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Introduction to meshing

What is a mesh?
A mesh is a cellular complex
partitioning a given object or domain
into elementary cells

Elementary cells : cells admits a bounded description
Cellular complex : two cells are disjoint

or share a lower dimensional faces



Structured and unstructured meshes
Structured meshes

Structured meshes
Every vertex has the same combinatorial environnement
i.e the same number of incident faces of any dimension.
. economic storage, efficient for e.g. FEM applications



Structured and unstructured meshes
Unstructured meshes

Unstructured meshes
Mostly simplicial meshes.
. highly flexible to fit the domain geometry.



Application domains

Meshes are used in the following domains

• Graphics applications

• Modelisation
• CAD-CAM applications
• shape numerisation
• medical imaging

• Scientific computing
• solving PDE through finite elements

• Simulation
• crack simulations, fluid dynamics etc...



The goals of a mesh generator

• respect boundaries and internal constraints

• edge length according to size requirement

• cells according to shape criteria

• control of the number of vertices



Triangulations and Meshes
Outline

• Triangulations, Delaunay triangulations
Voronoi dagrams, the space of spheres
Regular triangulations and power diagrams

• Constrained and Delaunay constrained triangulations

• Meshing using Delaunay refinement

• Meshing using other methods (octrees, advancing front)

• Quality of meshes



The 2D meshing problem

Input :

• a PSLG C
(planar straight line graph)

• a bounded domain Ω to be meshed.
Ω is bounded by some edges in C

Output : a mesh of domain Ω
i. e. a triangulation T such that

• vertices of C are vertices of T

• edges of C are union of edges in T

• the triangles of T that are ⊂ Ω
have controlled size and quality



Quality measures of triangle

minimum angle α
maximum angle 2π − 2α

radius-edge ratio
ρ = circumradius

min edge length = 1
2 sin α

edge-elevation ratio
ρh = max edge length

min elevation length

1

sinα
≤ ρh ≤

2

sinα

radius-radius ratio
ρi = circumradius

inscribed circle radius

1

sinα
≤ ρi ≤

3

2 sin2 α



Base of Delaunay refinement 1.

• use Delaunay (and constrained Delaunay) triangulations

• insert Steiner vertices at circumcenters to kill bad triangles

Definition (Bad triangle)
A triangle is bad if :
- either it is oversized
- or its radius-edge ratio ρ is greater than a constant B.

ρ ≥ B ⇐⇒ sinα ≤ 1

2B

⇐⇒ α ≤ arcsin
1

2B



Base of Delaunay refinement 2.

C PSLG describing the constraints
T triangulation to be refined in a mesh

Respect of the PSLG

• Insert Steiner vertices on edges of C
until constrained subedges are edges of T

• Constrained subedges are required to be
Gabriel edges.

Gabriel edges
An edge of a triangulation is a Gabriel edge
if its smallest circumcirle encloses no vertex of T

Encroachment
An edge e is encroached by point p
if the smallest circumcirle of e encloses p.



Delaunay refinement alogrithm

C PSLG bounding the domain Ω to be meshed.
T Delaunay triangulation of the current set of vertices
T|Ω = T ∩ Ω
constrained subedges : subedges of edges of C

- Initiallisation T = Delaunay triangulation of vertices of C
- Refinement Apply one of the following rules,
with priority according to index, until no one applies

1 if there is an encroached constrained subedge e,
refine-edge(e) i.e.

insert c = midpoint(e) in T

2 if there is a bad facet f ∈ T|Ω,
refine-facet-or-edge(f ) i.e.:

c = circumcenter(f)
if c encroaches a constrained subedge e, refine-edge(e).
else insert(c) in T



The Delaunay refinement theorem

Theorem (Ruppert 95 - Shewchuk 98)
The Delaunay refinement algorithm ends provided that :

• the size condition is an upper bound on triangles circumradii

• the shape condition is an upper bound B ≥
√

2
on radius-edge ratio of triangles

• adjacent PSLG edges
(i. e. PSLG edges sharing a vertex)
do not form angles smaller than 60o

The resulting mesh has no triangle with an angle less than
arcsin 1

2B (= 20, 7o for B =
√

2)



Example of 2D meshes
generated by Delaunay refinement

bounds on α
15o , 25.6o , 34.2o respectively



Proof of Delaunay refinement theorem

Assume first there is no sizing field.

Main idea
– Prove a lower bound on shortest distances between vertices
– Use a volume argument

to bound the number of added (Steiner) vertices

Lemma (Steiner vertices)
Any Steiner vertex is inside or on the boundary
of the domain Ω to be meshed

Proof.

If the circumcenter cc(t) of triangle t
is not inside Ω,
some constrained subedge e of T
is encroached by the vertices of t.



Local feature size

Definition (Local feature size)
Given a PSLG C and a point p,
the local feature size lfs(p) of p is the radius of the smallest disk
centered in p and intersecting two disjoint elements of C , i.e.

• either two vertices of C

• or an edge and a non incident vertex

• or two disjoint edges of C .

lfs() is a Lipschitz function

lfs(u) ≤ lfs(v) + ‖uv‖



Insertion radius

Definition (Insertion radius)
rejected vertex = circumcenter considered for
insertion and rejected for encroachment

v is a vertex of T or a rejected vertex.
The insertion radius rv of v is the length of the
smallest edge incident to v
right after insertion of v if v is inserted in T .

• v is a vertex of PSLG C
rv = distance to nearest vertex in C .

• v = circumcenter(t), (v inserted or rejected)
rv = circumradius(t)

• v ∈ edge e encroached by p
rv = ‖e‖/2 if p rejected
rv = distance to closest encroaching vertex
otherwise



Parent vertex

Definition (Parent vertex)
Each added or rejected vertex v
is associated a parent vertex p.

• v is a vertex of PSLG C , no parent.

• v = circumcenter(t), (v inserted or rejected)
p is the vertex of the smallest edge of t

that has been inserted last.

• v inserted in an encroached edge e
p is the encroaching vertex closest to v
(p may be a vertex of T or a rejected vertex.)



Insertion radius lemma

Lemma (Insertion radius)
For any vertex v, inserted in the mesh or rejected,
rv ≥ lfs(v) or rv ≥ crp where p is the parent of v .
More precisely,

1 If v is a vertex of the PSLG, rv ≥ lfs(v)

2 If v is a circumcenter, rv ≥ Brp

3 If v ∈ a PSLG edge
and p is rejected, rv ≥ rp√

2

4 if v and p are in PSLG edges: rv = ‖pv‖
– the two edges are disjoint, rv ≥ lfs(v)
– they form an angle α ≥ 60o , rv ≥ rp
The two edges form an angle α
rv ≥ rp

2 cosα , if α ∈ [45o , 90o ]
rv ≥ sinα rp if α ≤ 45o

Case 2

rp ≤ lmin(t)
rv ≥ Blmin(t)

Case 3

rp ≤ min(‖pa‖, ‖pb‖)
≤
√

2rv



Insertion radius lemma

Case 4
v and p are in PSLG edges
both edges share a vertex a and form angle α

rv = ‖pv‖
rp ≤ ‖ap‖

rv
rp
≥ ‖pv‖
‖ap‖

‖pv‖2 = ‖ap‖2 + ‖av‖2 − 2‖ap‖‖av‖ cosα
‖pv‖2

‖ap‖2 = 1 + ‖av‖
2

‖ap‖2 −2‖av‖‖ap‖ cosα minimum = sin2 α for ‖av‖‖ap‖ = cosα

but p is in smallest circumcircle of edge e = ab



Proof of Delaunay refinement theorem
lfsmin = minimum distance between two disjoint elements of C

= min lfs(p) for p ∈ vertices of C

Lemma (Lower bound on edge length)
If the PSLG C has no pair of adjacent edges
forming an angle less than 60o ,
if there is no size condition,
and if the upper bound on radius-edge ratio is B ≥

√
2,

the Delaunay refinement produces no edge in T smaller than lfsmin.

End of Delaunay refinement theorem proof
T is a Delaunay triangulation with no edge shorter than lfsmin

=⇒ the disks around each vertex with radius lfsmin

2
do not intersect.

n = number of vertices in the mesh

n
1

6
π

lfs2
min

4
≤ area(Ω)



Proof of the lower bound on edge length

Assume the lower bound holds until
the insertion of vertex v in T
For any ancestor q of v , rq ≥ lfsmin.
p the parent of v
g the parent of p

• v is a circumcenter, rv ≥ Brp

• v in a PSLG edge, p rejected

rv ≥
rp√

2
≥ Brg√

2
≥ rg

• v and p in a PSLG edge
- disjoint edges

rv ≥ lfs(v) ≥ lfsmin

- edges forming angle α ≥ 60o

rv ≥ rp
2 cosα ≥ rp



Delaunay refinement
Weighted density

weighted density d(v) = lfs(v)
rv

Lemma (Weighted density lemma 1)
For any vertex v with parent p, if rv ≥ crp, d(v) ≤ 1 + d(p)

c

Proof.
lfs(v) ≤ lfs(p) + ‖pv‖ ≤ lfs(p) + rv ≤ d(p)rp + rv ≤

(
d(p)

c + 1
)

rv

Lemma (Weighted density lemma 2)
There are constants De ≥ Df ≥ 1 such that :
for any circumcenter v , inserted or rejected, d(v) ≤ Df

for any vertex v inserted in a PLSG edge, d(v) ≤ De .

Thus, for any vertex of the mesh d(v) ≤ De ⇐⇒ rv ≥ lfs(v)
De

.



Proof of weighted density lemma 2

Assume that lemma is true up to the insertion of vertex v
p parent of v

• v is a circumcenter
rv ≥ Brp =⇒ d(v) ≤ 1 + d(p)

B assume 1 + De

B ≤ Df (1)

• v is on a PSLG edge e

• p is a PSLG vertex
or p ∈ PSLG edge e′, e ∩ e′ = ∅
rv = lfs(v) =⇒ d(v) ≤ 1

• p is a rejected circumcenter
rv ≥ rp√

2
=⇒ d(v) ≤ 1 +

√
2d(p)

assume 1 +
√

2Df ≤ De (2)
• p ∈ PSLG edge e′, e and e′ form angle α

rv ≥ rp
2 cosα =⇒ d(v) ≤ 1 + 2 cosαd(p)

assume 1 + 2 cosαminDe ≤ De (3)



Proof of weigthed densiy lemma (end)

There are De ≥ Df ≥ 1 such that :
1 + De

B ≤ Df (1)

1 +
√

2Df ≤ De (2)
1 + 2 cosαminDe ≤ De (3)

(2) =⇒ Df ≤ De

(1) + (2) =⇒ 1 + De
B ≤ Df ≤ De−1√

2
=⇒ De ≥ (1+

√
2)B

B−
√

2

(3) =⇒ De ≥ 1
1−2 cos αmin

De ≥ max

(
(1 +

√
2)B

B −
√

2
,

1

1− 2 cosαmin

)

Df = 1 +
De

B



Delaunay refinement
Upper bound on the number of vertices

Theorem (A relative bound on edge length)
Any edge of the mesh incident to vertex v has length l st : l ≥ lfs(v)

De+1

Proof.
Edge vw

• if w is inserted before v , ‖vw‖ ≥ rv ≥ lfs(v)/De

• else, ‖vw‖ ≥ rw ≥ lfs(w)/De ≥ ( lfs(v)− ‖vw‖)/De

Upper bound on the number n of vertices of the mesh

For any vertex v , disc Σ(v) = (v , ρ(v)) with ρ(v) = lfs(v)
2(De+1)∫

Ω

dx

lfs(x)2
≥
∑

v

∫
Σ(v)∩Ω

dx

lfs(x)2
≥
∑

v

1

6

πρ(v)2

( lfs(v) + ρ(v))2
≥ n

6

π

(3 + 2De)2



Lower bound on number of mesh vertices

Theorem (Lower bound on the mesh size)

Any mesh with minimum angle α of a domain Ω has a number n
of vertices such that

n ≥ 1

3c2π

∫
Ω

dx

lfs(x)2
,

where the constant c depends on the minimum angle α.

Lemma (Edge length ratio 1)

Edge length ratios in a mesh with minimum angle α
between two edges of the same triangle lb

la ≤
1

sin α

two edges incident to the same vertex lb
la ≤

(
1

sin α

) 2π
α



Lower bound on number of mesh vertices

Definition
T (Ω) a mesh of domain Ω
point p ∈ Ω, lm(p) = length of the longest edge

of t ∈ T (Ω) including p

Lemma (Longest edge lemma 1 )

If T (Ω) has minimum angle α
for p and q in adjacent triangles, lm(q) ≤ 1

sin α lm(p)
for any p and q in Ω, lm(q) ≤ c1lm(p) + c2‖pq‖
with

c1 =
(

1
sin α

)b π
αc+1

c2 = 4
(

1
sin α

)b π
αc+2



Proof of longest edge lemma 1

A fan : a set of consecutive triangles crossed by pq
with two vertices on the same side of pq

A fan has at most K =
⌊
π
α

⌋
triangles

k number of triangles intersected by pq

if k < K + 3, lm(q) ≤ lm(p)
(

1
sinα

)k−1 ≤ lm(p)
(

1
sinα

)K+1

if k ≥ K + 3, pq intersects at least one transition edge
pipi+1 between two fans



Proof of longest edge lemma 1 (end)

pipi+1 last transition edge crossed by pq

t = ti or ti+1 depending on
midpoint of pi , pi+1 wrt pq

h elevation of t, p′ point in t
‖pq‖ ≥ h

2
h = la sin b = lb sin a
2h ≥ (la + lb)sinα ≥ lm(p′) sinα

lm(p′) ≤
(

2

sinα

)
h ≤

(
4

sinα

)
‖pq‖

lm(q) ≤ ‖pq‖
(

4

sinα

)(
1

sinα

)K+1



Lower bound on nb of mesh vertices

Lemma (Longest edge lemma 2)

If x and y are two points on disjoint edges of the PSLG,
there is a point q in xy with lm(q) ≤

(
4

sin α

)
‖xy‖

Proof.
Easy if x or y are vertices.
Transition edge analogous to the previous slide otherwise.



Lower bound on nb of mesh vertices (end)

Lemma (Longest edge lemma 3)
If T (Ω) has minimum angle α,
for any p ∈ Ω, lm(p) ≤ c3 lfs(p)

Proof.
Disc Σ(p, lfs(p))
lm(q) ≤ 4

sinα‖xy‖ ≤ 8
sinα lfs(p)

lm(p) ≤ c1 lm(q) + c2‖pq‖
lm(p) ≤

(
8c1

sinα + c2

)
lfs(p) ≤ c3 lfs(p)

Lower bound on nb of mesh vertices

∫
Ω

dx

lfs(x)2
≤

∑
t∈T (Ω)

∫
t

dx

lfs(x)2
≤ c2

3

∑
t∈T (Ω)

∫
t

dx

lm(x)2
≤ c2

3 n

√
3

4



Delaunay refinement
and small input angles

Small angles between edges of the input PSLG
cause problem for the Delaunay refinement algorithm.
Lower bound on insertion radii no longer holds.



Delaunay refinement
and small input angles

A negative result

Theorem (Negative result)
Whatever may be the lower bound θ for the angles, there are PSLG
which cannot be triangulated
without creating new angles less than θ

Lemma (Edge ratio 2)
If all mesh angles > θ,
successive mesh edges
on the same PSLG edge
have a bounded length ratio.
lb
la ≤

(
1

sin θ

)π
θ lb

la ≤ (2 cos(θ))
π
θ



Delaunay refinement
and small input angles

Proof of negative result

‖pq‖
‖op‖ ≤ B1 = sinφ

sin θ

(
cos(θ + φ) + sin(θ+φ)

tan θ

)
‖pr‖
‖pq‖ ≤ B2 = (2 cos(θ))

π
θ

If B1B2 < 1, ‖pr‖ < ‖op‖,
the mesh has a vertex r between o and p.
The same situation occurs at r
=⇒ no possible mesh with angular bound θ,



Delaunay refinement
and small input angles

...unless having an infinite number of triangles



Meshing domain with small input angles
Corner looping

Advantages : new small angles appear only at PSLG vertices
with small input angles

Drawbacks : reduces lfs



Meshing domain with small input angles
Terminator

Corner looping Terminator



Meshing domain with small input angles

Pb 1 : direct coupling
input angle < 45O

Solution : refine edges incident
to small angles
along concentric circles



Meshing domain with small input angles
Example using concentric shell refinement



Meshing domain with small input angles
Concentric circles refinement does not enough

Concentric circles solve the mesh problem
for polygonal region

Concentric circles does not solve indirect coupling



Meshing domain with small input angles

Pb 2 : indirect coupling



Meshing domain with small input angles

A first solution to the indirect coupling problem
Refuse the insertion of a vertex whose insertion radius
is smaller than one of his ancestors

Drawback

• The final mesh is not guaranteed to be Delaunay

• The mesh includes large angles



Meshing domain with small input angles
Terminator algorithm [Shewchuk 2000]

Terminator meshing :
Delaunay refinement meshing with two additionnal rules

Additionnal rule 1
Refine edges in clusters along concentric circles

A cluster : a set of constrained edges incident to the same vertex
and forming angles smaller than 60o



Meshing domain with small input angles
Terminator algorithm

Additionnal rule 2
Refuse refinement of bad triangles that reduce insertion radius

More precisely :
t bad triangle whose circumcenter p encroaches edge e in a cluster,
v the refinement point on e,
rmin(v) smallest insertion radius in the cluster if v is inserted,
g the parent of p.

refinement of cluster edge e is agreed in the following cases :
A. rmin(v) ≥ rg
B. t does not satisfy the size criteria if any
C. the cluster is not yet reduced,

i. e. all the cluster edges do not have the same length
D. (optional) there is no ancestor of v in the PSLG edge including e

If refinement of cluster edge e is refused,

t is kept in the mesh and will never be reconsidered for refinement.



Meshing domain with small input angles
Terminator algorithm

Theorem (Terminator algorithm)

1 The terminator algorithm ends

2 It provides a Delaunay mesh with no encroached constrained edge

3 Small angles occur in the mesh
only closed to small input angle.
No angle is less than φ

2
√

2
where φ is the smallest input angle.

Proof of points 1 and 2.
A vertex in the mesh is a diminishing vertex if its insertion radius
is smaller than one of it’s ancestor insertion radius.
Only a finite number of diminishing vertices are inserted
(this happens in case B, C or D)



Meshing domain with small input angles
Proof of Terminator algorithm theorem

Proof of point 3.
The circumcenter of any bad triangle t left in the mesh
encroaches some edge in a cluster.
We show that the radius-edge ratio of t is : ρ ≤ 1√

2 sin(φ/2)
.

notation as above
d length of smallest edge of t
rg ≤ d rp ≤

√
2rv

rmin ≤ rg 2rv sin
(
φ
2

)
≤ rmin

ρ =
rp
d
≤ 1√

2 sin (φ/2)


	Meshing using Delaunay refinement

