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Motivation: getting topological information
without reconsctructing

How to determine the number of “cycles’ of the underlying shape from the
point cloud approximation?
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Motivation: getting topological information
without reconsctructing

Homology

How to determine the(humber of "CYM the underlying shape from th@
(point cloud approximation?— i/

Persistent homology




Simplices

N A

O-simplex:  1-simplex: 2-simplex: 3-simplex:
vertex edge triangle tetraedron
V0, V1, -, Uk € R? are affinely independant if
k k
(Ztivi()and Zti()):>t0t1---tk()
i=0 i=0
In this case 0 = [vg,v1, -+ ,vk] is a simplex of dimension d. A simplex

generated by a subset of the vertices vy, v1,--- , v of o is a face of o.



Simplicial complexes

A (finite) simplicial complex C'is a (finite) union of simplices s.t.
i) for any o € C, all the faces of ¢ are in C,

ii) the intersection of any two simplices of C' is either empty or a simplex which
Is their common face of highest dimension.
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Simplicial complexes

A (finite) simplicial complex C'is a (finite) union of simplices s.t.

i) for any o € C, all the faces of ¢ are in C,

ii) the intersection of any two simplices of C' is either empty or a simplex which
Is their common face of highest dimension.

Faces: the simplices of C.

7-skeleton: the subcomplex made of the simplices of dimension at most ;.
Dimension of C: the maximum of the dimensions of the faces. C' is homoge-
nousof dimension n if any of its faces is a face of a n-dimensional simplex.



Filtrations of simplicial complexes

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that

)l=K°cK'c---Cc K" =K,
i) K71 = K*U o' where 0! is a simplex of K.



Example: filtration associated to a function

e f a real valued function defined on the vertices of K
o For o = [?}0, e ,?}k] c K, f(O') = MaX;—0Q.... k f(?]z)

e The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

= The sublevel sets
Exercise: show that this is a

filtration.
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Example: The Céch complex

o Let Y = (U;);cr be a covering of a topological space X by open sets:
X — UiEIUi-

e The Céch complex C'(U) associated to the covering U is the simplicial
complex defined by:
- the vertex set of C'(U) is the set of the open sets U;
- Uiy, -+, Ui, ) is a k-simplex in C(U) iff N5_,U;, # 0.



Example: The Céch complex

Nerve theorem (Leray): If all the intersections between opens in U/ are either
empty or contractible then C(U) and X = U;c;U; are homotopy equivalent.

= The combinatorics of the covering (a simplicial complex) carries the
topology of the space.




Example: The Céch complex

Nerve theorem (Leray): If all the intersections between opens in U/ are either
empty or contractible then C(U) and X = U;c;U; are homotopy equivalent.

= The combinatorics of the covering (a simplicial complex) carries the
topology of the space.

Warning: even when the open sets are euclidean balls, the computation of
the Cé&ch complex is a very difficult task!




Example: the Rips complex

M Rips vs Cech M

Let L = {pg,---pn} be a (finite) point cloud (in a metric space).
The Rips complex R*(L): for pg,---pr € L,

0 = [pOpl " pk] S RQ(L) iff \V/Z,] c {07 ' k}a d(pupj) <«

e Easy to compute and fully determined by its 1-skeleton

e Rips-Cech interleaving: for any a > 0,

C% (L) C R™(L) CCY(L) C R**(L)C---



Homology of simplicial complexes

“ e 2 connected components
Q e Intuitively: 2 cycles
Topological invariants:

- Number of connected components
- Number of cycles: how to define a cycle?
- Number of voids: how to define a void? /

(Simplicial) homology and
Betti numbers

In the following: homology with coeeficient in Z /2

Refs: J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
A. Hatcher, Algebraic Topology, Cambridge University Press 2002.



The space of k-chains

Let K be a d-dimensional simplicial complex. Let & € {0,1,---,d} and
{o1,--+,0,} be the set of k-simplices of K.
k-chain:

p
c=)Y g0; with g € Z/2Z = {0,1}
i=1
Sum of k-chains:

p p

c+c = Z(‘S@ +e)o; and A.c= Z()\eg)ai

1=1 1=1

where the sums ¢; + €/ and the products \e; are modulo 2.
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The boundary operator

il

The boundary do of a k-simplex o is the sum of its (kK — 1)-faces. This is a
(k — 1)-chain.

k

Ifo=|vg, - ,vr| then 50:2[00“'@“'%]
i=0

The boundary operator is the linear map defined by

0: Cp(K) — Crp_1(K)

c — Odc=)>_ _ 0o

oE&cC



Fundamental property of the boundary operator

00 =000 =10

Proof: by linearity it is just necessary to prove it for a simplex.

k
D0o = 8(2[1}0---@---%])

k
= Z Olvg -« U5+ ++ Vg
i=0
= Z[Uo Vi 05 Vg| + Z[vg V- Dj - Vg
1<<? J>1



Cycles and boundaries

The chain complex associated to a complex K of dimension d

) — Ca(K) 2> Cq1(K) 2 - Chir(K) 2 Cu(K) S €1 (K) 2 Co(K)
k-cycles:
Z(K):=ker(0:Cp — Cr_1) ={c€C:0c=10}

k-boundaries:

Bi(K) :=im(0 : Cry1 — Cr) = {c € Cy : A" € C11,¢c = 0c'}

Bip(K) C Zi(K) C Ci(K)



Cycles and boundaries

Non homologous 1-cycles

/
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Non homologous 1-cycles

/

“—~ A 1-boundary




Cycles a

N }

nd boundaries

Non homologous 1-cycles

/

A

“—~ A 1-boundary



Cycles and boundaries
Not a cylcle

N
AN
N
/

Non homologous 1-cycles

/

A

“—~ A 1-boundary




Homology groups and Betti numbers

Br(K) C Zi(K) C Cp(K)

e The k'™ homology group of K: Hy(K) = Z;,/ B,

e Tout each cycle ¢ € Z;(K) corresponds its homology class ¢+ By (K) =
{C—I— b:be Bk(K)}

e Two cycles ¢, ¢’ are homologous if they are in the same homology class:
dbe Bp(K)s. t. b= —c(=d +¢).

e The k" Betti number of K: ﬂk(K) = dlm(Hk(K))



Elementary examples

Remark: 5y = number of connected components of K
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Elementary examples

Remark: 5y = number of connected components of K

Bo =2

o 61 =0
By =0

Bo =

B =

B2 =0

. Bo =1

61 =0

B2 =1 if empty and 2 = 0 if filled
Bz =0



Elementary examples




Elementary examples

Bo =2
B1 =2
By = 1 if empty and B9 = 0O if filled
B3 =0




Topological invariance and singular homology

Bo=1 01=2,060=0

Theorem: If K and K’ are two simplicial complexes with homeomorphic
supports then their homology groups are isomorphic and their Betti numbers
are equal.

e This is a classical result in algebraic topology but the proof is not obvious.

e Rely on the notion of singular homology — defined for any topological space.



Topological invariance and singular homology

A
(O, 1) ( . /

/\

X

(0,0)" (1,0
Let Aj be the standard simplex in R*. A singular k-simplex in a topological
space X is a continuous map o : A, — X.

The same construction as for simplicial homology can be done with singular

complexes — Singular homology

Important properties:
e Singular homology is defined for any topological space X.

e If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!



Topological invariance and singular homology

A
(O, 1) ( . /

/\

(0,0) (1.0) X

Let Aj be the standard simplex in R*. A singular k-simplex in a topological
space X is a continuous map o : A, — X.

Homology and continuous maps:

o if f: X — Y is a continuous map and o : A, — X a simplex in X,
then foo : A — Y is a simplex in Y = f induces a linear maps
between homology groups:

fi + Hp(X) — Hg(Y)

o if f: X — Y is an homeomorphism or an homotopy equivalence then
f4 1s an isomorphism.




An algorithm for geometric inference

e X C RY be a compact set such that wfs(X) > 0.

o L C R? be a finite set such that dg (X, L) < ¢ for some € > 0.



An algorithm for geometric inference

e X C RY be a compact set such that wfs(X) > 0.

o L C R? be a finite set such that dg (X, L) < ¢ for some € > 0.

Goal: Compute the Betti numbers of X" for 0 < r < wfs(X) from L.



An algorithm for geometric inference

e X C RY be a compact set such that wfs(X) > 0.

o L C R? be a finite set such that dg (X, L) < ¢ for some € > 0.

Goal: Compute the Betti numbers of X" for 0 < r < wfs(X) from L.

Theorem: [CL'05 - CSEH'05]
Assume that wfs(X) > 4e. For a > 0 s.t. a+4e < wfs(X), let ¢ : L€ —
L3¢ be the canonical inclusion.For any 0 < r < wis(X),

Hy(X") 2 im (ix : He(LOT®) — H (L))
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Proof:

For any o > O’ XOé g La‘l—e g Xa—|—2€ g L()é—|—38 g XO&‘|—4€ g L

At homology level:

Hk(Xa) R Hk(La+8) R Hk(on—I—Qs) _ Hk(La+3€> R Hk<on—|—4€) e



Proof:

For any o > O’ XOé g La‘l—e g XOH—2€ g L()é—|—38 g XO&‘|—4€ g L

At homology level:

rank = dim Hy (X <)

—

Hk(Xa) R Hk(La+8) N Hk(Xa+2€H\[{:(La+3€) R Hk(on—l—éls) e

Isomorphism Isomorphism




Proof:

For any o > O’ XOé g La‘|‘€ g XOH—QE? g L(X+3€ g XO&‘|—4€ g L

At homology level: Cannot be directly com-
puted !
ﬂ— dim Hp (X <)

H(X%) — H(L*) — Hp(X*T%¢) = Hp(L*T5°) — Hp (X)) —

Isomorphism Isomorphism




Using the Cech complex
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Using the Cech complex

@ﬁ @fﬁ

The Cech complex C(L
for po,---px € L, 0:[]?0291' pr] € C*(L) iff ﬂBpZ, ) # ()

Nerve theorem: For any a > 0, L® and C*(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.



Using the Cech complex

@4/ @@

The Cech complex C(L
forp07”°pkEL7 O:[p0p1° ]EC(X iff ﬂBpfm #@

Nerve theorem: For any a > 0, L® and C*(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

N Hk (La—l—s) N Hk(Loz—l—Sa) N
| |

— @R (CTE(D) — Hi(CPE(DD

Allow to work with simplicial complexes but... still too difficult to compute




Using the Rips complex

M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

e Easy to compute and fully determined by its 1-skeleton

e Rips-Cech interleaving: for any a > 0,

C% (L) CRY(L) CCYL) CR*(L)C ---
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M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

Theorem: [C-Oudot'08]

Let X C R® be a compact set and L C R? a finite set such that d (X, L) < ¢
for some & < ¢ wfs(X). Then for all a € [2¢, 3 (wis(X) — ¢)] and all

A€ (0,wfs(X))), one has: Vk € N

Br (X)) = dim(Hy (X)) = rk(RY(L) — R**(L))
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M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

Theorem: [C-Oudot'08]

Let X C R® be a compact set and L C R? a finite set such that d (X, L) < ¢
for some & < ¢ wfs(X). Then for all a € [2¢, 3 (wis(X) — ¢)] and all

A€ (0,wfs(X))), one has: Vk € N

B (X)) = dim(H (X)) =|rk(RY(L) — R**(L))

( Easy to compute using per-
sistence algo.



Using the Rips complex

M Rips vs Cech M

The Rips complex R*(L): for pg,---pr € L,
o = [pop1---pr] € R*(L) iff Vi,j€{0,---k}, d(pi,p;) <

Theorem: [C-Oudot'08]

Let X C R® be a compact set and L C R? a finite set such that d (X, L) < ¢
for some & < ¢ wfs(X). Then for all a € [2¢, 3 (wis(X) — ¢)] and all

A€ (0,wfs(X))), one has: Vk € N

Be(X?) = dim(H (X)) = rk(RY(L) — R**(L))

=—gp Pb: Choice of o when wfs(X) is unknown?



Multiscale inference

Input: A point cloud W and its pairewise distances {d(w,w") }y wew -

— Maintain a nested pair R* (L) — R¢(L) where L = L(¢).

Init.: L =0; ¢ = +o0 . ° °
®
WHILE L ¢ W . *
insert p = argmax,ewd(w, L) in L . o
Update & = maXUJGW d(w7 L) Rank of the map in- ® *
update R4€ (L) and RlG&‘(L) IdeL\J/c;Td at homology
Persistence( R4 (L) — R(L)) — -
END_WHILE .
Output: Sequence of persistent Betti numbers o
of R* (L) — R%¢(L) o o
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Init.: L =0;: ¢ = +00 . o
WHILE L C W o + ‘
insert p = argmax,ewd(w, L) in L
update & — ma’X’UJGW d('lU, L) Rank of the map in- ®
update R4€ (L) and R166(L) Idel\J/c;Td at homology
Persistence( R4(L) — R5(L)) «— *
END_WHILE
Output: Sequence of persistent Betti numbers o
of R* (L) — R1%¢(L) .
o o




Multiscale inference

Input: A point cloud W and its pairewise distances {d(w,w") }y wew -

— Maintain a nested pair R* (L) — R¢(L) where L = L(¢).

Init.: L =0; ¢ = 400

WHILE L C W

insert p = argmax,ewd(w, L) in L

Update & = maXUJGW d(w7 L) Rank of the map in-
update R4€ (L) and R168(L) duced at homology

level
Persistence( R*¢(L) — R¢(L)) —
END_WHILE

Output: Sequence of persistent Betti numbers
of R* (L) — R%¢(L)




Multiscale inference

d)b%
e g O
ko
o

- h"

' 1/e

Theorem: [C-Oudot'08]
If dp (W, X) < 8 for 6 < t5wis(X), then at every iteration of the algorithm
such that § < & < Jswis(X),

B (X)) = dim Hy (X)) = rk(Hp(R* (L)) — Hi(R*(L)))

for any A € (0,wfs(X)) and any k € N.



Multiscale inference

P
3!

A
FT
2_
]__.
0 >
1/,

Complexity of the algorithm:

o If X C R? is non smooth the running time of the algorithm is
08 |W )

o If X is a smooth submanifold of R? dimension m the running time is

O(8%" W)



Multiscale inference

Complexity of the algorithm:

o If X C R? is non smooth the running time of the algorithm is
08 |W )

o If X is a smooth submanifold of R? dimension m the running time is

Depend on the intrinsic
dimension of X



A synthetic example

0,1] x [0,1] R 1000

0 0.1 0.2 03 04 0.5 06 0.7 0.8 09 1

\/

Non-linear embedding of S' x S in R*%%°

50,000 points sampled uniformly at random from a curve drawn on the 2-torus
St x St
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Output: sequence of Betti numbers on a log-log scale
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Output: sequence of Betti numbers on a log-log scale



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ) = K’ c K c ... Cc K™ = K,
s. t. K'™! = K*U g where ¢! is a simplex of K.

Output: The Betti numbers 5y, 31, -+ , 84 of K.

bo=p01="-=0q =0,
fortr=1tom
k =dimo* — 1:

if 0% is contained in a (k + 1)-cycle in K*
then Grpy1 = Bry1 + 1,
else 0. = OB, — 1;
end if;
end for;

output (5o, B1, -, Ba);



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ) = K c K c ... c K™

s. t. K"t = K" U o't where 07! is a simplex of K.
Output: The Betti numbers 5y, 31, -+ , 84 of K.

bo=p01="-=0q =0,
fortr=1tom
k =dimo* — 1:

if 0% is contained in a (k + 1)-cycle in K*
then By11 = Br41 + 1;
else 0. = OB, — 1;

end if;
end for;
output (/607 617 T 76(1);
(1,0,0) (1.0.0) (2.0,0) (1.0.0) (1.1,0) (1.0,0)

K'



An algorithm to compute Betti numbers

Input: A filtration of a simplicial complex ) = K’ c K c ... Cc K™ = K,
s. t. K"t = K" U o't where 07! is a simplex of K.

Output: The Betti numbers 5y, 31, -+ , 84 of K.

bo=p01="-=0q =0,
fortr=1tom
k=dimo* — 1:

if 0% is contained in a (k + 1)-cycle in K*
then Grpy1 = Bry1 + 1,
else 0. = OB, — 1;
end if;
end for;

output (5o, B1, -, Ba);

Remark: At the i*" step of the algorithm, the vector (3o, --- ,3q) stores the
Betti numbers of K.



Proof

If 0 is contained in a (k + 1)-cycle in K, this cycle is not a boundary
in K.

If 0 is contained in a (k+1)-cycle ¢ in K*, then ¢ cannot be homologous
to a cycle in K1

= Brr1(K") > Br (KH +1

If o* is not contained in a (k 4 1)-cycle ¢ in K*, then do* is not a
boundary in K*!

= Br(K*) < Bp(K'™) — 1

the previous inequalities are equalities.



Positive and negative simplices

Let ) = KY ¢ K!' ¢ ... ¢ K™ = K be a filtration of a simplicial complex
Ks. t. K™l = K*Uo*"! where o' is a simplex of K.

4d 4

<

Definition: A (k-+1)-simplex o is positive if it is contained in a (k+1)-cycle
in K. It is negative otherwise.



Positive and negative simplices

Let ) = KY ¢ K!' ¢ ... ¢ K™ = K be a filtration of a simplicial complex
Ks. t. K™l = K*Uo*"! where o' is a simplex of K.

4 4 4

Definition: A (k+1)-simplex o” isif it is contained in a (k+1)-cycle
in K. It |sotherW|se. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*

Br(K) = f(positive simplices) — fi(negative simplices)



Getting more information

Definition: A (k+1)-simplex o’ isif it is contained in a (k+1)-cycle
in K*. It |sotherW|se. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*
Br(K) = f(positive simplices) — fi(negative simplices)

e How to keep track of the evolution of the topology
all along the filtration?

e What are the created/destroyed cycles?
e What is the lifetime of a cycle?

e How to compute rank(Hy(K") — Hy(K7))?



Getting more information

Definition: A (k+1)-simplex o’ isif it is contained in a (k+1)-cycle
in K*. It |sotherW|se. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*

Br(K) = f(positive simplices) — fi(negative simplices)

e How to keep track of the evolution of the topology
all along the filtration?

e What are the created/destroyed cycles?

e What is the lifetime of a cycle?

e How to compute rank(Hy(K") — Hy(K7))?

L _» [ his Is where topological persistence comes into
play!



Topological persistence

e a tool to study topological properties of data (represented by real valued
functions on topological spaces).

e A method that allow to separate information from topological noise.

e References:

— H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological
persistence and simplification. Discrete Comput. Geom., 28:511-

533, 2002.

— D. Cohen-Steiner and H. Edelsbrunner and J. Harer, Stability of
Persistence Diagrams, Proc. 21st ACM Sympos. Comput. Geom.
2005.

— F. Chazal and D. Cohen-Steiner and L. J. Guibas and M. Glisse and
S. Y. Oudot, Proximity of Persistence Modules and their Diagrams,
Proc. 25th ACM Sympos. Comput. Geom. 20009.



A simple example
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e What is the relevant number of connected components of f~1((—o0,])?

e More generally, study the topology of the sublevel sets f~1((—o0,t]) as
t varies.



A simple example: filter out topological noise

Persistence
diagrams



Functions defined over higher dimensional spaces

e f: X — R continuous where X is a topological space

e Not only connected components but also cycles, voids, etc... — persis-
tence of homological features / evolution of Hy(f~1((—o0,t]))

Relation between fonctions and filtrations:

e Vt <t €R, f71((~00,t]) C f~1((—o0,t']) — filtration of X by the
sublevel sets of f.

o If f is defined at the vertices of a simplicial complex K , the sublevel
sets filtration is a filtration of the simplicial complex K.

—

e Foro=|vg, -+ ,vx] € K, f(o0) =max;—g....  f(vi)

e The simplices of K are ordered according increasing
f values (and dimension in case of equal values on

different simplices).



Notations

In the following:

o let ) = K ¢ K! ¢ --- ¢ K™ = K be a filtration of a simplicial
complex K's. t. K™ = K* U o'"! where o*™! is a simplex of K.

e 7! = the k-cylcles of K*, B} = the k-boundaries of K* and H} = the
kt"-homology group of K*.

e Z)C Z,C---CZ, C--- CZp = Zi(K)

e B)CB.C---CB! C---CB"= By(K)



Cycle associated to a positive simplex

LA L LN N

Lemma: If o is a positive k-cycle, then there exists a k-cycle ¢, s.t.:
- ¢, is not a boundary in K?,

- ¢, contains o’ but no other positive k-simplex.

The cycle ¢ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

L AL L)L N

e At the beginning: the basis of H} is empty.

e |f a basis of Hli_l has been built and o is a positive k-simplex then one

adds the homology class of the cycle ¢* associated to o to the basis of
H;~' = basis of H}.

e If a basis of Hg_l has been built and ¢/ is a negative (k + 1)-simplex:

— let ¢",--- ' be the cycles associated to the positive simplices
o, ... o' that form a basis of H,Z_l
—d=007 =7 _ e+

— I(j) = max{iy : e = 1}
— Remove the homology class of ¢/(9) from the basis of H,z_l =
basis of Hj .



Homology basis
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e At the beginning: the basis of H} is empty.

e |f a basis of Hli_l has been built and o is a positive k-simplex then one

adds the homology class of the cycle ¢* associated to o to the basis of
H;~' = basis of H}.

e If a basis of Hg_l has been built and ¢/ is a negative (k + 1)-simplex:

— let ¢",--- ' be the cycles associated to the positive simplices
o, ... o' that form a basis of H,Z_l
—d=007 =7 _ e+

— I(j) = max{iy : e = 1}
— Remove the homology class of ¢/(9) from the basis of H,z_l =
basis of Hj .



Homology basis
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e At the beginning: the basis of H} is empty.

e |f a basis of Hli_l has been built and o is a positive k-simplex then one

adds the homology class of the cycle ¢* associated to o to the basis of
H;~' = basis of H}.

e If a basis of Hg_l has been built and ¢/ is a negative (k + 1)-simplex:

— let ¢",--- ' be the cycles associated to the positive simplices
o, ... o' that form a basis of H,Z_l
—d=007 =7 _ e+

— I(j) = max{iy : e = 1}
— Remove the homology class of ¢/(9) from the basis of H,z_l =
basis of Hj .



Homology basis

e At the beginning: the basis of H} is empty.

e |f a basis of Hli_l has been built and o is a positive k-simplex then one

adds the homology class of the cycle ¢* associated to o to the basis of
H;~' = basis of H}.

e If a basis of Hg_l has been built and ¢/ is a negative (k + 1)-simplex:

— let ¢",--- ' be the cycles associated to the positive simplices
o, ... o' that form a basis of H,Z_l
—d=007 =7 _ e+

— I(j) = max{iy : e = 1}
— Remove the homology class of ¢/(9) from the basis of H,z_l =
basis of Hj .



Pairing simplices

e |f a basis of H,z_l has been built and 07 is a negative (k + 1)-simplex:

— let ¢, -+, c'» be the cycles associated to the positive simplices
o', --- o' that form a basis of H,i_l
—d=007 =Y 7 _ exc +b

— I(j) = max{ix : e = 1}
— Remove the homology class of ¢/(9) from the basis of H,Z_l =
basis of Hj .

The simplices ¢'¢9) and o7 are paired to form a persistent pair (o'(9), g7).
— The homology class created by ¢!(9) in K'9) is killed by o7 in K7. The
persistence (or life-time) of this cycle is : j —I(j) — 1.

Remark: filtrations of K can be indexed by increasing sequences «; of real
numbers (useful when working with a function defined on the vertices of a
simplicial complex).



The persistence algorithm: first version

Input: ) = K’ ¢ K! ¢ --- ¢ K™ = K a d-dimensional filtration of a
simplicial complex K s. t. K'T1 = K* U o*™! where '™ is a simplex of K.

Ly=Li=---=Lg_1=10
For j =0tom
k=dimo? — 1:
if o7 is a negative simplex
[(j) = highest index of the positive simplices associated to do”;
L, = L U{(c'V), 59)};
end if
end for
output Lo, Ll, e 7Ld—1 :



The persistence algorithm: first version

Input: ) = K’ ¢ K! ¢ --- ¢ K™ = K a d-dimensional filtration of a
simplicial complex K s. t. K'T1 = K* U o*™! where '™ is a simplex of K.

Ly=Li=---=Lg_1=10
For j =0tom
k=dimo’/ —1;
Gf 07 is a negative simplex>
[(j) = highest index of the positive simplices associated to do”;
Ly = Li/u {(c'V), 59)};
end if
end for
output Ly,

_» How to test this condition?




The matrix of the boundary operator

(001001 0)
0010100
0000001
6 . > o0o0ofi]1o] 19
000000 1
0000001
4 9 \0 000000

5
o M = (m;;)ij=1,... m with coefficient in Z/2 defined by

mi; = 1 if 0" is a face of 0/ and m;; = 0 otherwise

e For any column C}, I(j) is defined by

(Z = l(])) = (mij — 1 and Mg = oV’ > Z)



The persistence algorithm: second version

Input: ) = K° ¢ K! ¢ --- ¢ K™ = K a d-dimensional filtration of a
simplicial complex K s. t. K*T1 = K* U o*™! where o' is a simplex of K.

For 7 =0tom
While (there exists j' < j such that I(j') == 1(§))
Cj — Cj -+ Cj/ mod(2);
End while
End for
Output the pairs (I(7),7);

Remark: The worst case complexity of the algorithm is O(m?) but much
lower in most practical cases.
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Correctness of the second algorithm

Proposition: the second algorithm outputs the persistence pairs.

Proof: follows from the four remarks below.

1. At each step of the algorithm, the column C'; represents a chain of the
form

0| o + Zemi with ¢; € {0, 1}

1<

2. At this end of the algorithm, if j is s.t. I(j) is defined then ¢'U) is a
positive simplex.

3. If at the end of the algorithm if the column C; is zero then &7 is positive.

4. If at the end of the algorithm the column C; is not zero then (o'), 57)
IS a persistence pair.



Persistence diagrams

00y ° 00,y

e each pair (¢'19), g7) is represented by (I(j), j) or (f(c'(9)), f(c7)) € R?
when considering filtrations induced by functions.

e The diagonal {y = x} is added to the persistence diagram.

e Unpaired positive simplex o* — (i, +00).



Persistence diagrams

OO‘ ¢ OO‘

e each pair (¢'9), g7) is represented by (I(5), ) or@j)),f(aj) c R?

when considering filtrations induced by functions.

e The diagonal {y = x} is added to the persistence dia

e Unpaired positive simplex o* — (i, +

Warning: in this case, points
may have multiplicity.



Persistence diagrams

00y ° 00,y

e each pair (¢'19), g7) is represented by (I(j), j) or (f(c'(9)), f(c7)) € R?
when considering filtrations induced by functions.

e The diagonal {y = x} is added to the persistence diagram.

e Unpaired positive simplex o* — (i, +00).

Barcodes: an alternative (equivalent) representation where each pair (¢, j) is
represented by the interval |, j]




Distance between persistence diagrams
00 '\. ./,

Let K be a simplicial complex and f, g two functions defined on the vertices
of K. Let D¢ and D, be the persistence diagrams of f and g.

The bottleneck distance between D¢ and D, is

dB(DfaDg) = inf sup |[p — v(p)|l

where I' is the set of all the bijections between D¢ and D, and ||p — ¢||cc =

max(|Tp — Zql; [Yp — Yql)-



Stability of persistence diagrams

¢

Theorem: Let K be a simplicial complex and let f,g: K — R.

dp(Dy, Dg) < ||f = 9glloc

where Hf T gHOO — Suvavertices(K) ‘f(?)) o g(?})‘



Stability of persistence diagrams

e Let K and K’ be two simplicial complexes homeomorphic to a topolog-
ical space X.

o let ¢: K — X and ¢' : K/ — X be homeomorphisms

o Let f: X — R be a continuous function and D;(K) (resp. D¢(K'))
the persistence diagram of f o ¢ (resp. f o ¢’).

Theorem: Let ¢ > 0 be such that for any simplex 0 € K (resp. € K’),

SUP,, yeo | f0P(x) — fop(y)| < e (resp. sup, e, [fod' (x) — fod'(y)| <e).
Then one has

dp(Dy(K), Dy(K')) < 2¢

Remark: this is a particular (and weaker) version of a much more general

result. See:

- D. Cohen-Steiner and H. Edelsbrunner and J. Harer, Stability of Persistence Diagrams, Proc. 21st ACM Sympos. Comput. Geom. 2005.
- F. Chazal and D. Cohen-Steiner and L. J. Guibas and M. Glisse and S. Y. Oudot, Proximity of Persistence Modules and their Diagrams, Proc.
25th ACM Sympos. Comput. Geom. 2009.



Consequences of the stability

e Persistence diagrams are defined and stable for a large class of contin-
uous functions defined over (pre-)compact metric spaces.
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— definition stable (Gromov-Hausdorff distance) topological signatures for
compact metric spaces.

— Efficient algorithm to compute signatures.

— applications to shape classification.

Ref: F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, S. Oudot, Gromov-Hausdorff Stable Signatures for Shapes using Persistence, Computer
GraphicsForum (proc. SGP 2009), pp. 1393-1403, 2009.



Consequences of the stability

e Persistence diagrams can be reliably estimated from data (functions
known through a point cloud data set approximating a topological
space).

Previous approach can be generalized, leading to robust algorithms to compute
the topological persistence of functions defined over point clouds sampled
around unknown shapes

Ref:

e F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete
Algorithms 2009.

e F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational
Geometry 2008.



Consequences of the stability

e Persistence diagrams can be reliably estimated from data (functions
known through a point cloud data set approximating a topological
space).

Applications to clustering, segmentations, sensor networks,...

Ref:
e F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete
Algorithms 2009.

e F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational
Geometry 2008.



