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Local features 

( ) 
local descriptor  

Several / many local descriptors per image  
Robust to occlusion/clutter + no object segmentation required 

Photometric : distinctive 
Invariant : to image transformations + illumination changes 



Local features: interest points 



Local features: Contours/segments 



Local features: segmentation 



Application: Matching 

Find corresponding locations in the image 



Illustration –  Matching 

Interest points extracted with Harris detector (~ 500 points) 



Matching 

Interest points matched based on cross-correlation (188 pairs) 

Illustration –  Matching 



Global constraints 

Global constraint - Robust estimation of the fundamental matrix 

99 inliers 89 outliers 

Illustration –  Matching 



Application: Panorama stitching 

Images courtesy of A. Zisserman.  



Application: Instance-level recognition 

Search for particular objects and scenes in large databases 

… 



Finding the object despite possibly large changes in 
scale, viewpoint, lighting and partial occlusion 

 requires invariant description 

Viewpoint Scale 

Lighting Occlusion 

Difficulties 



Difficulties 

•  Very large images collection  need for efficient indexing 

–  Flickr has 2 billion photographs, more than 1 million added daily 

–  Facebook has 15 billion images (~27 million added daily) 

–  Large personal collections 

–  Video collections, i.e., YouTube 



Search photos on the web for particular places  

Find these landmarks  ...in these images and 1M more 

Applications 



Applications 

•  Take a picture of a product or advertisement  
  find relevant information on the web 

[Pixee – Milpix] 



Applications 

•  Finding stolen/missing objects in a large collection 
…



Applications 

•  Copy detection for images and videos  

Search in 200h of video Query video 



Local features - history 

•  Line segments [Lowe’87, Ayache’90]  

•  Interest points & cross correlation [Z. Zhang et al. 95] 

•  Rotation invariance with differential invariants [Schmid&Mohr’96] 

•  Scale & affine invariant detectors [Lindeberg’98, Lowe’99, 
Tuytelaars&VanGool’00, Mikolajczyk&Schmid’02, Matas et al.’02] 

•  Dense detectors and descriptors [Leung&Malik’99, Fei-Fei& 
Perona’05, Lazebnik et al.’06] 

•  Contour and region (segmentation) descriptors [Shotton et al.’05, 
Opelt et al.’06, Ferrari et al.’06, Leordeanu et al.’07] 



Example for line segments 

images 600 x 600 



Example for line segments 

248 / 212 line segments extracted 



Matched line segments 

89 matched line segments - 100% correct 



3D reconstruction of line segments 



Problems of line segments 

•  Often only partial extraction 
–  Line segments broken into parts 
–  Missing parts  

•  Information not very discriminative 
–  1D information 
–  Similar for many segments 

•  Potential solutions 
–  Pairs and triplets of segments 
–  Interest points  



Overview 

•  Harris interest points  

•   Comparing interest points 

•  Scale & affine invariant interest points 

•  Evaluation and comparison of different detectors 

•  Region descriptors and their performance  



Harris detector [Harris & Stephens’88] 

Based on the idea of auto-correlation 

Important difference in all directions => interest point 



Images 

•  We can think of an image as a function, f, from  
R2 to R: 
–  f( x, y ) gives the intensity at position ( x, y )  
–  the image is defined over a rectangle with a finite range 

•  A color image is just three functions pasted together.  We 
can write this as a “vector-valued” function:  



Digital images 

•  In computer vision we operate on digital images: 
–  Sample the 2D space on a regular grid 
–  Quantize each sample (round to nearest integer) 

•  The image can now be represented as a matrix of integer 
values (pixels)  
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Harris detector 

Auto-correlation function for a point          and a shift       



Harris detector 

Auto-correlation function for a point          and a shift       

small in all directions     

large in one directions  

large in all directions 
{

→  uniform region 
→  contour 
→  interest point 



 Harris detector 



Harris detector 

Discret shifts are avoided based on the auto-correlation matrix  

with first order approximation 



Harris detector 

Auto-correlation matrix 

the sum can be smoothed with a Gaussian 



Harris detector 

•  Auto-correlation matrix  

–  captures the structure of the local neighborhood 
–  measure based on eigenvalues of this matrix 

•  2 strong eigenvalues 
•  1 strong eigenvalue 
•  0 eigenvalue                

=> interest point 
=> contour 
=> uniform region 



Interpreting the eigenvalues 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 

 λ1 ~ λ2; 
E increases in all 

directions 

λ1 and λ2 are small; 
E is almost constant 

in all directions 
“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues of M: 



Corner response function 

“Corner” 
R > 0 

“Edge”  
R < 0 

“Edge”  
R < 0 

“Flat” 
region 

|R| small 

α: constant (0.04 to 0.06) 



Harris detector 

Reduces the effect of a strong contour 

•  Cornerness function 

•  Interest point detection 
–  Treshold (absolut, relatif, number of corners) 
–  Local maxima  



Harris Detector: Steps 



Harris Detector: Steps 
Compute corner response R 



Harris Detector: Steps 
Find points with large corner response: R>threshold 



Harris Detector: Steps 
Take only the points of local maxima of R 



Harris Detector: Steps 



Harris detector: Summary of steps 

1.  Compute Gaussian derivatives at each pixel 
2.  Compute second moment matrix M in a Gaussian 

window around each pixel  
3.  Compute corner response function R 
4.  Threshold R

5.  Find local maxima of response function (non-maximum 

suppression) 



Harris - invariance to transformations 

•  Geometric transformations 
–  translation 

–  rotation 

–  similitude (rotation + scale change) 

–  affine (valide for local planar objects) 

•  Photometric transformations 
–  Affine intensity changes (I → a I + b) 



Harris Detector: Invariance Properties 
•  Rotation 

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same 

Corner response R is invariant to image rotation 



Harris Detector: Invariance Properties 

•  Affine intensity change 

  Only derivatives are used => invariance 
to intensity shift I → I + b 
  Intensity scale: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change, 
dependent on type of threshold 



Harris Detector: Invariance Properties 

•  Scaling 

All points will 
be classified as 

edges 

Corner 

Not invariant to scaling 



Overview 

•  Harris interest points  

•   Comparing interest points (SSD, ZNCC, Derivatives, SIFT) 

•  Scale & affine invariant interest points 

•  Evaluation and comparison of different detectors 

•  Region descriptors and their performance  



Comparison of patches - SSD 

image 1 image 2 

SSD : sum of square difference 

Comparison of the intensities in the neighborhood of two interest points 

Small difference values  similar patches 



Comparison of patches 

SSD : 

Invariance to photometric transformations? 

Intensity changes (I →  I + b) 

Intensity changes (I →  aI + b) 

=> Normalizing with the mean of each patch  

=> Normalizing with the mean and standard deviation of each patch  



Cross-correlation ZNCC 

ZNCC: zero normalized cross correlation 

zero normalized SSD 

ZNCC values between -1 and 1, 1 when identical patches 
in practice threshold around 0.5 



Local descriptors  

•  Greyvalue derivatives 

•  Differential invariants [Koenderink’87] 
–  combinations of derivatives 

•  SIFT descriptor [Lowe’99] 



•  The gradient points in the direction of most rapid increase in 
intensity 

Greyvalue derivatives: Image gradient 

•  The gradient of an image:  

•    

•  The gradient direction is given by 
–  how does this relate to the direction of the edge? 

•  The edge strength is given by the gradient magnitude 

Source: Steve Seitz 



Differentiation and convolution 

•  Recall, for 2D function, f(x,y): 

•  We could approximate this as 

  -1   1 

Source: D. Forsyth, D. Lowe 

•  Convolution with the filter 



Finite difference filters 

•  Other approximations of derivative filters exist: 

Source: K. Grauman 



Effects of noise 
•  Consider a single row or column of the image 

–  Plotting intensity as a function of position gives a signal 
The image cannot 
be displayed. 
Your computer 
may not have 
enough memory 

•  Where is the edge? Source: S. Seitz 



Solution: smooth first 

•  To find edges, look for peaks in 

f 

g 

f * g 

Source: S. Seitz 



•  Differentiation is convolution, and convolution is 
associative: 

•  This saves us one operation: 

Derivative theorem of convolution 

f 

Source: S. Seitz 



Local descriptors 
•  Greyvalue derivatives 

–  Convolution with Gaussian derivatives 



Gaussian Kernel 

•  Gaussian filters have infinite support, but discrete filters 
use finite kernels 

•  Rule of thumb: set filter half-width to about 3 σ 



Local descriptors – rotation invariance 

Invariance to image rotation : differential invariants [Koen87] 

gradient magnitude 

Laplacian 



Laplacian of Gaussian (LOG) 



SIFT descriptor [Lowe’99] 

•  Approach 
–  8 orientations of the gradient  
–  4x4 spatial grid 
–  soft-assignment to spatial bins, dimension 128 
–  normalization of the descriptor to norm one 
–  comparison with Euclidean distance 

gradient 
3D histogram  

→ → 

image patch 

y 

x 



Local descriptors - rotation invariance 

•  Estimation of the dominant orientation 
–  extract gradient orientation 
–  histogram over gradient orientation 
–  peak in this histogram 

•  Rotate patch in dominant direction 

0 2 π 



Local descriptors – illumination change 

in case of an affine transformation 

•  Normalization of the image patch with mean and variance  

•  Robustness to illumination changes 



Invariance to scale changes 

•  Scale change between two images 

•  Scale factor s can be eliminated  

•  Support region for calculation!!  
–  In case of a convolution with Gaussian derivatives defined by  


