Mesh Generation through Delaunay Refinement
2D Meshes

Mariette Yvinec

MPRI 2009-2010, C2-14-1, Lecture 4a
ENSL Winter School, January 2010
Introduction to meshing

What is a mesh?
A mesh is a cellular complex partitioning a given object or domain into elementary cells.

Elementary cells: cells admits a bounded description
Cellular complex: two cells are disjoint or share a lower dimensional faces.
Structured and unstructured meshes

Structured meshes
Every vertex has the same combinatorial environment i.e. the same number of incident faces of any dimension.
▶ economic storage, efficient for e.g. FEM applications
Structured and unstructured meshes

Unstructured meshes

Mostly simplicial meshes.

- highly flexible to fit the domain geometry.
Application domains

Meshes are used in the following domains

- Graphics applications
- Modelisation
 - CAD-CAM applications
 - shape numerisation
 - medical imaging
- Scientific computing
 - solving PDE through finite elements
- Simulation
 - crack simulations, fluid dynamics etc...
The goals of a mesh generator

- respect boundaries and internal constraints
- edge length according to size requirement
- cells according to shape criteria
- control of the number of vertices
Triangulations and Meshes

Outline

• Triangulations, Delaunay triangulations
 Voronoi diagrams, the space of spheres
 Regular triangulations and power diagrams
• Constrained and Delaunay constrained triangulations
• Meshing using Delaunay refinement
• Meshing using other methods (octrees, advancing front)
• Quality of meshes
The 2D meshing problem

Input:
- a PSLG C (planar straight line graph)
- a bounded domain Ω to be meshed. Ω is bounded by some edges in C

Output: a mesh of domain Ω
i.e. a triangulation T such that
- vertices of C are vertices of T
- edges of C are union of edges in T
- the triangles of T that are $\subset \Omega$
 have controlled size and quality
Quality measures of triangle

minimum angle α
maximum angle $2\pi - 2\alpha$

radius-edge ratio

$$\rho = \frac{\text{circumradius}}{\text{min edge length}} = \frac{1}{2 \sin \alpha}$$

edge-elevation ratio

$$\rho_h = \frac{\text{max edge length}}{\text{min elevation length}}$$

$$\frac{1}{\sin \alpha} \leq \rho_h \leq \frac{2}{\sin \alpha}$$

radius-radius ratio

$$\rho_i = \frac{\text{circumradius}}{\text{inscribed circle radius}}$$

$$\frac{1}{\sin \alpha} \leq \rho_i \leq \frac{3}{2 \sin^2 \alpha}$$
Base of Delaunay refinement 1.

- use Delaunay (and constrained Delaunay) triangulations
- insert Steiner vertices at circumcenters to kill bad triangles

Definition (Bad triangle)

A triangle is bad if:
- either it is oversized
- or its radius-edge ratio ρ is greater than a constant B.

$$\rho \geq B \iff \sin \alpha \leq \frac{1}{2B}$$

$$\iff \alpha \leq \arcsin \frac{1}{2B}$$
C PSLG describing the constraints
T triangulation to be refined in a mesh

Respect of the PSLG

- Insert Steiner vertices on edges of C until constrained subedges are edges of T
- Constrained subedges are required to be Gabriel edges.

Gabriel edges
An edge of a triangulation is a Gabriel edge if its smallest circumcircle encloses no vertex of T

Encroachment
An edge e is encroached by point p if the smallest circumcircle of e encloses p.
Delaunay refinement algorithm

C PSLG bounding the domain Ω to be meshed.

T Delaunay triangulation of the current set of vertices

$T_{\mid \Omega} = T \cap \Omega$

constrained subedges : subedges of edges of C

- **Initialisation**
 $T = $ Delaunay triangulation of vertices of C

- **Refinement**

 Apply one of the following rules, with priority according to index, until no one applies

 1. if there is an encroached constrained subedge e,
 refine-edge(e) i.e.
 insert $c = \text{midpoint}(e)$ in T

 2. if there is a bad facet $f \in T_{\mid \Omega}$,
 refine-facet-or-edge(f) i.e.:
 $c = \text{circumcenter}(f)$
 if c encroaches a constrained subedge e, refine-edge(e).
 else insert(c) in T
The Delaunay refinement theorem

Theorem (Ruppert 95 - Shewchuk 98)

The Delaunay refinement algorithm ends provided that:

- the size condition is an upper bound on triangles circumradii
- the shape condition is an upper bound \(B \geq \sqrt{2} \) on radius-edge ratio of triangles
- adjacent PSLG edges (i.e. PSLG edges sharing a vertex) do not form angles smaller than 60°

The resulting mesh has no triangle with an angle less than \(\arcsin \frac{1}{2B} \) (\(= 20, 7° \) for \(B = \sqrt{2} \))
Example of 2D meshes
generated by Delaunay refinement

bounds on α
15°, 25.6°, 34.2° respectively
Proof of Delaunay refinement theorem

Assume first there is no sizing field.

Main idea

– Prove a lower bound on shortest distances between vertices
– Use a volume argument
to bound the number of added (Steiner) vertices

Lemma (Steiner vertices)

Any Steiner vertex is inside or on the boundary of the domain Ω to be meshed

Proof.

If the circumcenter $cc(t)$ of triangle t is not inside Ω, some constrained subedge e of T is encroached by the vertices of t.
Local feature size

Definition (Local feature size)

Given a PSLG \(C \) and a point \(p \), the local feature size \(\text{lfs}(p) \) of \(p \) is the radius of the smallest disk centered in \(p \) and intersecting two disjoint elements of \(C \), i.e.

- either two vertices of \(C \)
- or an edge and a non incident vertex
- or two disjoint edges of \(C \).

\(\text{lfs}() \) is a Lipschitz function

\[
\text{lfs}(u) \leq \text{lfs}(v) + \|uv\|
\]
Insertion radius

Definition (Insertion radius)

rejected vertex = circumcenter considered for insertion and rejected for encroachment

\(v \) is a vertex of \(T \) or a rejected vertex. The insertion radius \(r_v \) of \(v \) is the length of the smallest edge incident to \(v \) right after insertion of \(v \) if \(v \) is inserted in \(T \).

- \(v \) is a vertex of PSLG \(C \)
 \(r_v = \) distance to nearest vertex in \(C \).

- \(v = \) circumcenter(\(t \)), (\(v \) inserted or rejected)
 \(r_v = \) circumradius(\(t \))

- \(v \in \) edge \(e \) encroached by \(p \)
 \(r_v = \|e\|/2 \) if \(p \) rejected
 \(r_v = \) distance to closest encroaching vertex otherwise
Definition (Parent vertex)
Each added or rejected vertex v is associated with a parent vertex p.

- v is a vertex of PSLG C, no parent.
- $v = \text{circumcenter}(t)$, ($v$ inserted or rejected) p is the vertex of the smallest edge of t that has been inserted last.
- v inserted in an encroached edge e p is the encroaching vertex closest to v (p may be a vertex of T or a rejected vertex.)
Insertion radius lemma

Lemma (Insertion radius)

For any vertex v, inserted in the mesh or rejected, $r_v \geq \text{lfs}(v)$ or $r_v \geq c_{r_p}$ where p is the parent of v. More precisely,

1. If v is a vertex of the PSLG, $r_v \geq \text{lfs}(v)$
2. If v is a circumcenter, $r_v \geq B r_p$
3. If $v \in$ a PSLG edge and p is rejected, $r_v \geq \frac{r_p}{\sqrt{2}}$
4. If v and p are in PSLG edges: $r_v = \|pv\|$
 - the two edges are disjoint, $r_v \geq \text{lfs}(v)$
 - they form an angle $\alpha \geq 60^\circ$, $r_v \geq r_p$

 The two edges form an angle α
 - $r_v \geq \frac{r_p}{2 \cos \alpha}$, if $\alpha \in [45^\circ, 90^\circ]$
 - $r_v \geq \sin \alpha r_p$ if $\alpha \leq 45^\circ$

Case 2

$r_p \leq \text{l}_{\text{min}}(t)$

$r_v \geq B l_{\text{min}}(t)$

Case 3

$r_p \leq \text{min}(\|pa\|, \|pb\|) \leq \sqrt{2} r_v$
Insertion radius lemma

Case 4

v and p are in PSLG edges
both edges share a vertex a and form angle α

\[r_v = \|pv\| \quad r_p \leq \|ap\| \quad \frac{r_v}{r_p} \geq \|pv\| \]
\[\|pv\|^2 = \|ap\|^2 + \|av\|^2 - 2\|ap\|\|av\| \cos \alpha \]
\[\frac{\|pv\|^2}{\|ap\|^2} = 1 + \frac{\|av\|^2}{\|ap\|^2} - 2\frac{\|av\|}{\|ap\|} \cos \alpha \quad \text{minimum} = \sin^2 \alpha \quad \text{for} \quad \frac{\|av\|}{\|ap\|} = \cos \alpha \]

but p is in smallest circumcircle of edge $e = ab$
Proof of Delaunay refinement theorem

\(\text{lfs}_{\text{min}} = \text{minimum distance between two disjoint elements of } C \)
\(= \min \text{lfs}(p) \text{ for } p \in \text{vertices of } C \)

Lemma (Lower bound on edge length)

If the PSLG \(C \) has no pair of adjacent edges
forming an angle less than \(60^\circ \),
if there is no size condition,
and if the upper bound on radius-edge ratio is \(B \geq \sqrt{2} \),
the Delaunay refinement produces no edge in \(T \) smaller than \(\text{lfs}_{\text{min}} \).

End of Delaunay refinement theorem proof

\(T \) is a Delaunay triangulation with no edge shorter than \(\text{lfs}_{\text{min}} \)
\(\implies \) the disks around each vertex with radius \(\frac{\text{lfs}_{\text{min}}}{2} \)
do not intersect.

\(n = \text{number of vertices in the mesh} \)

\[n \frac{1}{6} \pi \frac{\text{lfs}^2_{\text{min}}}{4} \leq \text{area}(\Omega) \]
Proof of the lower bound on edge length

Assume the lower bound holds until the insertion of vertex \(v \) in \(T \). For any ancestor \(q \) of \(v \), \(r_q \geq \text{lfs}_{\text{min}} \).

- \(v \) is a circumcenter, \(r_v \geq B r_p \)
- \(v \) in a PSLG edge, \(p \) rejected

\[
 r_v \geq \frac{r_p}{\sqrt{2}} \geq \frac{B r_g}{\sqrt{2}} \geq r_g
\]

- \(v \) and \(p \) in a PSLG edge
 - disjoint edges
 \[
 r_v \geq \text{lfs}(v) \geq \text{lfs}_{\text{min}}
 \]
 - edges forming angle \(\alpha \geq 60^\circ \)
 \[
 r_v \geq \frac{r_p}{2 \cos \alpha} \geq r_p
 \]
Delaunay refinement
Weighted density

weighted density \(d(v) = \frac{\text{lfs}(v)}{r_v} \)

Lemma (Weighted density lemma 1)
For any vertex \(v \) with parent \(p \), if \(r_v \geq cr_p \), \(d(v) \leq 1 + \frac{d(p)}{c} \)

Proof.
\[\text{lfs}(v) \leq \text{lfs}(p) + \|pv\| \leq \text{lfs}(p) + r_v \leq d(p)r_p + r_v \leq \left(\frac{d(p)}{c} + 1 \right) r_v \]

Lemma (Weighted density lemma 2)
There are constants \(D_e \geq D_f \geq 1 \) such that :
for any circumcenter \(v \), inserted or rejected, \(d(v) \leq D_f \)
for any vertex \(v \) inserted in a PLSG edge, \(d(v) \leq D_e \).
Thus, for any vertex of the mesh \(d(v) \leq D_e \iff r_v \geq \frac{\text{lfs}(v)}{D_e} \).
Proof of weighted density lemma 2

Assume that lemma is true up to the insertion of vertex \(v \)
\(p \) parent of \(v \)

- \(v \) is a circumcenter
 \[r_v \geq B r_p \implies d(v) \leq 1 + \frac{d(p)}{B} \]
 assume \(1 + \frac{D_e}{B} \leq D_f \) \((1) \)

- \(v \) is on a PSLG edge \(e \)
 - \(p \) is a PSLG vertex
 or \(p \in \) PSLG edge \(e' \), \(e \cap e' = \emptyset \)
 \[r_v = lfs(v) \implies d(v) \leq 1 \]
 - \(p \) is a rejected circumcenter
 \[r_v \geq \frac{r_p}{\sqrt{2}} \implies d(v) \leq 1 + \sqrt{2}d(p) \]
 assume \(1 + \sqrt{2}D_f \leq D_e \) \((2) \)

- \(p \in \) PSLG edge \(e' \), \(e \) and \(e' \) form angle \(\alpha \)
 \[r_v \geq \frac{r_p}{2 \cos \alpha} \implies d(v) \leq 1 + 2 \cos \alpha d(p) \]
 assume \(1 + 2 \cos \alpha_{\min} D_e \leq D_e \) \((3) \)
Proof of weighted density lemma (end)

There are $D_e \geq D_f \geq 1$ such that:

1. $1 + \frac{D_e}{B} \leq D_f$ (1)
2. $1 + \sqrt{2}D_f \leq D_e$ (2)
3. $1 + 2 \cos \alpha_{\text{min}}D_e \leq D_e$ (3)

(2) \implies $D_f \leq D_e$

(1) + (2) \implies $1 + \frac{D_e}{B} \leq D_f \leq \frac{D_e - 1}{\sqrt{2}}$ \implies $D_e \geq \frac{(1 + \sqrt{2})B}{B - \sqrt{2}}$

(3) \implies $D_e \geq \frac{1}{1 - 2 \cos \alpha_{\text{min}}}$

$$D_e \geq \max \left(\frac{(1 + \sqrt{2})B}{B - \sqrt{2}}, \frac{1}{1 - 2 \cos \alpha_{\text{min}}} \right)$$

$$D_f = 1 + \frac{D_e}{B}$$
Delaunay refinement

Upper bound on the number of vertices

Theorem (A relative bound on edge length)

Any edge of the mesh incident to vertex v has length l st: $l \geq \frac{lfs(v)}{D_e+1}$

Proof.

Edge v_w

- if w is inserted before v, $\|vw\| \geq r_v \geq \frac{lfs(v)}{D_e}$
- else, $\|vw\| \geq r_w \geq \frac{lfs(w)}{D_e} \geq \left(\frac{lfs(v)}{D_e} - \|vw\| \right) / D_e$

Upper bound on the number n of vertices of the mesh

For any vertex v, disc $\Sigma(v) = (v, \rho(v))$ with $\rho(v) = \frac{lfs(v)}{2(D_e+1)}$

$$\int_{\Omega} \frac{dx}{lfs(x)^2} \geq \sum_v \int_{\Sigma(v) \cap \Omega} \frac{dx}{lfs(x)^2} \geq \sum_v \frac{1}{6} \frac{\pi \rho(v)^2}{(lfs(v) + \rho(v))^2} \geq \frac{n}{6} \frac{\pi}{(3 + 2D_e)^2}$$
Lower bound on number of mesh vertices

Theorem (Lower bound on the mesh size)
Any mesh with minimum angle α of a domain Ω has a number n of vertices such that

$$n \geq \frac{1}{3c^2\pi} \int_{\Omega} \frac{dx}{lfs(x)^2},$$

where the constant c depends on the minimum angle α.

Lemma (Edge length ratio 1)
Edge length ratios in a mesh with minimum angle α
between two edges of the same triangle $\frac{lb}{la} \leq \frac{1}{\sin \alpha}$
two edges incident to the same vertex $\frac{lb}{la} \leq \left(\frac{1}{\sin \alpha}\right)^{\frac{2\pi}{\alpha}}$
Lower bound on number of mesh vertices

Definition
\(T(\Omega)\) a mesh of domain \(\Omega\)
point \(p \in \Omega, \quad \text{lm}(p) = \text{length of the longest edge of } t \in T(\Omega) \text{ including } p\)

Lemma (Longest edge lemma 1)
If \(T(\Omega)\) has minimum angle \(\alpha\) for \(p\) and \(q\) in adjacent triangles,
for any \(p\) and \(q\) in \(\Omega\),
\[\text{lm}(q) \leq \frac{1}{\sin \alpha} \text{lm}(p)\]
with
\[c_1 = \left(\frac{1}{\sin \alpha}\right) \left\lceil \frac{\pi}{\alpha} \right\rceil + 1\]
\[c_2 = 4 \left(\frac{1}{\sin \alpha}\right) \left\lfloor \frac{\pi}{\alpha} \right\rfloor + 2\]
Proof of longest edge lemma 1

A fan: a set of consecutive triangles crossed by pq with two vertices on the same side of pq

A fan has at most $K = \left\lfloor \frac{\pi}{\alpha} \right\rfloor$ triangles

k number of triangles intersected by pq

if $k < K + 3$, \[\text{lm}(q) \leq \text{lm}(p) \left(\frac{1}{\sin \alpha}\right)^{k-1} \leq \text{lm}(p) \left(\frac{1}{\sin \alpha}\right)^{K+1}\]

if $k \geq K + 3$, pq intersects at least one transition edge p_ip_{i+1} between two fans
Proof of longest edge lemma 1 (end)

$p_i p_{i+1}$ last transition edge crossed by pq

$t = t_i$ or t_{i+1} depending on midpoint of p_i, p_{i+1} wrt pq

h elevation of t, p' point in t

$\|pq\| \geq \frac{h}{2}$

$h = la \sin b = lb \sin a$

$2h \geq (la + lb) \sin \alpha \geq \text{Im}(p') \sin \alpha$

$\text{Im}(p') \leq \left(\frac{2}{\sin \alpha}\right) h \leq \left(\frac{4}{\sin \alpha}\right) \|pq\|$

$\text{Im}(q) \leq \|pq\| \left(\frac{4}{\sin \alpha}\right) \left(\frac{1}{\sin \alpha}\right)^{K+1}$
Lower bound on nb of mesh vertices

Lemma (Longest edge lemma 2)

If \(x \) and \(y \) are two points on disjoint edges of the PSLG, there is a point \(q \) in \(xy \) with \(\text{Im}(q) \leq \left(\frac{4}{\sin \alpha} \right) \|xy\| \)

Proof.
Easy if \(x \) or \(y \) are vertices.
Transition edge analogous to the previous slide otherwise.
Lemma (Longest edge lemma 3)

If $T(\Omega)$ has minimum angle α, for any $p \in \Omega$, $\text{lm}(p) \leq c_3 \text{lfs}(p)$

Proof.

Disc $\Sigma(p, \text{lfs}(p))$

$\text{lm}(q) \leq \frac{4}{\sin \alpha} \|xy\| \leq \frac{8}{\sin \alpha} \text{lfs}(p)$

$\text{lm}(p) \leq c_1 \text{lm}(q) + c_2 \|pq\|$

$\text{lm}(p) \leq (\frac{8c_1}{\sin \alpha} + c_2) \text{lfs}(p) \leq c_3 \text{lfs}(p)$
Delaunay refinement and small input angles

Small angles between edges of the input PSLG cause problem for the Delaunay refinement algorithm. Lower bound on insertion radii no longer holds.
Delaunay refinement and small input angles
A negative result

Theorem (Negative result)
Whatever may be the lower bound θ for the angles, there are PSLG which cannot be triangulated without creating new angles less than θ

Lemma (Edge ratio 2)
If all mesh angles $> \theta$, successive mesh edges on the same PSLG edge have a bounded length ratio.

$$\frac{lb}{la} \leq \left(\frac{1}{\sin \theta}\right)^{\frac{\pi}{\theta}} \quad \frac{lb}{la} \leq (2 \cos(\theta))^{\frac{\pi}{\theta}}$$
Delaunay refinement
and small input angles
Proof of negative result

$$\frac{\|pq\|}{\|op\|} \leq B_1 = \frac{\sin \phi}{\sin \theta} \left(\cos(\theta + \phi) + \frac{\sin(\theta + \phi)}{\tan \theta} \right)$$

$$\frac{\|pr\|}{\|pq\|} \leq B_2 = (2 \cos(\theta))^{\frac{\pi}{\theta}}$$

If $B_1 B_2 < 1$, $\|pr\| < \|op\|$, the mesh has a vertex r between o and p. The same situation occurs at r.

\implies no possible mesh with angular bound θ,
Delaunay refinement and small input angles

...unless having an infinite number of triangles
Meshing domain with small input angles

Advantages: new small angles appear only at PSLG vertices with small input angles

Drawbacks: reduces lfs
Meshing domain with small input angles

Terminator

Corner looping

Terminator
Meshing domain with small input angles

Pb 1 : direct coupling
input angle $< 45^\circ$

Solution : refine edges incident
to small angles
along concentric circles
Meshing domain with small input angles

Example using concentric shell refinement
Meshing domain with small input angles
Concentric circles refinement does not enough

Concentric circles solve the mesh problem for polygonal region

Concentric circles does not solve indirect coupling
Meshing domain with small input angles

Pb 2: indirect coupling

- Subsegment midpoint encroaches upon adjoining subsegment
- Long subsegments and short edge
- Short edge leads to another subsegment split

Diagram:

- ccc vertex
- \(\frac{1}{\sqrt{2}} \times \text{BX} \)
- segment vertex
- \(\times \text{sina} \)
- \(\alpha \leq 45^\circ \)
Meshing domain with small input angles

A first solution to the indirect coupling problem
Refuse the insertion of a vertex whose insertion radius is smaller than one of his ancestors

Drawback
- The final mesh is not guaranteed to be Delaunay
- The mesh includes large angles
Meshing domain with small input angles
Terminator algorithm [Shewchuk 2000]

Terminator meshing:
Delaunay refinement meshing with two additional rules

Additional rule 1
Refine edges in clusters along concentric circles

A cluster: a set of constrained edges incident to the same vertex and forming angles smaller than 60°
Meshing domain with small input angles
Terminator algorithm

Additional rule 2
Refuse refinement of bad triangles that reduce insertion radius

More precisely:
t bad triangle whose circumcenter \(p \) encroaches edge \(e \) in a cluster,
v the refinement point on \(e \),
r_{\text{min}}(v) smallest insertion radius in the cluster if \(v \) is inserted,
g the parent of \(p \).

Refinement of cluster edge \(e \) is agreed in the following cases:
A. \(r_{\text{min}}(v) \geq r_g \)
B. \(t \) does not satisfy the size criteria if any
C. the cluster is not yet reduced,
 i. e. all the cluster edges do not have the same length
D. (optional) there is no ancestor of \(v \) in the PSLG edge including \(e \)

If refinement of cluster edge \(e \) is refused,
t is kept in the mesh and will never be reconsidered for refinement.
Meshing domain with small input angles

Terminator algorithm

Theorem (Terminator algorithm)

1. The terminator algorithm ends
2. It provides a Delaunay mesh with no encroached constrained edge
3. Small angles occur in the mesh
 only closed to small input angle.
 No angle is less than $\frac{\phi}{2\sqrt{2}}$
 where ϕ is the smallest input angle.

Proof of points 1 and 2.

A vertex in the mesh is a diminishing vertex if its insertion radius is smaller than one of it’s ancestor insertion radius.
Only a finite number of diminishing vertices are inserted (this happens in case B, C or D)
Meshing domain with small input angles

Proof of Terminator algorithm theorem

Proof of point 3.

The circumcenter of any bad triangle t left in the mesh encroaches some edge in a cluster.

We show that the radius-edge ratio of t is: $\rho \leq \frac{1}{\sqrt{2} \sin(\phi/2)}$.

notation as above

d length of smallest edge of t

$r_g \leq d$ \hspace{1cm} $r_p \leq \sqrt{2} r_v$

$r_{\text{min}} \leq r_g$ \hspace{1cm} $2r_v \sin \left(\frac{\phi}{2}\right) \leq r_{\text{min}}$

$$\rho = \frac{r_p}{d} \leq \frac{1}{\sqrt{2} \sin (\phi/2)}$$