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Applications

» visualization and graphics applications

» CAD and reverse engineering

» geometric modelling in medecine, geology, biology etc.
» autonomous exploration and mapping (SLAM)

» scientific computing : meshes for FEM
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Two main issues

Sampling

» How do we choose points in the domain ?
» What information do we need to know/measure about the
domain ?

Topology and Geometry

1. How do we connect the points ?

2. Under what sampling conditions can we compute a good
approximation of the domain ?

3. What is a good approximation ?
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State of the art : implicit surface meshing

Marching cube

Lorensen & Cline [87]
Lopez & Brodlie [03] : topological consistency
Plantiga & Vegter [04] : certified topology using interval arithmetic

Morse theory

Stander & Hart [97]
B., Cohen-Steiner & Vegter [04] : certified topology

Delaunay refinement

Ruppert [95]
Shewchuk [02]

Chew [93]
B. & Oudot [03,04]
Cheng et al. [04]
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{Standard mesh generation pipeline }

Generation

Merging
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Overview

» What is a good approximation of a surface ?
» Restricted Delaunay triangulation

» Surface mesh generation

» Extensions and applications
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Topological equivalence

Homeomorphism

Two subsets X and Y of R are said to be homeomorphic if
there exists a continuous, bijective map f: X — Y with
continuous inverse 1.
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Homeomorphism

Two subsets X and Y of R are said to be homeomorphic if
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Topological equivalence

Homeomorphism

Two subsets X and Y of R are said to be homeomorphic if
there exists a continuous, bijective map f: X — Y with
continuous inverse 1.

Two subsets X and Y of R? are said to be isotopic if there
exists a continuous map f: X x [0,1] — R such that f(.,0) is
the identity of X, f(X,1) = Y, and foreach t € [0, 1], f(., ) is a
homeomorphism onto its image.

Isotopy
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Distance between two sets

Hausdorff distance
dH(X7 Y) = max (SupXEX d(Xa Y)vsupyEY d(_y,X))
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Distance between two sets
Hausdorff distance

dH(X7 Y) = max (SupXEX d(Xa Y)vsupyEY d(_y,X))

Fréchet distance

dr(X,Y) =infy suppex d(p, h(p))
where h ranges over all homeomorphisms from X to Y
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Distance between two sets

Hausdorff distance
dH(X7 Y) = max (SupXEX d(Xa Y)vsupyEY d(_y,X))

Fréchet distance

dr(X,Y) =infy suppex d(p, h(p))
where h ranges over all homeomorphisms from X to Y
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Other guarantees

» Approximation of normals —

» Approximation of areas @

» Approximation of curvatures o~
» Aspect ratio of the facets o
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Restricted Delaunay triangulation
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Data structuring by space subdivision




Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Del|s(P) is the set
of simplices of the Delaunay
triangulation whose dual
Voronoi faces intersect S
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Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Del|s(P) is the set
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Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Del|s(P) is the set
of simplices of the Delaunay
triangulation whose dual
Voronoi faces intersect S
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Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Del|o(P) is the set
of simplices of the Delaunay
triangulation whose dual
Voronoi faces belong to
V0r|o(7))
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A variant of the nerve theorem

Theorem [Edelsbrunner & Shah 1997]
If S is compact and without boundary
and if, for any face f € Vors(E),

1. fintersects S transversally
2. fnS =0 oris atopological ball
then Del|s(E) ~ S

Homeomorphism

Two subsets X and Y of RY are said to be homeomorphic if there exists a
continuous, bijective map f : X — Y with continuous inverse f~".

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



A variant of the nerve theorem
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Proof of the closed ball property

Barycentric subdivision

of Vorg(E) of Delg(E)
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Sampling smooth surfaces [Amenta & Bern 1998]

Local feature size

» Medial axis of S : M(S)
set of points with at least two
closest points on S

» Local feature size : Ifs(x)
Vx € S, Ifs(x) = d(x, M(S))
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Sampling smooth surfaces [Amenta & Bern 1998]

Local feature size

» Medial axis of S : M(S)
set of points with at least two
closest points on S

» Local feature size : Ifs(x)
Vx € S, Ifs(x) = d(x, M(S))

e-sample of S (e-covering)
PCS,VxeS=d(x,P) <elfs(x)
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Restricted Delaunay triangulations of e-samples

[Amenta et al. 1998-]

If P is an e-sample of a C'-! surface
SCR3e<0.12

» Del|s(S) provides good estimates of
» normals
» areas
» curvature [Cohen-Steiner, Morvan]
» There exists an isotopy
¢ : Deljg(P) — S

> sup,([[6(x) — x||) = O(&?)
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Loose s-samples

[B. & Oudot 2005]

Definition
1. Del;s(P) has a vertex on each connected
component of S

2. for any circumscribing ball Bf = (¢, ry) of
any facet f of Del|s(P), rr < e 1fs(cy)
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Loose s-samples

[B. & Oudot 2005]

Definition
1. Del;s(P) has a vertex on each connected
component of S

2. for any circumscribing ball Bf = (¢, ry) of
any facet f of Del|s(P), rr < e 1fs(cy)

Loose e-samples are (1 + O(¢?))-samples
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Sketch of proofs
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Surfaces : local properties 1/2

Chord lemma
Vp,g e S, |p—q| < 2elfs(p) = sin(pg, Tp) < e
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Surfaces : local properties 2/2

Facet normal lemma

Let f = pqgr be a facet of Del(P) and assume that p > 7. If the
circumradius pr of f is at most ¢ Ifs(p), then sin(ny, np) < 2e.

Proof

i — g _ llp=coll _ rp
sin(ny, np) = sin(pcgcp) = lp—cgll = Ts(p)

~ wlog
pP=agtar>3F = ag>F

q¢DuUD = |p—qll >2ppsinag > pp

llp—al

PD
< I )

2p¢
Ifs(p) s <2

Ifs(p)
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Proof of homeomorphism (sketch)

The conditions of the Nerve Th. are satisfied

1. Any edge of Vor s(P) intersects S in one point

lx —pl| < elfs(x) *)
v ly —pll < elfs(y) < 75 Ifs(x)

1—¢

= |Ix =yl <275 Ifs(x)
' = ] L no~np
p

[xy] L e* and the facet lemma
= [xylun,

2. Similar arguments show that faces of higher dimensions are
also topological balls
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7 : Del;g(P) — S is injective

xes
ny the normal to S at x
Ix the normal fiber [x — r ny, x + r ny] where r = ¢1fs(x)

Injectivity lemma

If P is a loose e-sample for ¢ < 0.12, then Iy intersects Del;s in
at most one point
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Proof of the injectivity lemma (by contradiction)

f, f’ two consecutive facets of
Del|s(P) that intersect Jx

T =t,..., t; the set of tet.
intersected by /x between f and f’

v = (¢ = o, €, ..., Cs, Cpp = Cs41)
¢; = cc of fj, v C skel(Vor(P))
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/\ with s; = (Cip1 — €i)/l|Civ1 — Cill

¢r and ¢y are consecutive points of
kNS
= (Ne; - 8¢) X (Ng,, - 8¢) <0

Facet normal lemma
= (Ng, - S¢) x (Ng, - Sp) < —14 O(e?)

Delaunay = (nx - sj) x (nx - Si+1) >0
= (Nx-81) x (nx-8¢) >0

Normal variation lemma
= Ne, = Ny = Ng,

Contradiction !



7 : Del;s(P) — S is surjective
If P is a loose e-sample of S with ¢ < 1.12, then S is covered at
least once by 7

Proof

» any edge of Del|s belongs to exactly two facets of Del|s
» every cc of S contains > 1 vertex of Del|s(P)
» by contradiction : there exists an edge where the injectivity

lemma is violated
@//7
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Isotopy

If P is an e-sample for ¢ < 0.12, = induces an isotopy that maps
De]‘s('P) toS

The isotopy moves the points by O(£?)
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Isotopy

If P is an e-sample for ¢ < 0.12, = induces an isotopy that maps
De]‘s('P) toS

The isotopy moves the points by O(£?)

Proof

» Homeomorphism: = is bijective and bicontinuous
w(X)—X

» Isotopy : f: Deljs(P) x [0,1] — S, f(x,t) = x + t EOE

» Fréchet distance : trivially < e sup,cg Ifs(x)
for a better bound, adapt the chord lem.
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Surface mesh generation by
Delaunay refinement
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Surface mesh generation by Delaunay refinement

¢: S — R = Lipschitz function [Chew 1993, B. & Oudot 2003]
Vx €S, 0 < ¢min < P(X) < elfs(x)

ORACLE : For a facet f of Del;s(P),
return ¢, rr and ¢(cx)

A facet f is bad if rr > ¢(cy)
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Surface mesh generation by Delaunay refinement

¢: S — R = Lipschitz function [Chew 1993, B. & Oudot 2003]
Vx €S, 0 < ¢min < ¢(X) < elfs(x)

ORACLE : For a facet f of Del;s(P),
return ¢, rr and ¢(cx)

A facet f is bad if rr > ¢(cy)

Algorithm

INIT compute an initial (small) sample P, C S

REPEAT IF fis a bad facet
insert_in_Del3D(cx)
update P and Del;s(P)

UNTIL all facets are good

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



The algorithm terminates

Properties of the output

» The output sample P is

» acovering : (loose e-sample)
Vx € S,d(x,P) < d(x)(1 + O(¢?(x))) < e (1 + O(£2) Ifs(x)

» apacking : Vp € P,d(p,P \ {p}) = min(¢(p), ¢(q))
> ¢(p) — llp — 4|
> 3 6(p)

> 1PI=0(Js )

> Del|s(P) is a good approximation of S

ff (cr)
» all facets have a bounded aspect ratio |/ < M ventt) 30%)
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Size of the sample = O ( s %)

Proof
Let p(x) = inf{r : |B(x,r) \P| = 2} and B, = B(p, 22), pc P

Js gxx >, fons % (the B, are disjoint)
p2(X) (BpNS) p2(x)
B,NS
> 4y, X p(x) < p(p) + llp — ]|

<p
i s < 3 p(p))
252pe™ = 12 [Pl

VX € Bp, p(x) > p(p) — [Ix = pll > & p(p)
pp) =1lp—qll > ¢(p) llp—all = o(p) > T’”
6(x) < 6(p) + 2L < § p(p) < 5p(x)

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



Less demanding oracle

Vor g(P) = edges of Vor(P) that intersect S
an odd number of times

if S = f~1(x), deciding whether an edge e = [pg] belongs to
VorfES(P) reduces to evaluating the sign of f at p and q

The isotopy proof still holds
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Computing Ifs(x) is difficult

Computing rch(S) = inf,c g Ifs(x) is much easier
rch(S) is either

» a local minimum of the smallest radius of curvature or
» the radius of a sphere with a diameter binormal to S
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Computing Ifs(x) is difficult

Computing rch(S) = inf,c g Ifs(x) is much easier
rch(S) is either

» a local minimum of the smallest radius of curvature or
» the radius of a sphere with a diameter binormal to S

F(p)=0
“ / F(@) =0
. \ (p—q) x Vf(p) =0
‘ ; 5 (p—q) xVf(q)=0
- A(p—q)P =1
N
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Applications

» Implicit surfaces f(x,y,z) =0

» Isosurfaces in a 3d image (Medical images)
» Triangulated surfaces (Remeshing)

» Point sets (Surface reconstruction)
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Results on smooth implicit surfaces

Pentium IV, 3.6GHz

Surface Output size Combinatorial ~ Bipolar oracle time CPU time
Tangle cube 4,242 8.31% 0.81% 8.52% 242s
Trefoil 8,317 12.54% 0.93% 13.47% 5.14s

% are wrt Del(P)
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Comparison with the Marching Cube algorithm
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Comparison with the Marching Cube algorithm
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Contouring isosurfaces in 3D images

Collaboration with Asclepios, Caiman and Odyssée INRIA project-teams
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Non smooth surfaces

Extensions to
k-Lipschitz surfaces [B. Oudot 06]
piecewise smooth surfaces [Dey et al., Rineau & Yvinec 07]
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Remeshing Polyhedral Surfaces
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Point set surfaces




Extension to non-binary datasets

aPartition of space P = {20, <27, ...,S2,}

aBoundaries [ = (J;0$2;
a /Y a*“good” point sample of [

uPartition of Delaunay tetrahedra induced by 7
Dellp(E) = {Dellq,(E), ..., Dellg, (E)}

= each tetrahedron is labeled with the tissue its circumcenter belongs to
» Consistent triangular and tetrahedral meshes

olt “suffices” to generate /4 !
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Results: Surface meshing with
tissue-dependent resolution

072 tissues

0 112K vertices
0 228K b. facets
0 728K tets
0340 seconds

0 Criteria:

- min angle>30°

- cortex size<1mm
- others size<2mm
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Results: Uniform surface meshing

0 15 tissues
0 11K vertices
023K b. facets
073K tets
0 35 seconds
a Criteria:
- min angle>30°
- size<imm

I common iliac artery [l common iliac vein

[ external iliac artery [T ] external illac vein

] Internal lilac artery | internal iliac vein

I ateral sacral artery [ iliac lymph nodes
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Multi-view 3D reconstruction [Aganj et al 2007]

0 Multi-view 3D reconstruction: Recovering the 3D shape of an object from
several images taken from different viewpoints
\ ]

|

—

0 Shape-from-silhouettes: Only uses foreground/background segmentations

RIERE
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Problem statement

aVisual hull: Intersection of the visual cones of the different cameras
© Very fast
@ Coarse reconstruction: OK for rendering

o Previous work
. Volumetric methods

© Fast, straightforward \
# High memory cost
© Huge output mesh
@ Discretization artefacts (stair-casing effect)
! Exact polyhedral intersection (Franco & Boyer, 2003)
© Very fast
@ Low quality mesh
@ Noisy/inconsistent silhouettes ® numerical instabilities
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Delaunay meshing approach

a Multi-view oracle:

A Delaunay tetrahedron is part of the approx. visual hull
=

Its circumcenter projects inside the silhouette in all views

aRefinement criterion = reprojection error
A boundary facet is good
=3
All projections are closer from the silhouette
boundary than a user-defined threshold in all views

aPros and cons
@ Slower

© High quality mesh
© Reprojection error control (one-sided)
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g !
0 30 angle 120 4 0 30 angle 120 = 0 30 angle 120 18

Polyhedral intersection Marching cubes Delaunay meshing
NB: same mesh size

Winter School on Algorithmic Geometry Sampling and Meshing Curved D



Spatio-temporal visual hull
using 4D Delaunay meshing [Aganj et al 2007]
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Approach

» Extend the previous algorithm to compute 4D visual hulls
= 4D representation of the scene

Advantages over frame-by-frame computations

» Exploits time redundancy

» Continuous representation, allowing spatio-temporal
smoothing

» Reduction of flickering artefacts in synthesized views
» Handles naturally topological changes along time

— Requires an efficient implementation of DT in R*
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Spatio-temporal multi-view oracle

its circumcenter projects
inside the time-interpolated
silhouette in all views

A Delaunay pentatope is
part of the approx. &
spatio-temporal visual hull
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Spatio-temporal multi-view oracle

its circumcenter projects
inside the time-interpolated
silhouette in all views

A Delaunay pentatope is
part of the approx. &
spatio-temporal visual hull

Refinement criterion = reprojection error

Accounts for spatio-temporal curvature
e.g. uniform motion — coarser resolution
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Spatio-temporal multi-view oracle

A Delaunay pentatope is its circumcenter projects
part of the approx. <~ inside the time-interpolated
spatio-temporal visual hull silhouette in all views

Refinement criterion = reprojection error

Accounts for spatio-temporal curvature
e.g. uniform motion — coarser resolution

Computing 3D temporal slices

» The boundary B of STVH is a set of tetrahedra ¢ R*

» March on the tet of B to compute the intersection of B with
a hyperplane t = constant

» A 3-facet of B — (), a triangle or a quad
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Results on real data

b)

{44
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Delaunay deformable models [Pons & B. 2007]

Problem
To model moving surfaces undergoing large deformations and
topology changes

Our approach

» Represent the interface by a triangular mesh embedded in
the restricted 3D DT of interface points

» Update the mesh at each time step by updating the RDT
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The algorithm at time step n
input: Pp, = sample , Qp, Dy = Deljg, (Pn)

1. Move the points of P,
2. Adapt the sample resolution — P, 1
2.1 replace a too short edge of D, by its midpoint
2.2 add the midpoint of a too long edge
3. Deal with topology changes
3.1 discard tetrahedra that have been inverted
Qnpi1 = U{F|7 € Dy, orient(F) x orient(r) < 0}
3.2 Dn+1 = Delmn+1 (Pn+1)

3.3 remove the vertices whose incident simplices all share the
same label

(a) (b) (f)
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A sphere deforming into a torus
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Application to image segmentation

Collaboration with J-P. Pons (CERTIS)
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Meshing 3D domains by Delaunay refinement

The surface mesher

» inserts points on the surface S

» triangulates the ambient space and extracts the Delaunay
triangulation restricted to S

» controls the shape of the triangles of Del|s(P)
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Meshing 3D domains by Delaunay refinement

The surface mesher

» inserts points on the surface S

» triangulates the ambient space and extracts the Delaunay
triangulation restricted to S

» controls the shape of the triangles of Del|s(P)

Hence

» it can triangulate the domain O bounded by S at no
additional cost

» but does not provide control on the shape of the tetrahedra
inside O
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Meshing volumes with curved boundaries [Oudot et al. 05]

3-d mesh refinement algorithm

1. Run the surface meshing algorithm

2. Insert points inside O to remove the bad elements of
Del‘s(’P) and Delp(P)
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Sizing field
1(x) defined over O

Basic procedures

refine_face(f) : insert ¢, the center of the surface
Delaunay ball circumscribing f

refine_tet(t) : insert ¢, the center of the ball
circumscribing t

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



Sizing field
1(x) defined over O

Basic procedures

refine_face(f) : insert ¢, the center of the surface
Delaunay ball circumscribing f

refine_tet(t) : insert ¢, the center of the ball
circumscribing t

Bad elements
bad facet f : rr > ap(cy)
or fhas avertex ¢ S

bad tet. {: tetrahedron whose circumscribing ball has
radius r; > 1(c;) or a radius-edge ratio > p
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Step 2 : Apply the following rules in order

. if f € Del|s(P) is a bad facet, refine_face(f)
if t € Delp(P) is a bad tetrahedron,

2.1 if ¢ is included in a surface Delaunay ball B,
refine_face(f)

2.2 else refine_tet(1)

Winter School on Algorithmic Geometry
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Step 2 : Apply the following rules in order

1. if f € Del|s(P) is a bad facet, refine_face(f)

2. if t € Delp(P) is a bad tetrahedron,

2.1 if ¢ is included in a surface Delaunay ball B,
refine_face(f)
2.2 else refine_tet(1)

Properties

1. For appropriate a and p, the algorithm terminates
2. Deljs(P) = Deljs(P N S) (cf. def of bad facet)

3. hence Delg(P) is a 2-triangulation isotopic to S
Delp(P) is a 3-triangulation isotopic to O
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b |

Non uniform mesh
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S
S
A

Tan

Uniform mesh

33,012 initial vertices, 2,471 + 53,762 new vertices
20s (Pentium IV, 1.7 GHz)
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Multibody mesh generation from segmented images
input : a segmented 3D image (each voxel has a label)
label of a tetrahedron: label of its circumcenter

boundary facet : dual to a Voronoi edge whose endpoints have
two different labels
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Multibody mesh generation from segmented images
input : a segmented 3D image (each voxel has a label)
label of a tetrahedron: label of its circumcenter

boundary facet : dual to a Voronoi edge whose endpoints have
two different labels

» We mesh simultaneously the various tissues using
Delaunay refinement

» The boundary facets produce a good approximation of the
interfaces

all boundary surfaces are water tight
and don’t intersect each other

» The tetrahedra of a given label produce a good
approximation of the associated tissue
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Multibody mesh generation from segmented images

ﬁ&gﬁy;‘ S
Sy Vs
@ Ligen
. 7 v
I B
S v

[[Jsubcortical structures
I white matter

[ cortical gray matter
[ cerebrospinal fluid
[ fat tissue

[ skull. bones

B scalp

Tissue-dependent resolution

77 tissues, 389K vertices, 536K boundary facets, 536K tets
23 mn
Collaboration with CERTIS
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Zigzaging effect along sharp features

© @

Input domain

Output mesh

[=] = = ) Q
Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains




Zigzaging effect along 1-junctions between 3 or more
tissues

2 792 vertices,
5 681 triangles

20mm edge length

36 208 vertices
74 287 triangles

10mm edge length

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



Meshing 3D domains with piecewise smooth
boundaries [Dey & Levine]

Protecting balls

» centered on the sharp features F of S
» B cannot contain the center of B’ # B
» the balls cover F

» no 3 balls intersect
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Meshing 3D domains with piecewise smooth
boundaries [Dey & Levine]

Protecting balls

» centered on the sharp features F of S
» B cannot contain the center of B’ # B
» the balls cover F

» no 3 balls intersect

Algorithm

» Use the weighted DT
» Insert the protecting balls first

» Insert unweighted points inside O as usual

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



Meshing 3D domains with piecewise smooth
boundaries

6052 vertices
37106 cells
8,87° smallest dihedral angle
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@)

Figure 2: (1) Delaunay refinement 3D mesh. (2) Multi-material junctions: five 1-junctions and two O-junctions. (3) Sampled
points on junctions. (4) Protecting balls. (5) Feature preserving Delaunay refinement 3D mesh. (6) A cut of the tetrahedral
mesh. (7) Histogram of the dihedral angles.

[Boltcheva et al. 2009]
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Figure 7: Meshes generated from a segmented liver image representing 4 anatomical liver regions. The first row shows meshes
obtained with the usual Delaunay refinement algorithm. The second row shows meshes generated with our feature preserving

extension. The 3rd column shows some internal interfaces between the anatomical regions.

[Boltcheva et al. 2009]




CGAL mesh generator www.cgal.org

User Data

CGAL Mesh generation Engine

-
9.uew . w(simplex))
oracle Tefine(Simplex);

« do_intersect_surface(Segment s)
« is_in_domain(Point p)

CGAL 3D (weighted) Delaunay

triangulation
« get_intersection_point(Segment s) ¥
A [ CGAL Kernel J
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= core mesh generation algorithm independent
from the input domain representation

Multi-
Polyhedron

Mesh

CSG-tree
generation
w i -
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{Standard mesh generation pipeline }

Generation

Merging

mic Geometry Sampling and Meshing Curved
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