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Applications

I visualization and graphics applications
I CAD and reverse engineering
I geometric modelling in medecine, geology, biology etc.
I autonomous exploration and mapping (SLAM)
I scientific computing : meshes for FEM
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Two main issues

Sampling

I How do we choose points in the domain ?
I What information do we need to know/measure about the

domain ?

Topology and Geometry

1. How do we connect the points ?
2. Under what sampling conditions can we compute a good

approximation of the domain ?
3. What is a good approximation ?

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



State of the art : implicit surface meshing

Marching cube

Lorensen & Cline [87]
Lopez & Brodlie [03] : topological consistency
Plantiga & Vegter [04] : certified topology using interval arithmetic

Morse theory

Stander & Hart [97]
B., Cohen-Steiner & Vegter [04] : certified topology

Delaunay refinement
Ruppert [95]
Shewchuk [02]

Chew [93]
B. & Oudot [03,04]
Cheng et al. [04]
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Shorten Pipeline 

Marching 
cubes 

Simplification Remeshing Mesh 1 

Mesh 2 

… 

Mesh N 

Mesh 
Generation 

Merging 

Standard mesh generation pipeline 

CGAL-mesh generation pipeline 
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Overview

I What is a good approximation of a surface ?
I Restricted Delaunay triangulation
I Surface mesh generation
I Extensions and applications
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What is a good approximation of
a surface ?
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Topological equivalence

Homeomorphism

Two subsets X and Y of Rd are said to be homeomorphic if
there exists a continuous, bijective map f : X → Y with
continuous inverse f−1.

Isotopy

Two subsets X and Y of Rd are said to be isotopic if there
exists a continuous map f : X × [0,1]→ Rd such that f (.,0) is
the identity of X , f (X ,1) = Y , and for each t ∈ [0,1], f (., t) is a
homeomorphism onto its image.
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Distance between two sets

Hausdorff distance

dH(X ,Y ) = max
(
supx∈X d(x ,Y ), supy∈Y d(y ,X )

)

Fréchet distance

dF (X ,Y ) = infh supp∈X d(p,h(p))
where h ranges over all homeomorphisms from X to Y
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Other guarantees

I Approximation of normals
I Approximation of areas
I Approximation of curvatures
I Aspect ratio of the facets

Winter School on Algorithmic Geometry Sampling and Meshing Curved Domains



Restricted Delaunay triangulation
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Data structuring by space subdivision
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Restricted Delaunay triangulation [Chew 93]

Definition
The restricted Delaunay
triangulation Del|S(P) is the set
of simplices of the Delaunay
triangulation whose dual
Voronoi faces intersect S
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Restricted Delaunay triangulation [Chew 93]

Definition
The restricted Delaunay
triangulation Del|O(P) is the set
of simplices of the Delaunay
triangulation whose dual
Voronoi faces belong to
Vor|O(P)
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A variant of the nerve theorem

Theorem [Edelsbrunner & Shah 1997]

If S is compact and without boundary
and if, for any face f ∈ Vor|S(E),

1. f intersects S transversally
2. f ∩ S = ∅ or is a topological ball

then Del|S(E) ≈ S

Homeomorphism

Two subsets X and Y of Rd are said to be homeomorphic if there exists a
continuous, bijective map f : X → Y with continuous inverse f−1.
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Proof of the closed ball property

Barycentric subdivision
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Sampling smooth surfaces [Amenta & Bern 1998]

Local feature size
I Medial axis of S : M(S)

set of points with at least two
closest points on S

I Local feature size : lfs(x)
∀x ∈ S, lfs(x) = d(x ,M(S))

ε-sample of S (ε-covering)

P ⊂ S, ∀x ∈ S = d(x ,P) ≤ εlfs(x)
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Restricted Delaunay triangulations of ε-samples
[Amenta et al. 1998-]

If P is an ε-sample of a C1,1 surface
S ⊂ R3, ε ≤ 0.12

I Del|S(S) provides good estimates of
I normals
I areas
I curvature [Cohen-Steiner, Morvan]

I There exists an isotopy
φ : Del|S(P)→ S

I supx (‖φ(x)− x‖) = O(ε2)
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Loose ε-samples
[B. & Oudot 2005]

Definition

1. Del|S(P) has a vertex on each connected
component of S

2. for any circumscribing ball Bf = (cf , rf ) of
any facet f of Del|S(P), rf ≤ ε lfs(cf )

Loose ε-samples are ε(1 + O(ε2))-samples
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Sketch of proofs
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Surfaces : local properties 1/2

Chord lemma

∀p,q ∈ S, ‖p − q‖ ≤ 2εlfs(p)⇒ sin(pq,Tp) ≤ ε

p

q Tp
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Surfaces : local properties 2/2

Facet normal lemma

Let f = pqr be a facet of Del(P) and assume that p̂ ≥ π
3 . If the

circumradius ρf of f is at most ε lfs(p), then sin(nf ,np) ≤ 2ε.

Proof

cB

cD
D

D′
f

p

q

r

αq
αr

Tp ∩ aff(f )

sin(nf , np) = sin(pcBcD) =
‖p−cD‖
‖p−cB‖

=
ρD

lfs(p)

p̂ = αq + αr ≥ π
3

wlog⇒ αq ≥ π
6

q 6∈ D ∪ D′ ⇒ ‖p − q‖ ≥ 2ρD sinαq ≥ ρD

ρD
lfs(p)

≤ ‖p−q‖
lfs(p)

≤ 2ρf
lfs(p)

≤ 2ε
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Proof of homeomorphism (sketch)

The conditions of the Nerve Th. are satisfied

1. Any edge of Vor|S(P) intersects S in one point

p

y

x

e ‖x − p‖ ≤ ε lfs(x) (*)
‖y − p‖ ≤ ε lfs(y) ≤ ε

1−ε lfs(x)
⇒ ‖x − y‖ ≤ 2 ε

1−ε lfs(x)

⇒ [xy ]
|∼ nx ≈ np

[xy ] ⊥ e∗ and the facet lemma
⇒ [xy ] oo np

2. Similar arguments show that faces of higher dimensions are
also topological balls
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π : Del|S(P)→ S is injective

x ∈ S
nx the normal to S at x
lx the normal fiber [x − r nx , x + r nx ] where r = ε lfs(x)

Injectivity lemma

If P is a loose ε-sample for ε ≤ 0.12, then lx intersects Del|S in
at most one point
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Proof of the injectivity lemma (by contradiction)

lx

x

cf ′

f ′

f

cf

γ O

S

f , f ′ two consecutive facets of
Del|S(P) that intersect lx

T = t1, ..., ts the set of tet.
intersected by lx between f and f ′

γ = (cf = c0, c1, ..., cs, cf ′ = cs+1)
ci = cc of ti , γ ⊂ skel(Vor(P))

with si = (ci+1 − ci)/‖ci+1 − ci‖

I cf and cf ′ are consecutive points of
lx ∩ S
⇒ (ncf · sf )× (ncf ′ · sf ′) < 0

I Facet normal lemma
⇒ (ncf · sf )× (ncf ′ · sf ′) < −1 + O(ε2)

I Delaunay⇒ (nx · si)× (nx · si+1) > 0
⇒ (nx · sf )× (nx · sf ′) > 0

I Normal variation lemma
⇒ ncf ≈ nx ≈ ncf ′

I Contradiction !
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π : Del|S(P)→ S is surjective

If P is a loose ε-sample of S with ε ≤ 1.12, then S is covered at
least once by π

Proof

I any edge of Del|S belongs to exactly two facets of Del|S
I every cc of S contains ≥ 1 vertex of Del|S(P)

I by contradiction : there exists an edge where the injectivity
lemma is violated

S
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Isotopy

If P is an ε-sample for ε ≤ 0.12, π induces an isotopy that maps
Del|S(P) to S
The isotopy moves the points by O(ε2)

Proof

I Homeomorphism: π is bijective and bicontinuous
I Isotopy : f : Del|S(P)× [0,1]→ S, f (x , t) = x + t π(x)−x

‖π(x)−x‖
I Fréchet distance : trivially ≤ ε supx∈S lfs(x)

for a better bound, adapt the chord lem.
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Surface mesh generation by
Delaunay refinement
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Surface mesh generation by Delaunay refinement

φ : S → R = Lipschitz function
∀x ∈ S, 0 < φmin ≤ φ(x) < εlfs(x)

ORACLE : For a facet f of Del|S(P),
return cf , rf and φ(cf )

A facet f is bad if rf > φ(cf )

Algorithm

INIT compute an initial (small) sample P0 ⊂ S

REPEAT IF f is a bad facet
insert in Del3D(cf )
update P and Del|S(P)

UNTIL all facets are good

[Chew 1993, B. & Oudot 2003]

>ε

Ωd
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The algorithm terminates

Properties of the output

I The output sample P is
I a covering : (loose ε-sample)
∀x ∈ S,d(x ,P) ≤ φ(x)(1 + O(φ2(x))) ≤ ε (1 + O(ε2) lfs(x)

I a packing : ∀p ∈ P,d(p,P \ {p}) ≥ min(φ(p), φ(q))
≥ φ(p)− ‖p − q‖
≥ 1

2 φ(p)

I |P| = O
(∫

S
dx
φ2(x)

)
I Del|S(P) is a good approximation of S
I all facets have a bounded aspect ratio rf

lf
≤ φ(cf )

minx∈vert(f ) φ(x)
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Size of the sample = O
(∫

S
dx
φ2(x)

)
Proof
Let ρ(x) = inf{r : |B(x , r)

T
P| = 2} and Bp = B(p, ρ(p)

2 ), p ∈ P

R
S

dx
ρ2(x)

≥
P

p
R

(Bp∩S)
dx
ρ2(x)

(the Bp are disjoint)

≥ 4
9

P
p

area(Bp∩S)

ρ2(p)
ρ(x) ≤ ρ(p) + ‖p − x‖

≤ 3
2 ρ(p))

≥ 4
9

P
p

3
16π = π

12 |P|

∀x ∈ Bp, ρ(x) ≥ ρ(p)− ‖x − p‖ ≥ 1
2 ρ(p)

ρ(p) = ‖p − q‖ ≥ φ(p)− ‖p − q‖ ⇒ ρ(p) ≥ φ(p)
2

φ(x) ≤ φ(p) + ρ(p)
2 ≤ 5

2 ρ(p) ≤ 5ρ(x)
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Less demanding oracle

Vor±|S(P) = edges of Vor(P) that intersect S
an odd number of times

if S = f−1(x), deciding whether an edge e = [pq] belongs to
Vor±|S(P) reduces to evaluating the sign of f at p and q

The isotopy proof still holds
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Computing lfs(x) is difficult

Computing rch(S) = infx∈S lfs(x) is much easier
rch(S) is either

I a local minimum of the smallest radius of curvature or
I the radius of a sphere with a diameter binormal to S

F (p) = 0
F (q) = 0
(p − q)×∇f (p) = 0
(p − q)×∇f (q) = 0
λ (p − q)2 = 1
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Applications

I Implicit surfaces f (x , y , z) = 0
I Isosurfaces in a 3d image (Medical images)
I Triangulated surfaces (Remeshing)
I Point sets (Surface reconstruction)
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Results on smooth implicit surfaces

Pentium IV, 3.6GHz

Surface Output size Combinatorial Bipolar oracle time CPU time
Tangle cube 4,242 8.31% 0.81% 8.52% 2.42 s
Trefoil 8,317 12.54% 0.93% 13.47% 5.14 s

% are wrt Del(P)
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Comparison with the Marching Cube algorithm

Delaunay Refinement Marching Cube
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Comparison with the Marching Cube algorithm

Delaunay refinement Marching cube
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Contouring isosurfaces in 3D images

Collaboration with Asclepios, Caı̈man and Odyssée INRIA project-teams
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Non smooth surfaces

Extensions to
k -Lipschitz surfaces [B. Oudot 06]
piecewise smooth surfaces [Dey et al., Rineau & Yvinec 07]
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Remeshing Polyhedral Surfaces
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Point set surfaces

Courtesy of P. Alliez
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Multi-view 3D reconstruction [Aganj et al 2007]
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Polyhedral intersection Marching cubes Delaunay meshing

NB: same mesh size
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Spatio-temporal visual hull
using 4D Delaunay meshing [Aganj et al 2007]

Fig. 7. Top: Some images of the “Dancer” dataset. Bottom: Some 3D slices extracted
from the 4D representation of the “Danser” dataset, obtained by our method.

spatio-temporal representation of the scene. This is done by labeling Delaunay
pentatopes as empty or occupied. A globally optimal assignment is efficiently
found using graph cuts. We have validated our method on real video sequences.
Our results prove the potential of what is, to our knowledge, the only globally
optimal spatio-temporal multiview reconstruction method.
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Spatio-temporal scenes modeling
from video sequences [Aganj et al 2007]

Approach

! Extend the previous algorithm to compute 4D visual hulls
⇒ 4D representation of the scene

Advantages over frame-by-frame computations

! Exploits time redundancy
! Continuous representation, allowing spatio-temporal

smoothing
! Reduction of flickering artefacts in synthesized views
! Handles naturally topological changes along time

Lecture 1 Sampling and Meshing Curved Domains– Requires an efficient implementation of DT in R4
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Spatio-temporal multi-view oracle

A Delaunay pentatope is
part of the approx.
spatio-temporal visual hull

⇔
its circumcenter projects
inside the time-interpolated
silhouette in all views

Refinement criterion = reprojection error

Accounts for spatio-temporal curvature
e.g. uniform motion→ coarser resolution

Computing 3D temporal slices

I The boundary B of STVH is a set of tetrahedra ⊂ R4

I March on the tet of B to compute the intersection of B with
a hyperplane t = constant

I A 3-facet of B → ∅, a triangle or a quad
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Delaunay deformable models [Pons & B. 2007]

Problem

To model moving surfaces undergoing large deformations and
topology changes

Our approach

I Represent the interface by a triangular mesh embedded in
the restricted 3D DT of interface points

I Update the mesh at each time step by updating the RDT
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The algorithm at time step n
input: Pn = sample , Ωn, Dn = Del|Ωn (Pn)

1. Move the points of Pn

2. Adapt the sample resolution→ Pn+1
2.1 replace a too short edge of Dn by its midpoint
2.2 add the midpoint of a too long edge

3. Deal with topology changes
3.1 discard tetrahedra that have been inverted

Ωn+1 =
⋃{τ̃ |τ ∈ Dn,orient(τ̃)× orient(τ) < 0}

3.2 Dn+1 = Del|Ωn+1 (Pn+1)
3.3 remove the vertices whose incident simplices all share the

same label

(a) (b) (c) (d) (e) (f)
Figure 4. Substeps of one iteration of our algorithm (see text).

adaptivity, by segmenting a synthetic image of two imbri-
cated toruses, starting from a sphere. The obtained evolu-
tion is shown in Figure 5. Note that we have purposely en-
forced different resolutions in the lower and upper parts of
the object. Whereas this is straightforward to achieve with
our approach, it is intricate when using Eulerian techniques
such as the level set method.

In this experiment, the number of iterations to reach con-
vergence is 120, the number of vertices ranges from 8,000
to about 22,000 along the evolution, and the total com-
putation time is 171 s. Thus, the efficiency of our algo-
rithm is comparable to the recent work of Lachaud and
Taton [26]: roughly one second per iteration for 10,000 ver-
tices. Comparing these timings to other related methods
[8, 12, 13, 17, 30, 31] turned out to be a tricky task, due
to missing information such as number of iterations, num-
ber of vertices, or hardware specifications. Moreover, as the
complexity of these algorithms is not linear, a fair compar-
ison would suppose to use the same number of vertices, if
not the same dataset.

4.2. Medical image segmentation
In our second experiment, we apply our approach to the

segmentation of real 3D medical data. In order to demon-
strate the ability of our approach to seamlessly handle any
number of materials, we use three different labels: air, soft
tissues (skin, muscles, . . . ) and bone. We set the velocity
of the model to a combination of mean curvature motion
and of a region-based data attachment term (see [29, 45]
for more details). Figure 6 shows the input CT image that
drives the motion and the different stages of the evolution.
Note how the initial random seeds corresponding to the dif-
ferent tissues grow and progressively merge, while creating
triple junctions, until they successfully partition the head.

Some movies of these experiments are available as sup-
plemental material. Also, we plan to make our code avail-
able at the time of the conference.

5. Conclusion and future work
We have proposed a robust and efficient Lagrangian ap-

proach for modeling dynamic interfaces between differ-
ent materials undergoing large deformations and topology

changes, based on the rigorous concept of restricted Delau-
nay triangulation, borrowed from computational geometry.
We have demonstrated the applicability and the efficiency
of our approach with some numerical experiments, includ-
ing the multi-label segmentation of real medical images. As
our algorithm easily extends to any number of dimensions,
our future work includes investigating its effectiveness in
4D, e.g. for dynamic scene reconstruction from multi-view
image sequences, or for spatio-temporal MRI segmentation.
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A sphere deforming into a torus

Figure 5. From left to right and top to bottom, different stages of the segmentation of two imbricated toruses, starting from a sphere, using
a non-uniform sampling resolution.

(a) (b) (c)

(d) (e) (f)
Figure 6. Application to multi-tissue medical image segmentation: (a) Some cuts of the input CT image. (b) Random initial seeds (soft
tissues in pink, bone in white). (c-d) Different stages of the evolution. (e) Final three-material reconstruction. Note that the head positioning
system is segmented as bone, which creates triple junctions in the final reconstruction. (f) Final bone surface.
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Application to image segmentation

Collaboration with J-P. Pons (CERTIS)
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Meshing 3D domains by Delaunay refinement

The surface mesher

I inserts points on the surface S
I triangulates the ambient space and extracts the Delaunay

triangulation restricted to S
I controls the shape of the triangles of Del|S(P)

Hence

I it can triangulate the domain O bounded by S at no
additional cost

I but does not provide control on the shape of the tetrahedra
inside O
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Meshing volumes with curved boundaries [Oudot et al. 05]

3-d mesh refinement algorithm

1. Run the surface meshing algorithm

2. Insert points inside O to remove the bad elements of
Del|S(P) and DelO(P)
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Sizing field

ψ(x) defined over O

Basic procedures

refine face(f ) : insert cf , the center of the surface
Delaunay ball circumscribing f

refine tet(t) : insert ct , the center of the ball
circumscribing t

Bad elements

bad facet f : rf > αψ(cf )
or f has a vertex 6∈ S

bad tet. t : tetrahedron whose circumscribing ball has
radius rt > ψ(ct ) or a radius-edge ratio > ρ
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Step 2 : Apply the following rules in order

1. if f ∈ Del|S(P) is a bad facet, refine face(f )

2. if t ∈ DelO(P) is a bad tetrahedron,
2.1 if ct is included in a surface Delaunay ball Bf ,

refine face(f )
2.2 else refine tet(t)

Properties

1. For appropriate α and ρ, the algorithm terminates
2. Del|S(P) = Del|S(P ∩ S) (cf. def of bad facet)

3. hence DelS(P) is a 2-triangulation isotopic to S
DelO(P) is a 3-triangulation isotopic to O
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Non uniform mesh
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Uniform mesh
33,012 initial vertices, 2,471 + 53,762 new vertices
20s (Pentium IV, 1.7 GHz)
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Multibody mesh generation from segmented images
input : a segmented 3D image (each voxel has a label)

label of a tetrahedron: label of its circumcenter

boundary facet : dual to a Voronoi edge whose endpoints have
two different labels

I We mesh simultaneously the various tissues using
Delaunay refinement

I The boundary facets produce a good approximation of the
interfaces

all boundary surfaces are water tight
and don’t intersect each other

I The tetrahedra of a given label produce a good
approximation of the associated tissue
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Multibody mesh generation from segmented images

Tissue-dependent resolution

77 tissues, 389K vertices, 536K boundary facets, 536K tets
23 mn

Collaboration with CERTIS
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Zigzaging effect along sharp features

Smooth surfaces 3D domains Sharp features

Meshing algorithm

Something needed to handle sharp edges

Input domain Output mesh
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Zigzaging effect along 1-junctions between 3 or more
tissues
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Meshing 3D domains with piecewise smooth
boundaries [Dey & Levine]

Protecting balls

I centered on the sharp features F of S
I B cannot contain the center of B′ 6= B
I the balls cover F
I no 3 balls intersect

Algorithm

I Use the weighted DT
I Insert the protecting balls first
I Insert unweighted points inside O as usual

Smooth surfaces 3D domains Sharp features

DelPSC : Protection of sharp edges
Cheng, Dey, Ramos [06], Dey, Levine [07,08]

Protecting Balls

! centered on sharp edges, covering sharp edges
not including each other’s center

! protecting ball B(p, r) is such that
for any F ∈ F including p
– B(p, r) ∩ F is a topological disk,
– small normal variation on B(p, r) ∩ F

! no three balls intersect.
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Meshing 3D domains with piecewise smooth
boundaries

6 052 vertices
37 106 cells
8,87o smallest dihedral angle
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D. Boltcheva & M. Yvinec & JD. Boissonnat / Feature preserving Delaunay mesh generation from 3D multi-material images

Figure 2: (1) Delaunay refinement 3D mesh. (2) Multi-material junctions: five 1-junctions and two 0-junctions. (3) Sampled
points on junctions. (4) Protecting balls. (5) Feature preserving Delaunay refinement 3D mesh. (6) A cut of the tetrahedral
mesh. (7) Histogram of the dihedral angles.

a. compute the centre c of its circumscribing ball
b. if c is included in a surface Delaunay ball of some

boundary facet f then refine_facet(f)
c. else refine_tet(t)

Delaunay refinement techniques are known to eliminate
all badly shaped elements except one class of tetrahedra
called slivers which have good radius-edge ratios but small
volumes. We remove these almost flat tetrahedra from the
final mesh using a sliver exudation algorithm [CDE∗99].

It is proven in [ORY05] that for appropriate choices of re-
finement criteria, the algorithm terminates. In practice, these
criteria are given by the 5-uple of parameters (α, l,d,β,L)
which can be tuned to meet some user-given sizing require-
ments. The algorithm outputs surface and volume meshes
which form a good approximation of the image partition
as soon as E is a sufficiently dense sample of its bound-
aries and volumes. By construction, Del(E)|Ω induces wa-
tertight surface meshes of each image material, free of
self-intersections. These meshes are consistent at all multi-
material junctions. However, since the 0- and 1-junctions are
not handled explicitly, they are poorly represented in the out-
put mesh. As shown on Fig.2(1), the 1-junction edges are
usually zigzagging and their 0-junction intersection vertices
are rarely preserved and may be multiple.

3. Feature preserving extension

In order to constrain the Delaunay refinement algorithm to
mesh properly 0- and 1-junctions, firstly we need to extract

these junctions from the input 3D image which is, let us re-
call, the only available input data for our meshing method.

In this work, we propose an algorithm which extracts the
0- and 1-junctions from the digital subdivision of the do-
main to be meshed defined by the 3D image. The digital
subdivision, borrowed from digital geometry and topology
[Lat97, FB00], is slightly different from the trilinear subdi-
vision induced by F̃ , but they are very close. So, as it will be
clarified hereafter, junctions defined into the digital subdivi-
sion can be successfully used to constrain junctions into the
trilinear subdivision.

3.1. Multi-material junction extraction

For the purposes of our novel multi-material junction extrac-
tion algorithm, we extend the image function F : Z3 → J
into a function G : R3 → J such as for any point p ∈ R3,
G(p) = F(pi), where pi is the point of Z3 closest to p. As
before, this function G defines a partition of the domain to
be meshed Ω = ∪i"=0Ωi. But now Ωi = G−1(i) for i ∈ J, is a
set of face-connected unit cubes with the same label. These
cubes are centred at points in Z3 and have closed facets in
R3 parallel to one of the coordinate plans. We call voxels (3-
cells) these cubes, surfels (2-cells) the unit facets bounding
voxels, linels (1-cells) the unit segments bounding surfels
and pointels (0-cells) the meeting points of linels. Every im-
age region Ωi is represented by a 3D cellular complex which
may contain more than one connected component. The in-
tervoxel boundary of an image region Ωi, denoted Bi, is de-
fined as the union of surfels which are incident to exactly
one voxel in Ωi. The union of intervoxel boundaries, denoted

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
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D. Boltcheva & M. Yvinec & JD. Boissonnat / Feature preserving Delaunay mesh generation from 3D multi-material images

Figure 7: Meshes generated from a segmented liver image representing 4 anatomical liver regions. The first row shows meshes
obtained with the usual Delaunay refinement algorithm. The second row shows meshes generated with our feature preserving
extension. The 3rd column shows some internal interfaces between the anatomical regions.

Experiment sphere liver-kidney liver segments
Image size 62×62×62 512×512×112 402×356×238

Image resolution (mm) 1×1×1 0.67×0.67×2 2×2×2
Refinement criteria

(α, l,d,β,L) (20,10,3,4,10) (30,12,2,4,14) (25,14,4,4,18)
# vertices 964 6142 12381

# boundary facets 1431 5439 9646
# tetrahedra 4434 31043 64485

Junction Extraction (sec) 0.72 4.56 21.35
Surface meshing (sec) 1.74 9.99 11.04
Volume meshing (sec) 1.13 5.82 17.23
Sliver exudation (sec) 3.75 13.82 48.64

Table 1: Quantitative results and parameters for three different 3D images. The α in the refinement criteria is given in degree
and l,d and L are given in mm. The four last raws give the computation times of different algorithm steps in seconds.

meshed the regions with maximum edge length for boundary
facets l = 16mm.

Table 1 lists the quantitative results for these two liver im-
ages and the multi-material sphere on Fig.2. The refinement
criteria for Delaunay refinement are given as the 5-uplet
(α, l,d,β,L) defined in Section 2. Note that our edge extrac-
tion and protection algorithm takes a few seconds while the
Delaunay refinement takes about 3 times more. In practice,
the algorithm has a reasonable computation time. A typi-
cal liver image (512×512×112) segmented into 20 different
materials is usually meshed with target edge length of 10mm
in less than half a minute.

5. Conclusion

In this paper, we have proposed an efficient and robust fea-
ture preserving Delaunay refinement meshing strategy for
segmented 3D images. Despite the topological complexity of
multi-material junctions, our algorithm delivers high-quality
meshes of image regions which are consistent with each
other along their common junctions. The method first ex-
tracts, from the input 3D image, all multi-material junctions
where 3 or more regions meet and uses a constrained De-
launay refinement algorithm which allows to approximate
accurately these sharp features in the output mesh.

The presented algorithm was successfully applied to gen-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
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CGAL mesh generator www.cgal.org

CGAL Mesh generation Engine 

while (            (simplex) !) 
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Overall Design 
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Shorten Pipeline 
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Standard mesh generation pipeline 

CGAL-mesh generation pipeline 
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