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Definition of Coresets
Example: Coresets for the MEB

Minimum enclosing ball

Let P a set of n points in R.

The minimum enclosing ball of P, MEB(P)
is the ball with minimum radius

whose closure contains all the points in P.

Complexity

Finding the MEB of a set of n points in RY

is an LP-type problem : it can be solved in O(n)

but there is no algorithm with complexity polynomial wrt d.



Definition of Coresets
Example: Coresets for the MEB

Coreset for MEB
P a set of n points in RY,
r(P) the radius of MEB(P)

There exist a subset P’ C P st:

- the size of P’ is less %

- the center c(P’) of MEB(P’) statisfies
d(p,c(P)) < (1+€e)r(P), VPP

Such a subset is a coreset of P for MEB.

More generally

For a set P of n points in R and a given problem.

A coreset is a subset P’ of P such that:

- the size of P’ does not depend on d or n

- the solution for P’ is an approximation of the solution for P.

e-coreset : the solution for P’ is within € of the solution for P



Summary

An optimization problem
f(x) is a concave function on R”,
flax + (1 —a)y) > af(x) + (1 — )f(y)
Ty is the unity simplex : {x e R" : x; > 0, x; = 1}

max f(x)

subject to x € 7,

A greedy algorithm provides sparse approximations of the optimum
and coresets for various problems such as

smallest distance to a polytope, MEB, SVM training



Algorithm 1.
@ Start with x(0) := argmax f[e;] for e; vertex of 7,.
@® For k=0,...,k find x(k 4+ 1) from x(k) as follows
o " := argmax;{e)] Vf(x(k))}

o o = argmax,cp,) f [x(k) + a(ei — x(k))]
o x(k+1):=x(k)+ (e — x(k))

Frank-Wolfe algorithm

Maximizes concave f on polytope F.

At each step

L. find y' = argmax, ¢ f(x(k)) + (v — x(k))T V£ (x(k))
2. find x(k 4 1) as the optimal x € [x(k),y’]

Algorithm 1. is a particular case of Frank-Wolfe algorithm:
when F = 7,, y' = ey if i’ = argmax;{e,” Vf(x(k))}



Primal

)

subject to x € 7,

Dual

min
zeR,xeR"

subject to

fip W)

The Wolfe dual

z+ f(x) — x" VFf(x)

z > max; ¢ Vf(x)

—

= z(x) + f(x) — x" Vf(x)
= max; e/ Vf(x)



The Wolfe dual

Dual

)I(‘Té]l']{ln w(x) = z(x)+f(x)— x" Vf(x)

z(x) = max; e VF(x)

w(x) = F(x) + (e —x)T VF(x)

with i’ = argmax;{e,” Vf(x)}

w(x) = maxyer, f(x) + (¥ — x)VF(x)
w(x) = maxyer, lf(y)

If, the linear approximation of f at point x

r

If x* is the optimal point of primal,
o - - w(x)
x** the optimal point of dual

In fact, strong duality holds: w(x) > w(x*) = f(x*) > f(x)
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The constant Cr

f is assumed to be continuously differentiable.
Cr measures the non linearity of f
Cr is related to the Bregman distance defined by f

1
Cr = sup — [f(x) + (y = x) T VF(x) = £(y)]
sup taken over x,z,a withy =x+a(z—x) €S

Taylor expansion yields
f(x+a(z—x)) = f(x)+a(z—x)" VF(x)+ %az (z—x)T V2 (3)(z - x)

G < sup —l(z—x)—r V2 (x)(z — )

X,zE1,,XE[x,2]



The primal/dual approximation theorems

primal error: h(x) = 4i(:f [f(x*) = f(x)],
gop g0) = ¢ [wlx) - F(x)

Primal/dual theorems

If function f is continously differentiable
Theorem 1 At each iteration of Algorithm 1,
h(x(k +1)) < h(x(k)) — g(x(k))>.
Theorem 2 Iterate x(k) € k-face of 7, and h(x(k)) < 735
Theorem 3 Let € > 0 and x = [1]
3k € [k, 2k], such that g(x(k)) < e.



Proof of primal/dual approximation Thl

Thl: At each iteration, h(x(k + 1)) < h(x(k)) — g(x(k))>.

Let x € 7, i’ := argmax;{e] VFf(x)}
w(x) = maxzer, Ifx(2) = f(x) + (e — x)T VF(x) .

Let y = x + a(ey — x) with « € [0, 1].

f(y) f(x) + (y — x)"VF(x) — a®Cy, (by definition of Cr)
F(x)+ ey — x)T VF(x) — a2 C,

f(x) + a(w(x) — f(x)) — *Cr.
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Proof of primal/dual approximation Thl

Thl: At each iteration, h(x(k + 1)) < h(x(k)) — g(x(k))>.

Vx € 7, and a € [0, 1] 2
if i' := argmax;{e Vf(x)}
and y = x + ey — x)
If x = x(k) and a = argmax{f(x + a(ey — x))}, y = x(k + 1).
Then Va € [0,1], h(x(k 4+ 1)) < h(x(k)) — ag(x(k)) + %2
Th1 then follows from the choice a = 2g(x(k)) possible if g(x(k)) <

g(x(k)) < % results from the choice of x(0) :

If g(x(k)) > 3. h(x(k) + a(er — x(k)) < h(x(k)), VYo € [0,1].

In particular, h(ey) < h(x(k)) < f(ei) > f(x(k)),

which contradicts: f(x(0)) > f(e(i")) and f(x(k)) increasing with k.

= h(y) < h(x) —0g(x) + 5 ()
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Proof of primal/dual approximation Th2

Theorem 2 : Iterate x(k) € k-face of 7, and h(x(k)) < 715.

e x(k) is combination of at most k + 1 vertices of 7.

e From Thl and Vx, h(x) < g(x)
h(x(k+1)) < h(x(k)) — h(x(k))

< hx(k)) (1 = h(x(k))) < ;

Then Th2 follows by induction.



Proof of primal/dual approximation Th3

1], Jk € [k, 2k), such that g(x(k)) < e
) <
Then from thl, h(x(k + 1)) < h(x(k)) — g(x(k))?
thus either g(x(k)) < € or h(x(k + 1)) < h(x(k)) — €

If only the second case happens, h(x(2x)) becomes negative.

Th3: Lete>0andn—L
From th2, Vk > &, h(x(k)



Sparse approximation and coresets

Coresets for the optimization problem
An e-coreset for the problem max, ¢,z f(x) is

a subset N C [1,...,n] of coordinates, such that the optimal point
x*(N) = argmax,c, rn)f(x) satisfies w(x*(N)) — f(x*(N)) < 4eCs.

Sparse approximation

In O(2) iterations, Algorithm 1. provides a point x’

such that w(x’) — f(x’) < 4eCr

with a small subset N’ C [1,..., n] of non null coordinates.

But N is not a coreset because the restricted dual wy(x) # w(x)
Therefore we can have that w(x*(N')) > w(x')).

To get an e-coreset:

- either run Algorithm 1, for O(%) iterations
- or run Algorithm 2, O(1) iterations.



Getting Coresets

Theorem

If f function f is continously differentiable,

after k = O(%) iterations,

Algorithm 1 provides an approximate solution x(x)

whose subset N of non null coordinates is an e-coreset.

From Thl, Vx € 7, g(x) < +/h(x)
by def.,  F(x*(N)) = f(x(r)) = h(x*(N)) < h(x(x)) o = g(x*(N))
From Th2, h(x(k)) < 25 <%
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Getting Coresets

Algorithm 2.
@ Start with /' := argmax;f(e;), N(0)={/'}.
@® For k=0,...,x find N(k+ 1) from N(k) as follows

o If g(x*(N(k))) < e return N(k).
o i’ :=argmax;e; VF(x*(N(k)))
o N(k+1):=N(k)u{i'}

Theorem
Algorithm 2. yields an e-coreset after k = % iterations.

Proof

Let x = x(N(k)) and i’ := argmax;e;” Vf(x).

Then h(x(N(k + 1)) < h(x + aer — x) < h(x) — g(x)?, Va € [0,1].
This is Thl for x*(N(k)). Th2 and Th3 apply to x*(N(k)).
Therefore 3k € [r/2, k] such that g(x*(N(k))) <.



Polytope distance

Distance from a point o to a polytope conv(P)
PERd = {pla"'apn}v P = [p17"'7pn]v
p € conv(P) = >, xipi = Px «— x € 1, of R”

d , P 2: H T — H TPTP
(0 com (P = L Bhlp P P = < PP

f(x) —x"PTPx
Vf(x) = —2P"Px

apointin P «— avertex of 7,

a subset of P «— afaceof 7,

minj p/ p —— max; e VF(x)

Algorithm 1 = Algorithme de Gilbert.



Polytope distance

flx) = —x"PTPx
Vf(x) = —2P"Px
G = sup (x—y) PTP(x—y) )
X, yeT
G = sup |p—q|?=diam(P)?
p,qEP

D = diam(P), 6 = d(o, conv(P)),
% iterations for an approximation of §2 within 4D?%e:

D2
S 25—e
[P

D? N
(1425 ) Ie°]

lplI? = 1lp*|I* < 4D% = [Ipll - [lp"|
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el



Polytope distance (bis)

f(x) = —|Px|]|=-VxTPT Px
PT Px
Vix) = —-——%
&) [P
w(x) = max ¢ Vf(x)
T
p. p
w(x) = m|n
&) 171
, PTP PTPxTPTP
V3 = - d
|| x|l || Px|l
O \T pT _ 2
G < sup (x—y) P P(x y)gg
X, yET 6 6

After L iterations

2

LD D?
Ioll = 191 < 45 == ol < (1+4¢5 ) 1"



Minimum enclosing ball

PERd:{F’la"wPﬂ}
P:[pla"'7pn]
b =[pi....p7]
conv(P) «— 7, of R”

p:Zx,-p,-:Px — XET,

1

Primal : max f(x), f(x)=b"x—x" P Px
Vi(x)=b" —2PT Px, f(x)—x"Vf(x)=x"PT Px
e .Vf(x) = p? —2p, Px
Dual problem : n;in w(x), w(x) = maxi(p? —2p;' Px) +x" PT Px
: 2 2 2
= i(pf —2p; = maxi(p; —
) X (p; —2pip + p~) = max;(pi — p)

p* = Px* is the center of MEB, w(x*) is the square radius of MEB



Minimum enclosing ball

flx) = bTx—xTPTPx:Zx,-p,z—p2
Vf(x) = b" —2P" Px
e Vf(x) = p?—2p'Px=(pi—p)?—p°
Cr = sup_|[lp—g|* = diam(P)* = D
p,qeP

Algorithm 1 : Each iteration finds the point p; farthest from the current
approximation p(k) and look for the best center in [p(k), pi]

% iterations to get an approximate center p(k) with

max;(p; — p(k))? — r*? < 4eD? or

max;(p; — p(k)) < (1+ 2222 e)r* < (14 8e)r*.

Algorithm 2: Each iteration finds the point p; farthest from the current
center c(k) of MEB(P(k)) and set P(k + 1) = P(k) U {p;}

2 jterations to get a subset P(k) whose MEB has center c(k) such that
max;(p; — c(k)) < (1 + 8e)r*.




SVM training

Support vector machine

A classical machine learning problem:
classify data points in two classes.

- A training set P of classified points is given.
- Find a hyperplan separating red and blue points.

- Each data will be classified using this hyperplan.

The best separating hyperplan is the hyperplan with largest margin :

largest distance to the nearest training point

Pb Find the maximal width empty strip between red and blue points

If general position : d + 1 points on the boundary of maximal strip
those points are called support vectors



Minkovsky Sum

A

Two sets P and Q,

Minkovsky sum PeQ={p+q:peP, ge R}
Minkovsky difference PoQ={p—qg:peP,geQ}

e The Minkovsky sum (difference) of two polytopes is a polytope.

P =conv(P), @Q=conv(Q), PO Q=conv({p+qg:p€P, g€ Q})
PoQ=conv({p—qg:peP, ge Q})

e Po Q is the set of transalations t s.t. t+ QNP # 0.
Hence, o€ PSS Q iff QN P # (.



Minkovsky Sum and SVM Training

Let n be the unit normal vector to hyperplan h.
The width of the largest empty strip

formed by hyperplans normal to nis :

minpep qee N’ (P — q)

Training SVM problem is :
-
— t
ma n"(p—q)=max min (p—a)t
llnll= pehgea t pePqce ||t]|

which is just the Wolfe dual of :

min_[|t]| = n;ienQVtTt.
te

tePeQ



