Mesh Generation through Delaunay Refinement 2D Meshes

Mariette Yvinec

MPRI 2009-2010, C2-14-1, Lecture 4a ENSL Winter School, january 2010

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Introduction to meshing

What is a mesh?

A mesh is a cellular complex partitioning a given object or domain into elementary cells

Elementary cells : cells admits a bounded description Cellular complex : two cells are disjoint

or share a lower dimensional faces

Structured and unstructured meshes Structured meshes

Structured meshes

Every vertex has the same combinatorial environnement i.e the same number of incident faces of any dimension. ▷ economic storage, efficient for e.g. FEM applications

Structured and unstructured meshes

Unstructured meshes

Unstructured meshes

Mostly simplicial meshes.

▷ highly flexible to fit the domain geometry.

Application domains

Meshes are used in the following domains

- Graphics applications
- Modelisation
 - CAD-CAM applications
 - shape numerisation
 - medical imaging
- Scientific computing
 - solving PDE through finite elements
- Simulation
 - crack simulations, fluid dynamics etc...

The goals of a mesh generator

- respect boundaries and internal constraints
- · edge length according to size requirement
- cells according to shape criteria
- control of the number of vertices

Triangulations and Meshes Outline

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Triangulations, Delaunay triangulations
 Voronoi dagrams, the space of spheres
 Regular triangulations and power diagrams
- Constrained and Delaunay constrained triangulations
- Meshing using Delaunay refinement
- Meshing using other methods (octrees, advancing front)
- Quality of meshes

The 2D meshing problem

Input :

- a PSLG C (planar straight line graph)
- a bounded domain Ω to be meshed.
 Ω is bounded by some edges in C

Output : a mesh of domain Ω

- i. e. a triangulation T such that
 - vertices of C are vertices of T
 - edges of C are union of edges in T
 - the triangles of *T* that are ⊂ Ω have controlled size and quality

Quality measures of triangle

minimum angle α maximum angle $2\pi - 2\alpha$

radius-edge ratio $\rho = \frac{\text{circumradius}}{\text{min edge length}} = \frac{1}{2 \sin \alpha}$

edge-elevation ratio $\rho_{h} = \frac{\text{max edge length}}{\text{min elevation length}}$

$$\frac{1}{\sin\alpha} \le \rho_h \le \frac{2}{\sin\alpha}$$

radius-radius ratio

 $\rho_i = \frac{\text{circumradius}}{\text{inscribed circle radius}}$

$$\frac{1}{\sin\alpha} \le \rho_i \le \frac{3}{2\sin^2\alpha}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- use Delaunay (and constrained Delaunay) triangulations
- insert Steiner vertices at circumcenters to kill bad triangles

Definition (Bad triangle)

A triangle is bad if :

- either it is oversized
- or its radius-edge ratio ρ is greater than a constant B.

$$\begin{split} \rho \geq B & \Longleftrightarrow & \sin \alpha \leq \frac{1}{2B} \\ & \Longleftrightarrow & \alpha \leq \arcsin \frac{1}{2B} \end{split}$$

Base of Delaunay refinement 2.

C PSLG describing the constraints T triangulation to be refined in a mesh

Respect of the PSLG

- Insert Steiner vertices on edges of *C* until constrained subedges are edges of *T*
- Constrained subedges are required to be Gabriel edges.

Gabriel edges

An edge of a triangulation is a Gabriel edge if its smallest circumcirle encloses no vertex of T

Encroachment

An edge e is encroached by point p if the smallest circumcirle of e encloses p.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Delaunay refinement alogrithm

C PSLG bounding the domain Ω to be meshed. T Delaunay triangulation of the current set of vertices $T_{|\Omega} = T \cap \Omega$ constrained subedges : subedges of edges of C

- Initiallisation T = Delaunay triangulation of vertices of C
- Refinement Apply one of the following rules,

with priority according to index, until no one applies

```
    if there is an encroached constrained subedge e,
refine-edge(e) i.e.
insert c = midpoint(e) in T
```

```
2) if there is a bad facet f \in T_{|\Omega},

refine-facet-or-edge(f) i.e.:

c = \text{circumcenter}(f)

if c encroaches a constrained subedge e, refine-edge(e).

else insert(c) in T
```

The Delaunay refinement theorem

Theorem (Ruppert 95 - Shewchuk 98)

The Delaunay refinement algorithm ends provided that :

- the size condition is an upper bound on triangles circumradii
- the shape condition is an upper bound B ≥ √2 on radius-edge ratio of triangles
- adjacent PSLG edges

 (i. e. PSLG edges sharing a vertex)
 do not form angles smaller than 60°

The resulting mesh has no triangle with an angle less than arcsin $\frac{1}{2B}$ (= 20,7° for $B = \sqrt{2}$)

Example of 2D meshes

generated by Delaunay refinement

bounds on α 15°, 25.6°, 34.2° respectively

Image: A matrix a

Proof of Delaunay refinement theorem

Assume first there is no sizing field.

Main idea

- Prove a lower bound on shortest distances between vertices
- Use a volume argument

to bound the number of added (Steiner) vertices

Lemma (Steiner vertices)

Any Steiner vertex is inside or on the boundary of the domain $\boldsymbol{\Omega}$ to be meshed

Proof.

If the circumcenter cc(t) of triangle t is not inside Ω , some constrained subedge e of T is encroached by the vertices of t.

Local feature size

Definition (Local feature size)

Given a PSLG C and a point p, the local feature size lfs(p) of p is the radius of the smallest disk centered in p and intersecting two disjoint elements of C, i.e.

- either two vertices of *C*
- or an edge and a non incident vertex
- or two disjoint edges of *C*.

lfs() is a Lipschitz function

 $|\mathsf{lfs}(u) \leq |\mathsf{lfs}(v) + ||uv||$

Insertion radius

Definition (Insertion radius)

rejected vertex = circumcenter considered for insertion and rejected for encroachment

v is a vertex of T or a rejected vertex. The insertion radius r_v of v is the length of the smallest edge incident to v right after insertion of v if v is inserted in T.

- v is a vertex of PSLG C
 - r_v = distance to nearest vertex in C.
- v = circumcenter(t), (v inserted or rejected) $r_v = \text{circumradius}(t)$
- $v \in \text{edge } e \text{ encroached by } p$ $r_v = ||e||/2 \text{ if } p \text{ rejected}$ $r_v = \text{distance to closest encroaching vertex}$ otherwise

Parent vertex

Definition (Parent vertex)

Each added or rejected vertex v is associated a parent vertex p.

- v is a vertex of PSLG C, no parent.
- v = circumcenter(t), (v inserted or rejected)
 p is the vertex of the smallest edge of t
 that has been inserted last.
- v inserted in an encroached edge e
 p is the encroaching vertex closest to v
 (p may be a vertex of T or a rejected vertex.)

Insertion radius lemma

Lemma (Insertion radius)

For any vertex v, inserted in the mesh or rejected, $r_v \ge lfs(v)$ or $r_v \ge cr_p$ where p is the parent of v. More precisely,

- **1** If v is a vertex of the PSLG, $r_v \ge lfs(v)$
- 2 If v is a circumcenter, $r_v \ge Br_p$
- 3 If $v \in a$ PSLG edge and p is rejected, $r_v \ge \frac{r_p}{\sqrt{2}}$
- 4 if v and p are in PSLG edges: $r_v = ||pv||$ - the two edges are disjoint, $r_v \ge lfs(v)$ - they form an angle $\alpha \ge 60^\circ$, $r_v \ge r_p$ The two edges form an angle α $r_v \ge \frac{r_p}{2\cos\alpha}$, if $\alpha \in [45^\circ, 90^\circ]$ $r_v \ge \sin\alpha r_p$ if $\alpha \le 45^\circ$

Insertion radius lemma

ь

Case 4

v and p are in PSLG edges both edges share a vertex ${\it a}$ and form angle α

ш

$$\begin{aligned} r_{v} &= \|pv\| & \frac{r_{v}}{r_{p}} \geq \frac{\|pv\|}{\|ap\|} \\ r_{p} &\leq \|ap\| & \frac{r_{v}}{r_{p}} \geq \frac{\|pv\|}{\|ap\|} \\ \|pv\|^{2} &= \|ap\|^{2} + \|av\|^{2} - 2\|ap\| \|av\| \cos \alpha \\ \frac{\|pv\|^{2}}{\|ap\|^{2}} &= 1 + \frac{\|av\|^{2}}{\|ap\|^{2}} - 2\frac{\|av\|}{\|ap\|} \cos \alpha & \text{minimum} = \sin^{2} \alpha \text{ for } \frac{\|av\|}{\|ap\|} = \cos \alpha \\ \text{but } p \text{ is in smallest circumcircle of edge } e = ab \end{aligned}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Proof of Delaunay refinement theorem

 $\begin{aligned} \mathsf{lfs}_{min} &= \mathsf{minimum} \text{ distance between two disjoint elements of } C \\ &= \mathsf{min} \ \mathsf{lfs}(p) \text{ for } p \in \mathsf{vertices of } C \end{aligned}$

Lemma (Lower bound on edge length)

If the PSLG C has no pair of adjacent edges forming an angle less than 60°, if there is no size condition, and if the upper bound on radius-edge ratio is $B \ge \sqrt{2}$,

the Delaunay refinement produces no edge in T smaller than lfs_{min} .

End of Delaunay refinement theorem proof

- ${\cal T}$ is a Delaunay triangulation with no edge shorter than $~{\rm lfs}_{\it min}$
- \implies the disks around each vertex with radius $\frac{|fs_{min}|}{2}$ do not intersect.
- n = number of vertices in the mesh

$$n\frac{1}{6}\pi \frac{|\mathsf{fs}_{\min}^2|}{4} \leq \operatorname{area}(\Omega)$$

Proof of the lower bound on edge length

Assume the lower bound holds until the insertion of vertex v in TFor any ancestor q of v, $r_q \ge \text{lfs}_{min}$. p the parent of vg the parent of p

- v is a circumcenter, $r_v \ge Br_p$
- v in a PSLG edge, p rejected

$$r_{v} \geq rac{r_{p}}{\sqrt{2}} \geq rac{Br_{g}}{\sqrt{2}} \geq r_{g}$$

- v and p in a PSLG edge
 - disjoint edges

$$r_v \geq |fs(v) \geq |fs_{min}|$$

- edges forming angle $\alpha \ge 60^{\circ}$ $r_{v} \ge \frac{r_{p}}{2 \cos \alpha} \ge r_{p}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Delaunay refinement Weighted density

weighted density $d(v) = \frac{|fs(v)|}{r_v}$

Lemma (Weighted density lemma 1) For any vertex v with parent p, if $r_v \ge cr_p$, $d(v) \le 1 + \frac{d(p)}{c}$

Proof. $|\mathsf{lfs}(v) \leq |\mathsf{lfs}(p) + ||pv|| \leq |\mathsf{lfs}(p) + r_v \leq d(p)r_p + r_v \leq \left(\frac{d(p)}{c} + 1\right)r_v \quad \Box$

Lemma (Weighted density lemma 2)

There are constants $D_e \ge D_f \ge 1$ such that : for any circumcenter v, inserted or rejected, $d(v) \le D_f$ for any vertex v inserted in a PLSG edge, $d(v) \le D_e$. Thus, for any vertex of the mesh $d(v) \le D_e \iff r_v \ge \frac{lfs(v)}{D_e}$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

Proof of weighted density lemma 2

Assume that lemma is true up to the insertion of vertex \boldsymbol{v} \boldsymbol{p} parent of \boldsymbol{v}

•
$$v$$
 is a circumcenter
 $r_v \ge Br_p \Longrightarrow d(v) \le 1 + \frac{d(p)}{B}$ assume $1 + \frac{D_e}{B} \le D_f$ (1)
• v is on a PSLG edge e
• p is a PSLG vertex
or $p \in PSLG$ edge $e', e \cap e' = \emptyset$
 $r_v = lfs(v) \Longrightarrow d(v) \le 1$
• p is a rejected circumcenter
 $r_v \ge \frac{r_p}{\sqrt{2}} \Longrightarrow d(v) \le 1 + \sqrt{2}d(p)$
assume $1 + \sqrt{2}D_f \le D_e$ (2)
• $p \in PSLG$ edge e' , e and e' form angle α
 $r_v \ge \frac{r_p}{2\cos\alpha} \Longrightarrow d(v) \le 1 + 2\cos\alpha d(p)$
assume $1 + 2\cos\alpha_{min}D_e \le D_e$ (3)

Proof of weigthed densiy lemma (end)

There are
$$D_e \ge D_f \ge 1$$
 such that :
 $1 + \frac{D_e}{B} \le D_f$ (1)
 $1 + \sqrt{2}D_f \le D_e$ (2)
 $1 + 2 \cos \alpha_{min}D_e \le D_e$ (3)

$$\begin{array}{ll} (2) & \Longrightarrow & D_f \leq D_e \\ (1) + (2) & \Longrightarrow & 1 + \frac{D_e}{B} \leq D_f \leq \frac{D_e - 1}{\sqrt{2}} \Longrightarrow & D_e \geq \frac{(1 + \sqrt{2})B}{B - \sqrt{2}} \\ (3) & \Longrightarrow & D_e \geq \frac{1}{1 - 2\cos\alpha_{\min}} \end{array}$$

$$D_e \ge \max\left(rac{(1+\sqrt{2})B}{B-\sqrt{2}}, rac{1}{1-2\coslpha_{min}}
ight)$$
 $D_f = 1 + rac{D_e}{B}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Delaunay refinement

Upper bound on the number of vertices

Theorem (A relative bound on edge length) Any edge of the mesh incident to vertex v has length I st : $I \ge \frac{lf_{S(v)}}{D_{a}+1}$

Proof.

Edge vw

• if w is inserted before v, $||vw|| \ge r_v \ge ||fs(v)/D_e||$

• else, $\|vw\| \ge r_w \ge ||\operatorname{fs}(w)/D_e \ge (||\operatorname{fs}(v) - ||vw||)/D_e$

Upper bound on the number *n* of vertices of the mesh For any vertex *v*, disc $\Sigma(v) = (v, \rho(v))$ with $\rho(v) = \frac{|f_{S(v)}|}{2(D_e+1)}$

$$\int_{\Omega} \frac{dx}{|\mathsf{lfs}(x)^2} \ge \sum_{v} \int_{\Sigma(v)\cap\Omega} \frac{dx}{|\mathsf{lfs}(x)^2} \ge \sum_{v} \frac{1}{6} \frac{\pi \rho(v)^2}{(|\mathsf{lfs}(v) + \rho(v))^2} \ge \frac{n}{6} \frac{\pi}{(3+2D_e)^2}$$

Lower bound on number of mesh vertices

Theorem (Lower bound on the mesh size)

Any mesh with minimum angle α of a domain Ω has a number n of vertices such that

$$n\geq rac{1}{3c^2\pi}\int_{\Omega}rac{dx}{|\mathit{lfs}(x)|^2},$$

where the constant c depends on the minimum angle α .

Lemma (Edge length ratio 1)

Edge length ratios in a mesh with minimum angle α between two edges of the same triangle $\frac{lb}{la} \leq \frac{1}{\sin \alpha}$ two edges incident to the same vertex $\frac{lb}{la} \leq (\frac{1}{\sin \alpha})^{\frac{2\pi}{\alpha}}$

Lower bound on number of mesh vertices

Definition

$$T(\Omega)$$
 a mesh of domain Ω
point $p \in \Omega$, $Im(p) = Iength$ of the longest edge
of $t \in T(\Omega)$ including p

Lemma (Longest edge lemma 1)

If $T(\Omega)$ has minimum angle α for p and q in adjacent triangles, for any p and q in Ω , with

$$egin{aligned} & lm(q) \leq rac{1}{\sinlpha} \ lm(p) \ & lm(q) \leq c_1 lm(p) + c_2 \|pq\| \end{aligned}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$c_{1} = \left(\frac{1}{\sin\alpha}\right)^{\left\lfloor\frac{\pi}{\alpha}\right\rfloor + 1}$$

$$c_{2} = 4\left(\frac{1}{\sin\alpha}\right)^{\left\lfloor\frac{\pi}{\alpha}\right\rfloor + 2}$$

Proof of longest edge lemma 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A fan : a set of consecutive triangles crossed by pqwith two vertices on the same side of pqA fan has at most $K = \lfloor \frac{\pi}{\alpha} \rfloor$ triangles

k number of triangles intersected by pqif k < K + 3, $\operatorname{Im}(q) \leq \operatorname{Im}(p) \left(\frac{1}{\sin \alpha}\right)^{k-1} \leq \operatorname{Im}(p) \left(\frac{1}{\sin \alpha}\right)^{K+1}$ if $k \geq K + 3$, pq intersects at least one transition edge $p_i p_{i+1}$ between two fans

Proof of longest edge lemma 1 (end)

 $p_i p_{i+1}$ last transition edge crossed by pq

 $t = t_i$ or t_{i+1} depending on midpoint of p_i, p_{i+1} wrt pq

 $\begin{array}{l} h \text{ elevation of } t, \ p' \text{ point in } t \\ \|pq\| \geq \frac{h}{2} \\ h = la \sin b = lb \sin a \\ 2h \geq (la + lb) sin\alpha \geq lm(p') \sin \alpha \end{array}$

$$\begin{split} \mathsf{Im}(p') &\leq \left(\frac{2}{\sin\alpha}\right)h \leq \left(\frac{4}{\sin\alpha}\right)\|pq\| \\ \mathsf{Im}(q) &\leq \|pq\| \left(\frac{4}{\sin\alpha}\right) \left(\frac{1}{\sin\alpha}\right)^{K+1} \end{split}$$

Lower bound on nb of mesh vertices

Lemma (Longest edge lemma 2)

If x and y are two points on disjoint edges of the PSLG, there is a point q in xy with $Im(q) \le \left(\frac{4}{\sin \alpha}\right) \|xy\|$

Proof.

Easy if x or y are vertices.

Transition edge analogous to the previous slide otherwise.

(日)、

-

Lower bound on nb of mesh vertices (end)

Lemma (Longest edge lemma 3) If $T(\Omega)$ has minimum angle α , for any $p \in \Omega$, $Im(p) \le c_3$ Ifs(p)

Proof.

 $\begin{array}{l} \text{Disc } \Sigma(p, \ \text{lfs}(p)) \\ \text{Im}(q) \leq \frac{4}{\sin \alpha} \|xy\| \leq \frac{8}{\sin \alpha} \ \text{lfs}(p) \\ \text{Im}(p) \leq c_1 \ \text{Im}(q) + c_2 \|pq\| \\ \text{Im}(p) \leq \left(\frac{8c_1}{\sin \alpha} + c_2\right) \ \text{lfs}(p) \leq c_3 \ \text{lfs}(p) \end{array}$

Lower bound on nb of mesh vertices

$$\int_{\Omega} \frac{dx}{|\mathsf{lfs}(x)|^2} \leq \sum_{t \in \mathcal{T}(\Omega)} \int_t \frac{dx}{|\mathsf{lfs}(x)|^2} \leq c_3^2 \sum_{t \in \mathcal{T}(\Omega)} \int_t \frac{dx}{|\mathsf{lm}(x)|^2} \leq c_3^2 n \frac{\sqrt{3}}{4}$$

Delaunay refinement and small input angles

Small angles between edges of the input PSLG cause problem for the Delaunay refinement algorithm. Lower bound on insertion radii no longer holds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Delaunay refinement and small input angles A negative result

Theorem (Negative result)

Whatever may be the lower bound θ for the angles, there are PSLG which cannot be triangulated without creating new angles less than θ

Lemma (Edge ratio 2)

If all mesh angles > θ , successive mesh edges on the same PSLG edge have a bounded length ratio. $\frac{lb}{la} \leq \left(\frac{1}{\sin\theta}\right)^{\frac{\pi}{\theta}} \qquad \frac{lb}{la} \leq (2\cos(\theta))^{\frac{\pi}{\theta}}$

Delaunay refinement and small input angles

Proof of negative result

$$\begin{split} \frac{\|pq\|}{\|op\|} &\leq B_1 = \frac{\sin\phi}{\sin\theta} \left(\cos(\theta + \phi) + \frac{\sin(\theta + \phi)}{\tan\theta} \right) \\ \frac{\|pr\|}{\|pq\|} &\leq B_2 = (2\cos(\theta))^{\frac{\pi}{\theta}} \\ \text{If } B_1 B_2 < 1, \ \|pr\| < \|op\|, \\ \text{the mesh has a vertex } r \text{ between } o \text{ and } p \\ \text{The same situation occurs at } r \\ \implies \text{no possible mesh with angular bound} \end{split}$$

θ,

Delaunay refinement and small input angles

・ロト ・四ト ・ヨト ・ヨト

3

... unless having an infinite number of triangles

Meshing domain with small input angles Corner looping

Advantages : new small angles appear only at PSLG vertices with small input angles

Drawbacks : reduces Ifs

Meshing domain with small input angles Terminator

Corner looping

Terminator

Pb 1 : direct coupling input angle $< 45^{O}$

Solution : refine edges incident to small angles along concentric circles

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example using concentric shell refinement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Concentric circles refinement does not enough

イロト 不得 トイヨト イヨト 三日

Concentric circles does not solve indirect coupling

Pb 2 : indirect coupling

short edge leads to another subsegment split

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A first solution to the indirect coupling problem Refuse the insertion of a vertex whose insertion radius is smaller than one of his ancestors

Drawback

- The final mesh is not guaranteed to be Delaunay
- The mesh includes large angles

Meshing domain with small input angles Terminator algorithm [Shewchuk 2000]

Terminator meshing :

Delaunay refinement meshing with two additionnal rules

Additionnal rule 1

Refine edges in clusters along concentric circles

A cluster : a set of constrained edges incident to the same vertex and forming angles smaller than 60°

Meshing domain with small input angles Terminator algorithm

Additionnal rule 2

Refuse refinement of bad triangles that reduce insertion radius

More precisely :

t bad triangle whose circumcenter p encroaches edge e in a cluster, v the refinement point on e,

 $r_{min}(v)$ smallest insertion radius in the cluster if v is inserted, g the parent of p.

refinement of cluster edge e is agreed in the following cases :

- A. $r_{min}(v) \ge r_g$
- B. t does not satisfy the size criteria if any
- C. the cluster is not yet reduced,
 - i. e. all the cluster edges do not have the same length
- D. (optional) there is no ancestor of v in the PSLG edge including e

If refinement of cluster edge e is refused,

t is kept in the mesh and will never be reconsidered for refinement.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Meshing domain with small input angles Terminator algorithm

Theorem (Terminator algorithm)

- **1** The terminator algorithm ends
- **2** It provides a Delaunay mesh with no encroached constrained edge
- Small angles occur in the mesh only closed to small input angle. No angle is less than φ/2√2 where φ is the smallest input angle.

Proof of points 1 and 2.

A vertex in the mesh is a diminishing vertex if its insertion radius is smaller than one of it's ancestor insertion radius. Only a finite number of diminishing vertices are inserted (this happens in case B, C or D)

Proof of Terminator algorithm theorem

Proof of point 3.

The circumcenter of any bad triangle t left in the mesh encroaches some edge in a cluster.

We show that the radius-edge ratio of t is : $\rho \leq \frac{1}{\sqrt{2}\sin(\phi/2)}$.

notation as above

$$d$$
 length of smallest edge of t
 $r_g \leq d$ $r_p \leq \sqrt{2}r_v$
 $r_{min} \leq r_g$ $2r_v \sin\left(\frac{\phi}{2}\right) \leq r_{min}$
 $\rho = \frac{r_p}{d} \leq \frac{1}{\sqrt{2}\sin(\phi/2)}$

