⊂ RD is a submanifold of dimension d (of class Ck)
if for any p ∈ M , there exist a neighborhood U of p in RD, a
diffeomorphism φ (of classe Ck between U and an open set V and
an affine subspace A in RD such that

φ(U ∩M) = A ∩ V

φ

A

V

U

M

p

Locally Linear Embedding (L. Saul and S Roweis ’00)

• Preservation of the local geometry of the data: LLE intends to find an
embedding of the data X ⊂ RD such that

– nearby points remain nearby in the target low dimensional space,

– nearby points remain similarly co-located in the target low dimen-
sional space.

Locally Linear Embedding (L. Saul and S Roweis ’00)

1. Build a neighborhood graph G with vertex set X.

2. Compute weights wij that best reconstruct
each data point xi from its neighbors by min-
imizing the cost function

E(W) =
∑
i

‖xi −
∑
j

wijxj‖2

with the constraints that wij = 0 if xi and xj
are not connected in G and that

∑
j wij = 1.

3. Compute the vectors yi minimizing the quadratic cost

Φ(Y) =
∑
i

‖yi −
∑
j

wijyj‖2

xi xj′

xj

∑
j wijxj

Locally Linear Embedding (L. Saul and S Roweis ’00)

1. Build a neighborhood graph G with vertex set X.

- k-NN graph (depends on an integer
parameter k): xixj is an edge of G iff
xj is one of the k nearest neighbours of
xi (and vice-versa).

- Rips graph (depends on a real pa-
rameter ε > 0): xixj is an edge of G iff
d(xi, xj) ≤ ε.

ε

k-NN

Rips

Warning: The choice of the neighborhood
graph may be critical!

Locally Linear Embedding (L. Saul and S Roweis ’00)

2. Compute weights wij that best reconstruct
each data point xi from its neighbors by min-
imizing the cost function

E(W) =
∑
i

‖xi −
∑
j

wijxj‖2

with the constraints that wij = 0 if xi and xj
are not connected in G and that

∑
j wij = 1.

xi xj′

xj

∑
j wijxj

Invariance under scaling, ro-
tation and translation

N quadratic minimizations (with contraints), each involving the local Gram
matrix Gi = (Gijk) = ((xi − xj)T (xi − xk))

Locally Linear Embedding (L. Saul and S Roweis ’00)

Let x ∈ X, let xj be its neighbors in G and let wj = wij :

ε = ‖x−
∑

j∈NG(x)

wjxj‖2 = ‖
∑
j

wj(x− xj)‖2 =
∑
j,k

wjwkGjk

where G = (Gjk) = ((x− xj)T (x− xk)) is the “local” Gram matrix.

G being semipositive definite, the minimization of ε
admits a closed form solution:

• Solve the linear system Gw = (1, 1, · · · , 1)T

• Rescale the wj such that they sum to 1.

Warning: if G is singular or nearly singular (e.g. if the number of neighbors is greater
than D), it may need to be regularized by adding a small multiple of the identity
matrix (⇒ penalize large weigths).

wGw = cte

∑
j wj = 1

Locally Linear Embedding (L. Saul and S Roweis ’00)

3. Compute the vectors yi minimizing the quadratic cost

Φ(Y) =
∑
i

‖yi −
∑
j

wijyj‖2

Solution:

• M = (I −W)T (I −W) with W = (wij)

• compute the (d + 1) eigenvectors v0, · · ·vd of M corresponding
to the (d+ 1) smallest eigenvalues λ0 ≤ · · · ≤ λd and discard v0.

• the yi are given by the lines of the matrix (v1v2 · · ·vd).

constraints:
- remove translational degree of freedom: y =

∑
i yi = 0

- remove rotational degree of freedom: 1
N

∑
i yiy

T
i = Idd

LLE: examples

S 5-NN 12-NN 30-NN

12-NN 30-NNS′ 5-NN

LLE: examples

Fishbowl 12-NN 30-NN 80-NN

LLE: example

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

k = 6 NN

ISOMAP (de Silva, Tenenbaum, Langford ’00)

MDS ISOMAP

Variant of MDS where the matrix of Euclidean distances between data points
is replaced by the matrix of the geodesic distances between data points.

Algorithm:

1. Build a neighborhood graph G with vertex set X such that the geodesic
distances on G approximates the geodesic distances on M .

2. Build the matrix DG = (d2
G(xi, xj)) of the pairwise squared distances

in G.

3. Apply MDS to DG .

Geodesic distance approximation

The geodesic distance between xi and xj

dM (xi, xj) = inf{l(γ)|γ : [0, 1]→M,γ(0) = xi, γ(1) = xj}

in the manifold M is approximated by the length dG(xi, xj) of the shortest
path between xi and xj in G.

Theorem: [Bernstein & al’00] Let λ > 0. For some small enough
δ, ε > 0 (δ < ε), if X is a δ-sample of M and if G is such that
(d(xi, xj) < ε⇔ (xixj) is an edge of G) then for all xi, xj

1− λ < dG(xi, xj)
dM (xi, xj)

< 1 + λ

for all y ∈ M there exists x ∈ X
s.t. dM (x, y) < δ.

Geodesic distance approximation

Sketch of proof:

Let dS(x, x′) = minP
∑p−1
j=0 dM (xj , xj+1) where

P = (xi0 = x, xi1 , · · ·xip = x′) ⊂ X.

• From a distance function property
(Federer):

R− ε
R

dS ≤ dG ≤ dS , R = reach(M)

• Using that X is a δ-sample of M one
“approximately” gets

dM ≤ dS ≤
ε

ε− 2δ
dM

Theoretical guarantees of ISOMAP

ISOMAP intends to map X into Y ⊂ Rd in such a way that the pairewise
geodesic distances in X are as close as possible to the pairwise euclidean
distances in Y

=⇒ M has to be isometric to a convex open subset of Rd, i.e. there exists a
convex open Ω domain in Rd and an embedding f : Ω→ Rd s.t. f(Ω) = M
and for all y, y′ ∈ Ω, dM (f(y), f(y′)) = ‖x− x′‖.

ISOMAP: examples

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

k = 6 NN

ISOMAP: examples

ISOMAP: remarks

Advantages:

• intend to preserve the “intrinsic metric” of the data.

• come with geometric guarantees

Drawbacks:

• ISOMAP is a global method: as in MDS, if the size of the data is
very large, the computations of the eignevalues/eigenvectors of G =
−0.5JDJ is an issue.
=⇒ Landmark ISOMAP

• Assuming that M ⊂ RD is isometric to a convex open set of Rd is
rather restrictive.
=⇒ Conformal ISOMAP
=⇒ Hessian eigenmaps (HLLE)

Landmark ISOMAP (de Silva, Tenebaum)

Select n > d landmarks among the data points and compute the n × N matrix
Dn,N of the squared distances from each data point to the landmarks.

Replace classical MDS by a Landmark-MDS:

• Compute the matrix Dn of the squared distances between the landmarks and
Gn = − 1

2
JDnJ .

• The embedding of the landmarks in Rd is given by (classical) MDS, i.e. by
the n × d matrix Y Tn = (

√
λ1v1

√
λ2v2 · · ·

√
λdvd) where λi and vi are the

largest eigenvalues/vectors of Gn.

• Embed the remaining points in the following way: for x ∈ X, let Dx be the
vector of the distances between x and the n landmarks and let Dn be the
vector of the mean of the columns of Dn. Then x is sent to

y =
1

2
L#(Dn −Dx) where L# =

vT1 /
√
λ1

vT2 /
√
λ2

...
vTd /
√
λd

Landmark ISOMAP: example

Hessian eigenmaps (HLLE) (D. Donoho, C. Grimes ’03)

A “proven” method for isometric embeddings of open sets of euclidean spaces:

• M = ψ(Ω), ψ : Ω ⊂ Rd → Rd isometry and Ω does not need to be
convex....

• Rely on a (nice) property of a Hessian operator defined on the space of
C2 functions on M .

• ... but it involves the estimation of 2nd order differential quantities.

HLLEISOMAP

HLLE

Ω ⊂ Rd be an open connected set and let
ψ : Ω → M be a smooth locally isometric
embedding.

• Let m ∈ M , let (x1, · · · , xd) be an orthonormal coordinate system
on TmM . The projection pTmM of M on TmM is well- defined on a
neighborhood of m in M . For any f ∈ C2(M,R), the Hessian of f at
m in tangent coordinates is defined by

(Htan
f (m))ij =

∂

∂xi

∂

∂xj
f(p−1

TmM
(x))|x=0

• Consider the quadratic form on C2(M,R) defined by

H(f) =
∫
M

‖Htan
f (m)‖2dm

m

M f
R

pTmM

Warning: this picture is not correct!
Exercise: why?

HLLE

m

M f
R

pTmM

ψ

Ω

Theorem [Donoho et al. ’03]: Assume that M = ψ(Ω) where Ω ⊂ Rd is
an open connected set and ψ is a locally isometric embedding of Ω. Then the
null-space of the quadratic form

H(f) =
∫
M

‖Htan
f (m)‖2dm

is (d + 1)-dimensional and generated by the constant functions and the d
original isometric coordinates pri ◦ ψ−1 where pri : Rd → R is the linear
projection on the ith coordinate in Rd.

Warning: this picture is not correct!
Exercise: why?

Rd

HLLE

m

M f
R

pTmM

ψ

Ω

Warning: this picture is not correct!
Exercise: why?

Rd

sketch of proof:

• Hiso
f = Heuc

f◦ψ ⇒H
iso(f) = Heuc(f ◦ ψ) , ∀f ∈ C2(M,R).

• The null-space of Heuc is the (d+ 1)-dimensional space of affine functions on Rd.

• Htan
f (m) = Hiso

f (m):

- let v ∈ TmM and let γv : [0, ε) → M a unit speed geodesic s.t. γv(0) = m and
γ′v(0) = v. Then (f ◦ γv)′′(0) = vTHiso

f (m)v.

- let δv : [0, ε) → M defined by δv(t) = p−1
TmM

(tv). Then (f ◦ δv)′′(0) =

vTHtan
f (m)v.

- the accelerations of γv and δv at 0 are normal to TmM ⇒ |γv(t) − δv(t)| =
o(t2)⇒ (f ◦ γv)′′(0) = (f ◦ δv)′′(0).

R

Heuc

Hiso

Htan

HLLE: examples

Cone

Noisy cone

HLLE (k = 12) ISOMAP
(k = 12)

HLLE (k = 12) HLLE (k = 20) ISOMAP
(k = 20)

HLLE: examples

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

k = 12 NN

Laplacian eigenmaps (M. Belkin, P. Niyogi ’02)

• Laplacian eigenmaps intend to embed the data X in a d-dimensional
in such a way that close/similar points in X remain close in the low
dimensional space.

• Analogy with harmonic analysis on the underlying manifold.

[from Belkin et al, Neural Computation, 2003; 15 (6):1373-1396]

Laplacian eigenmaps

Overview of the method:

1. Build a neighborhood graph G (e.g. k-NN or Rips).

2. Assign weights wij to the edges of G representing the “similarity” be-
tween the nodes:

• Heat kernel: if (xixj) is an edge of G then

wij = e−
‖xi−xj‖

2

t

wij = 0 otherwise.

• Simple-minded (t = +∞): wij = 1 if (xixj) is an edge of G;
wij = 0 otherwise.

3. Find Y = {y1, · · · yN} ⊂ Rd that minimizes

E =
∑
i,j

‖yi − yj‖2wij

Laplacian eigenmaps

1-dimensional case: find yT = (y1, · · · yN) of X in R that minimize

E =
∑
i,j

(yi − yj)2wij (with somme additional constraints - see below)

E =
∑
i,j

(y2
i+y2

j−2yiyj)wij =
∑
i

y2
iDii+

∑
j

y2
jDjj−2

∑
i,j

yiyjwij = 2yTLy

with L = D −W positive semidefinite.

⇒ add a constraint to remove a scaling factor (and avoid obvious solution):
yTDy = 1 (use D rather than Id to reflect the respective importance
of the vertices in G).

⇒ y minimizing E is given by the smallest non zero eigenvalue solution
to the generalized eigenvalue problem Ly = λDy (note that the eigen-
function corresponding to the eigenvalue 0 is the constant function
(1, · · · , 1) mapping all the data points on a single point - corresponding
constraint: yTD(1, · · · , 1)T = 0).

Heavy penalty if close points in X are mapped far away

Laplacian eigenmaps

General case - Minimization of E:

E =
∑
i,j

‖yi − yj‖2wij = Tr(Y TLY)

where D is diagonal with Dii =
∑
j wij and L = D−W is the matrix of the

Laplacian operator on G.
Let f0, · · · , fd be the solutions of the generalized eigenvector problem

Lf = λDf

ordered according to increasing eigenvalues:

Lf0 = λ0Df0, · · ·Lfd = λdfd, 0 = λ0 ≤ λ1 ≤ · · · ≤ λd

The embedding yi ∈ Rd of xi is given by yi = (f1(xi), · · · , fd(xi)) (Note that
f0 corresponding to the eigenvalue 0 is discarded).

?

Laplacian eigenmaps

General case - Minimization of E:

E =
∑
i,j

‖yi − yj‖2wij = Tr(Y TLY)

where D is diagonal with Dii =
∑
j wij and L = D−W is the matrix of the

Laplacian operator on G.
Let f0, · · · , fd be the solutions of the generalized eigenvector problem

Lf = λDf

ordered according to increasing eigenvalues:

Lf0 = λ0Df0, · · ·Lfd = λdfd, 0 = λ0 ≤ λ1 ≤ · · · ≤ λd

The embedding yi ∈ Rd of xi is given by yi = (f1(xi), · · · , fd(xi)) (Note that
f0 corresponding to the eigenvalue 0 is discarded).

Laplacian eigenmaps: examples

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

3D-proj: light 2D-proj: pose 1

2D-proj: pose 2

k = 12 NN, t = 1

Laplacian eigenmaps: examples

Swiss Roll k = 12 k = 30 k = 50

k = 12 k = 30 k = 50

Analogy with the Laplace-Beltrami operator

Problem: Let M be a compact Riemannian d-manifold. Find the “best” map
f : M → R such that the points that are close together on M are mapped
close together on R.

Assuming that f is smooth, the way how close points are mapped far away
by f is given by ‖∇f‖. So the problem can be stated as find

argmin{‖f‖L2(M)=1}

∫
M

‖∇f(m)‖2dm

Stokes’ formula: for any vector field X on M ,
∫
M
〈X,∇f〉 = −

∫
M
div(X)f

⇒
∫
M

‖∇f(m)‖2 = −
∫
M

div(∇f)f =
∫
M

L(f)f

The solution is then given by the eigenfunction f1 corresponding to the first
non zero eigenvalue of L.

Belkin, Niyogi’08: the analogy can be turned into a convergence result...

Laplace-Beltrami operator on M : Lf := −div∇(f).

Choice of the weights

• Heat flow: f : M ⊂ RD → R initial heat distribution, u(x, t) heat
distribution at time t (u(x, 0) = f(x)).

• Heat equation: (∂∂t + L)u = 0 has solution given by u(x, t) =∫
M
Ht(x, y)f(y), Ht being the heat kernel.

•
Lf(x) = −Lu(x, 0) = −

(
∂

∂t

∫
M

Ht(x, y)f(y)
)
t=0

• for x, y close and t small,

Ht(x, y) ≈ 1
(4πt)

m
2
e−
‖x−y‖2

4t and lim
t→0

∫
M

Ht(x, y)f(y) = f(x)

• Therefore, for t small,

Lf(x) ≈ 1
t

(
f(x)− 1

(4πt)
m
2

∫
M

e−
‖x−y‖2

4t f(y)dy
)

Choice of the weights

• Therefore, for t small,

Lf(x) ≈ 1
t

(
f(x)− 1

(4πt)
m
2

∫
M

e−
‖x−y‖2

4t f(y)dy
)

• For xi ∈ X,

Lf(xi) ≈
1
t

f(xi)−
1
N

(4πt)
m
2

∑
j,‖xi−xj‖<ε

e−
‖xi−xj‖

2

4t f(xj)

• note that Lcte = 0 ⇒ (1

N (4πt)
m
2)−1 =

∑
j,‖xi−xj‖<ε e

−
‖xi−xj‖

2

4t and
1
t does not affect the eigendecomposition of the discrete laplacian.

⇒ Choice of the weights: wij = e−
‖xi−xj‖

2

4t if ‖xi − xj‖ < ε; wij = 0
otherwise.

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... ’05)

Input: X ⊂ RD and a weight function w(xi, xj) = wij such that the matrix
W = (wij) is symmetric and semi-definite positive.

• Let di =
∑
j wij and let pij = p(xi, xj) = wij

di
= probability for a ran-

dom walker on X to make a step from xi to xj (note that
∑
j pij = 1).

The iterates P t = (pt(xi, xj)) of P = (pij) can be seen as the proba-
bilities of going from xi to xj in t time steps.

• Diffusion operator:

Pf(xi) =
N∑
j=1

pijf(xj)

It can be seen as an operator acting on the probability distributions
µT = (µ(x1), · · ·µ(xN)) on X

µTP (xj) =
N∑
i=1

µ(xi)pij with unique stationary dist. µ0(xi) =
di∑
k dk

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... ’05)

• The unique stationary distribution µ0(xi) = di∑
k dk

satisfies

µ0(xi)pij = µ0(xj)pji

• Idea: for a fixed time t, define a metric such that two points xi, xj are
close if the conditional probability distributions pt(xi, .) and pt(xj , .)
are close.

• Diffusion distance:

D2
t (xi, xj) = ‖pt(xi, .)− pt(xj , .)‖21

µ0
=
∑
k

(pt(xi, xk)− pt(xj , xk))2

µ0(xk)

→ Close connection with the spectral theory of the random walk.

• Left and right eigenvectors of P : 1 = |λ0| ≥ |λ1| ≥ · · · ≥ λN−1

µTj P = λjµ
T
j and Pfj = λjfj with fj =

µj
µ0

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... ’05)

• Choose normalized µj , fj : ‖µj‖21
µ0

= 1 and ‖fj‖2µ0
=∑

k fj(xk)2µ0(xk) = 1.

• Biorthogonal decomposition of P t:

pt(xi, xj) =
∑
k

λtkfk(xi)µk(xj)

• This implies

D2
t (xi, xj) =

N∑
k=1

λ2t
k (fk(xi)− fk(xj))2

• The diffusion distance is then approximated by

D2
t (xi, xj) ≈

d∑
k=1

λ2t
k (fk(xi)− fk(xj))2

Note that since f0 ≡ 1, it
does not enter into the sum.

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... ’05)

• The diffusion distance is then approximated by

D2
t (xi, xj) ≈

d∑
k=1

λ2t
k (fk(xi)− fk(xj))2

• Embedding of the data in Rd:

xi 7→ yi = (λt1f1(xi), · · ·λtdfd(xi))

The (approximated) diffusion metric becomes the euclidean metric be-
tween the data points in Rd.

A few references

• LLE:

– L. K. Saul, S. T. Roweis, “Think Globally, Fit Locally: Unsupervised
Learning of Low Dimensional Manifolds”, Journal of Machine Learning
Research 4 (2000), 119-155.

• ISOMAP:

– J.B. Tenenbaum, V. de Silva, J. C. Langford, “A global Geometric
Framework for Nonlinear Dimensionality Reduction”, Science 290: 2319-
2323, 2000.

– V. de Silva, J. B. Tenenbaum, “Global versus Local Methods in Nonlinear
Dimensionality Reduction”, Advances in Neural Information Processing
Systems 15, MIT Press, 2003.

• HLLE:

– D. L. Donoho, C. Grimes, “Heissian Eigenmaps: Locally Linear Embed-
ding Techniques for High-dimensional Data”, Proceedings of the Na-
tional Academy of Sciences 100, 10, 5591-5596.

A few references

• Laplacian Eigenmaps:

– M. Belkin, P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduc-
tion for Data Representation”, Neural Computation 15, 6, 1373–1396,
2003.

• Diffusion maps:

– R. R. Coifman and S. Lafon and A. Lee and M. Maggioni and B. Nadler
and F. Warner and S. Zucker, “Geometric Diffusions as a tool for Har-
monic Analysis and structure definition of data: Diffusion maps”, Proc.
of Nat. Acad. Sci. 102, 7426–7431, 2005.

Two related geometric problems of fundamental
importance

• Nearest neighbors search:
- most of the previously presented methods rely on the construction of
a neighborhood graph → being able to compute nearest neighbors is
mandatory!
- a fundamental problem for many applications.

• Landmark selection/downsampling (quantization):
- when the size of the data becomes too large, it becomes necessary to
subsample.
- landmark selection must “preserve” the geometric structure of the
data.

Widely studied problems (huge litterature)!
⇒Many theoretical and practical results. Here we just quickly
give a few hints on the subject and on existing methods.

The (k−)NN problem

X

Input: A point cloud X

The (k−)NN problem

X

Input: A point cloud X

Query input: A point q q

The (k−)NN problem

X

Input: A point cloud X

Query input: A point q q

NNX(q)
Goal: Find the nearest neighbor
of q in X.

d(q,X)

The (k−)NN problem

X

Input: A point cloud X

Query input: A point q q

Variants:
- given an integer k, find the first k nearest neighbors of q in X.
- given r > 0, find the points of X at distance at most r from q.

Goal: Find the nearest neighbor
of q in X.

The ANN problem

X

Input: A point cloud X, a posi-
tive real ε > 0

The ANN problem

X

Input: A point cloud X, a posi-
tive real ε > 0
Query input: A point q

q

The ANN problem

X

Input: A point cloud X, a posi-
tive real ε > 0
Query input: A point q

q

Goal: Find a point x ∈ X s.t.
d(q, x) ≤ (1 + ε)d(q,X).

d(q,X)

(1 + ε)d(q,X)

The ANN problem

X

Input: A point cloud X, a posi-
tive real ε > 0
Query input: A point q

q

Goal: Find a point x ∈ X s.t.
d(q, x) ≤ (1 + ε)d(q,X).

d(q,X)

(1 + ε)d(q,X)

Same variant with k approximate nearest neighbors: find x1, · · ·xk ∈ X s.t.
for any i = 1, · · · k, d(q, xi) ≤ d(q, xk(q)) where xk(q) is the kth nearest
neighbor of q.

The (A)NN problem

Many approaches and variants:

- the naive algorithm (brute force): linear size, linear query time
- kd-trees: linear size, O(log n) query time (under some restrictive conditions
- fat cells)
- BBD trees: linear size, O((dε)d log n) query time

- Voronöı diagrams: nO(d) size, O(log n) query time
- etc....

The (A)NN problem

Many approaches and variants:

- the naive algorithm (brute force): linear size, linear query time
- kd-trees: linear size, O(log n) query time (under some restrictive conditions
- fat cells)
- BBD trees: linear size, O((dε)d log n) query time

- Voronöı diagrams: nO(d) size, O(log n) query time
- etc....

The curse of dimensionality: every data structure for NN -search in sub-linear
time has either exponential size or exponential query time (in d!)

The (A)NN problem

Many approaches and variants:

- the naive algorithm (brute force): linear size, linear query time
- kd-trees: linear size, O(log n) query time (under some restrictive conditions
- fat cells)
- BBD trees: linear size, O((dε)d log n) query time

- Voronöı diagrams: nO(d) size, O(log n) query time
- etc....

The curse of dimensionality: every data structure for NN -search in sub-linear
time has either exponential size or exponential query time (in d!)

Non longer true if one consideres the ANN prob-
lem!

The (A)NN problem

Many approaches and variants:

- the naive algorithm (brute force): linear size, linear query time
- kd-trees: linear size, O(log n) query time (under some restrictive conditions
- fat cells)
- BBD trees: linear size, O((dε)d log n) query time

- Voronöı diagrams: nO(d) size, O(log n) query time
- etc....

The curse of dimensionality: every data structure for NN -search in sub-linear
time has either exponential size or exponential query time (in d!)

Non longer true if one consideres the ANN prob-
lem!

In the following of this course ANN or NN search will be considered as a ”black box”. In
practice, you can use for example the ANN library developed by D. Mount :
http://www.cs.umd.edu/mount/ANN

Landmark selection

X

Input: A (large) point cloud X

Landmark selection

X

Input: A (large) point cloud X

Goal: given an integer k < N ,
select a set L of k points that
samples X ”as best as possible”.

Landmark selection

X

Input: A (large) point cloud X

Goal: given an integer k < N ,
select a set L of k points that
samples X ”as best as possible”.

Not canonically defined!

Landmark selection

X

Input: A (large) point cloud X

Goal: given an integer k < N ,
select a set L of k points that
samples X ”as best as possible”.

Not canonically defined!

Many methods:

• random sampling in X

• k-means algorithm and variants

• furthest point sampling

• etc ...

the k-means algorithm

Input: A (large) set of N points
X and an integer k < N .

Goal: Find a set of k points L = {y1, · · · yk}
that minimizes

E =
N∑
i=1

d(xi, L)2

the k-means algorithm

Input: A (large) set of N points
X and an integer k < N .

Goal: Find a set of k points L = {y1, · · · yk}
that minimizes

E =
N∑
i=1

d(xi, L)2

This is a NP-hard problem!

The Lloyd’s algorithm: a very simple local search algorithm→ local minimum.

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

The Lloyd’s algorithm

- Select L1 = {y1
1 , · · · y1

k} initial ”seeds”;
- i = 1;
- Repeat

• For (j = 1; j ≤ k; j + +) Sij = {x ∈ X : d(x, yij) = d(x, Li)};

• For (j = 1; j ≤ k; j + +)

yi+1
j =

1
|Sij |

∑
x∈Sij

x

• i+ +;

- Until convergence

the k-means algorithm

Warnings:

• Lloyd’s algorithm does not ensure conver-
gence to a global minimum!

• The speed of convergence is not guaran-
teed.

• the choice of the initial seeds may be crit-
ical (but there exists some strategies →
k-means++).

the k-means algorithm

Warnings:

• Lloyd’s algorithm does not ensure conver-
gence to a global minimum!

• The speed of convergence is not guaran-
teed.

• the choice of the initial seeds may be crit-
ical (but there exists some strategies →
k-means++).

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

The furthest point strategy

X
- select randomly y1 ∈X;
−L = { y1};
- for (i = 2; i ≤ k; i+ +){

• yi = argmaxx∈Xd(x, L);

• L = L ∪ {yi}

}

Warning:

• Sensitive to outliers!

Perspectives: topological and geometric data
analysis

Previous methods usually comes with theoretical guarantees when M is a
smooth manifold with trivial topology.

Perspectives: topological and geometric data
analysis

Previous methods usually comes with theoretical guarantees when M is a
smooth manifold with trivial topology.

• Geometric structures underlying data sets
may carry complex topology/geometry.

• What is the relevant topology/geometry of
a point cloud data set?

A recent and fastly growing
fields based upon topology
and geometric measure tools

