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Definition of Coresets
Example: Coresets for the MEB

Minimum enclosing ball
Let P a set of n points in Rd .
The minimum enclosing ball of P, MEB(P)
is the ball with minimum radius
whose closure contains all the points in P.

Complexity
Finding the MEB of a set of n points in Rd

is an LP-type problem : it can be solved in O(n)
but there is no algorithm with complexity polynomial wrt d .



Definition of Coresets
Example: Coresets for the MEB

Coreset for MEB
P a set of n points in Rd ,
r(P) the radius of MEB(P)

There exist a subset P ′ ⊂ P st:
- the size of P ′ is less 2

ε
- the center c(P ′) of MEB(P ′) statisfies

d(p, c(P ′)) ≤ (1 + ε)r(P), ∀p ∈ P

Such a subset is a coreset of P for MEB.

More generally
For a set P of n points in Rd and a given problem.
A coreset is a subset P ′ of P such that:
- the size of P ′ does not depend on d or n
- the solution for P ′ is an approximation of the solution for P.

ε-coreset : the solution for P ′ is within ε of the solution for P



Summary

An optimization problem
f (x) is a concave function on Rn,

f (αx + (1− α)y) ≥ αf (x) + (1− α)f (y)
τu is the unity simplex : {x ∈ Rn : xi ≥ 0,

∑
xi = 1}

max
x

f (x)

subject to x ∈ τu

A greedy algorithm provides sparse approximations of the optimum
and coresets for various problems such as

smallest distance to a polytope, MEB, SVM training



Algorithm 1.

1 Start with x(0) := argmax f [ei ] for ei vertex of τu.

2 For k = 0, . . . , κ find x(k + 1) from x(k) as follows

• i ′ := argmaxi{e>i ∇f (x(k))}
• α′ := argmaxα∈[0,1] f [x(k) + α(ei ′ − x(k))]
• x(k + 1) := x(k) + α′(ei ′ − x(k))

Frank-Wolfe algorithm
Maximizes concave f on polytope F .
At each step
1. find y ′ = argmaxy∈F f (x(k)) + (y − x(k))>∇f (x(k))
2. find x(k + 1) as the optimal x ∈ [x(k), y ′]

Algorithm 1. is a particular case of Frank-Wolfe algorithm:
when F = τu, y ′ = ei ′ if i ′ = argmaxi{e>i ∇f (x(k))}



The Wolfe dual

Primal

max
x∈Rn

f (x)

subject to x ∈ τu

Dual

min
z∈R,x∈Rn

z + f (x)− x>∇f (x)

subject to z ≥ maxi e>i ∇f (x)

⇐⇒
min
x∈Rn

w(x)

w(x) = z(x) + f (x)− x>∇f (x)

z(x) = maxi e>i ∇f (x)



The Wolfe dual

w(x)

x

f (x)

Dual

min
x∈Rn

w(x) = z(x) + f (x)− x>∇f (x)

z(x) = maxi e>i ∇f (x)

w(x) = f (x) + (ei ′ − x)> ∇f (x)
with i ′ = argmaxi{e>i ∇f (x)}
w(x) = maxy∈τu f (x) + (y − x)∇f (x)
w(x) = maxy∈τu lfx(y)
lfx the linear approximation of f at point x

If x∗ is the optimal point of primal,
x∗∗ the optimal point of dual

w(x) ≥ w(x∗∗) ≥ f (x∗) ≥ f (x)

In fact, strong duality holds: w(x) ≥ w(x∗) = f (x∗) ≥ f (x)



The constant Cf

f is assumed to be continuously differentiable.
Cf measures the non linearity of f
Cf is related to the Bregman distance defined by f

Cf = sup
1

α2

[
f (x) + (y − x)>∇f (x)− f (y)

]
sup taken over x , z , α with y = x + α (z − x) ∈ S

Taylor expansion yields
f (x +α(z − x)) = f (x) +α (z − x)>∇f (x) + 1

2α
2 (z − x)>∇2f (x̄)(z − x)

Cf ≤ sup
x,z∈τu,x̄∈[x,z]

−1

2
(z − x)>∇2f (x̄)(z − x)



The primal/dual approximation theorems

primal error: h(x) =
1

4Cf
[f (x∗)− f (x)] ,

gap: g(x) =
1

4Cf
[w(x)− f (x)]

Primal/dual theorems
If function f is continously differentiable
Theorem 1 At each iteration of Algorithm 1,

h(x(k + 1)) ≤ h(x(k))− g(x(k))2.
Theorem 2 Iterate x(k) ∈ k-face of τu and h(x(k)) ≤ 1

k+3 .

Theorem 3 Let ε > 0 and κ =
⌈

1
ε

⌉
∃k̂ ∈ [κ, 2κ], such that g(x(k̂)) ≤ ε.



Proof of primal/dual approximation Th1

Th1: At each iteration, h(x(k + 1)) ≤ h(x(k))− g(x(k))2.

Let x ∈ τu, i ′ := argmaxi{eT
i ∇f (x)}

w(x) = maxz∈τu lf x(z) = f (x) + (ei ′ − x)>∇f (x) .

Let y = x + α(ei ′ − x) with α ∈ [0, 1].

f (y) ≥ f (x) + (y − x)T∇f (x)− α2Cf , (by definition of Cf )

≥ f (x) + α (ei ′ − x)T ∇f (x)− α2Cf ,

≥ f (x) + α (w(x)− f (x))− α2Cf .

h(y) =
1

4Cf
[f (x∗)− f (y)]

≤ h(x)− α

4Cf
(w(x)− f (x)) +

α2

4

≤ h(x)− αg(x) +
α2

4
,



Proof of primal/dual approximation Th1

Th1: At each iteration, h(x(k + 1)) ≤ h(x(k))− g(x(k))2.

∀x ∈ τu and α ∈ [0, 1]
if i ′ := argmaxi{eT

i ∇f (x)}
and y = x + α(ei ′ − x)

⇒ h(y) ≤ h(x)− αg(x) +
α2

4
(1)

If x = x(k) and α = argmax{f (x + α(ei ′ − x))}, y = x(k + 1).

Then ∀α ∈ [0, 1], h(x(k + 1)) ≤ h(x(k))− αg(x(k)) + α2

4
Th1 then follows from the choice α = 2g(x(k)) possible if g(x(k)) ≤ 1

2 .

g(x(k)) ≤ 1
2 results from the choice of x(0) :

If g(x(k)) ≥ 1
4 , h(x(k) + α(ei ′ − x(k)) ≤ h(x(k)), ∀α ∈ [0, 1].

In particular, h(ei ′) ≤ h(x(k))⇔ f (ei ′) ≥ f (x(k)),
which contradicts: f (x(0)) ≥ f (e(i ′)) and f (x(k)) increasing with k.

�



Proof of primal/dual approximation Th2

Theorem 2 : Iterate x(k) ∈ k-face of τu and h(x(k)) ≤ 1
k+3 .

• x(k) is combination of at most k + 1 vertices of τu.

• From Th1 and ∀x , h(x) ≤ g(x)

h(x(k + 1)) ≤ h(x(k))− h(x(k))2

≤ h(x(k)) (1− h(x(k))) ≤ h(x(k))

1 + h(x(k))

Then Th2 follows by induction. �



Proof of primal/dual approximation Th3

Th3: Let ε > 0 and κ =
⌊

1
ε

⌋
, ∃k̂ ∈ [κ, 2κ], such that g(x(k̂)) ≤ ε.

From th2, ∀k ≥ κ, h(x(k)) ≤ ε.
Then from th1, h(x(k + 1)) ≤ h(x(k))− g(x(k))2

thus either g(x(k)) ≤ ε or h(x(k + 1)) ≤ h(x(k))− ε2.
If only the second case happens, h(x(2κ)) becomes negative. �



Sparse approximation and coresets

Coresets for the optimization problem
An ε-coreset for the problem maxx∈τu(Rn) f (x) is
a subset N ⊂ [1, . . . , n] of coordinates, such that the optimal point
x∗(N) = argmaxx∈τu(RN )f (x) satisfies w(x∗(N))− f (x∗(N)) ≤ 4εCf .

Sparse approximation
In O( 1

ε ) iterations, Algorithm 1. provides a point x ′

such that w(x ′)− f (x ′) ≤ 4εCf

with a small subset N ′ ⊂ [1, . . . , n] of non null coordinates.
But N ′ is not a coreset because the restricted dual wN(x) 6= w(x)
Therefore we can have that w(x∗(N ′))� w(x ′)).

To get an ε-coreset:
- either run Algorithm 1, for O( 1

ε2 ) iterations
- or run Algorithm 2, O( 1

ε ) iterations.



Getting Coresets

Theorem
If f function f is continously differentiable,
after κ = O( 1

ε2 ) iterations,
Algorithm 1 provides an approximate solution x(κ)
whose subset N of non null coordinates is an ε-coreset.

From Th1, ∀x ∈ τ, g(x) ≤
√

h(x)
by def., f (x∗(N)) ≥ f (x(κ))⇔ h(x∗(N)) ≤ h(x(κ))
From Th2, h(x(κ)) ≤ 1

κ+3 ≤
1
ε2

⇒ g(x∗(N)) ≤ 1

ε

�



Getting Coresets

Algorithm 2.

1 Start with i ′ := argmaxi f (ei ), N(0) = {i ′}.

2 For k = 0, . . . , κ find N(k + 1) from N(k) as follows

• If g(x∗(N(k))) ≤ ε return N(k).
• i ′ := argmaxie

>
i ∇f (x∗(N(k)))

• N(k + 1) := N(k) ∪ {i ′}

Theorem
Algorithm 2. yields an ε-coreset after κ = 2

ε iterations.

Proof
Let x = x(N(k)) and i ′ := argmaxie

>
i ∇f (x).

Then h(x(N(k + 1)) ≤ h(x + α(ei ′ − x) ≤ h(x)− g(x)2, ∀α ∈ [0, 1].
This is Th1 for x∗(N(k)). Th2 and Th3 apply to x∗(N(k)).
Therefore ∃k ∈ [κ/2, κ] such that g(x∗(N(k))) ≤ ε.

�



Polytope distance

Distance from a point o to a polytope conv(P)
P ∈ Rd = {p1, . . . , pn}, P = [p1, . . . , pn],
p ∈ conv(P) =

∑
i xipi = Px ←− x ∈ τu of Rn

d(o, conv(P))2 = min
p∈conv(P)

p>p = min
x∈τu

x>P>Px

f (x) = −x>P>Px

∇f (x) = −2P>Px

a point in P ←− a vertex of τu

a subset of P ←− a face of τu

mini pT
i p ←− maxi e>i ∇f (x)

o

p(k)

pi

p(k + 1)

Algorithm 1 = Algorithme de Gilbert.



Polytope distance

f (x) = −x>P>Px

∇f (x) = −2P>Px

Cf = sup
x,y∈τ

(x − y)>P>P(x − y)

Cf = sup
p,q∈P

‖p − q‖2 = diam(P)2

o

p(k)

pi

p(k + 1)

D = diam(P), δ = d(o, conv(P)),
1
ε iterations for an approximation of δ2 within 4D2ε:

‖p‖2 − ‖p∗‖2 ≤ 4D2ε =⇒ ‖p‖ − ‖p∗‖ ≤ 2
D2

‖p∗‖
ε

‖p‖ ≤
(

1 + 2ε
D2

δ2

)
‖p∗‖



Polytope distance (bis)

f (x) = −‖Px‖ = −
√

x> P> Px

∇f (x) = −P> Px

‖Px‖
w(x) = max

i
e>i ∇f (x)

w(x) = min
i

p>i p

‖p‖

∇2f =
P> P

‖Px‖
− P> Pxx> P> P

‖Px‖3

Cf ≤ sup
x,y∈τ

(x − y)> P> P(x − y)

δ
≤ D2

δ

o

p(k)

pi

p(k + 1)

After 1
ε iterations

‖p‖ − ‖p∗‖ ≤ 4
D2

δ
ε =⇒ ‖p‖ ≤

(
1 + 4ε

D2

δ2

)
‖p∗‖



Minimum enclosing ball
P ∈ Rd = {p1, . . . , pn}
P = [p1, . . . , pn]
b> = [p2

1 . . . , p
2
n]

conv(P) ←→ τu of Rn

p =
∑

i

xipi = Px ←→ x ∈ τu

Primal : max
x∈τu

f (x), f (x) = b> x − x> P> Px

∇f (x) = b> − 2P> Px , f (x)− x>∇f (x) = x> P> Px
e>i .∇f (x) = p2

i − 2p>i Px

Dual problem : min
x∈τu

w(x), w(x) = maxi (p
2
i − 2p>i Px) + x> P> Px

⇐⇒ min
p=Px∈conv(P)

maxi (p
2
i − 2pip + p2) = maxi (pi − p)2

p∗ = Px∗ is the center of MEB, w(x∗) is the square radius of MEB



Minimum enclosing ball

f (x) = b> x − x> P> Px =
∑

i

xip
2
i − p2

∇f (x) = b> − 2P> Px

e>i .∇f (x) = p2
i − 2p>i Px = (pi − p)2 − p2

Cf = sup
p,q∈P

‖p − q‖2 = diam(P)2 = D2

Algorithm 1 : Each iteration finds the point pi farthest from the current
approximation p(k) and look for the best center in [p(k), pi ]
2
ε iterations to get an approximate center p(k) with
maxi (pi − p(k))2 − r∗2 ≤ 4εD2 or

maxi (pi − p(k)) ≤ (1 + 2 D2

r∗2 ε)r
∗ ≤ (1 + 8ε)r∗.

Algorithm 2: Each iteration finds the point pi farthest from the current
center c(k) of MEB(P(k)) and set P(k + 1) = P(k) ∪ {pi}
2
ε iterations to get a subset P(k) whose MEB has center c(k) such that
maxi (pi − c(k)) ≤ (1 + 8ε)r∗.



SVM training

Support vector machine
A classical machine learning problem:
classify data points in two classes.

- A training set P of classified points is given.
- Find a hyperplan separating red and blue points.
- Each data will be classified using this hyperplan.

The best separating hyperplan is the hyperplan with largest margin :
largest distance to the nearest training point
Pb Find the maximal width empty strip between red and blue points
If general position : d + 1 points on the boundary of maximal strip

those points are called support vectors



Minkovsky Sum

Two sets P and Q,

Minkovsky sum P ⊕ Q = {p + q : p ∈ P, q ∈ Q}
Minkovsky difference P 	 Q = {p − q : p ∈ P, q ∈ Q}

• The Minkovsky sum (difference) of two polytopes is a polytope.

P = conv(P), Q = conv(Q), P ⊕ Q = conv ({p + q : p ∈ P, q ∈ Q})
P 	 Q = conv ({p − q : p ∈ P, q ∈ Q})

• P 	 Q is the set of transalations t s.t. t + Q ∩ P 6= ∅.
Hence, o ∈ P 	 Q iff Q ∩ P 6= ∅.



Minkovsky Sum and SVM Training

Let n be the unit normal vector to hyperplan h.
The width of the largest empty strip
formed by hyperplans normal to n is :
minp∈P,q∈Q n>(p − q)

n

Training SVM problem is :

max
‖n‖=1

min
p∈P,q∈Q

n>(p − q) = max
t

min
p∈P,q∈Q

(p − q)T t

‖t‖

which is just the Wolfe dual of :

min
t∈P	Q

‖t‖ = min
t∈P	Q

√
t>t.


