Overview

- Harris interest points
- Comparing interest points (SSD, ZNCC, SIFT)
- Scale & affine invariant interest points
- Evaluation and comparison of different detectors
- Region descriptors and their performance
Scale invariance - motivation

- Description regions have to be adapted to scale changes

- Interest points have to be repeatable for scale changes
Harris detector + scale changes

Repeatability rate

\[R(\varepsilon) = \frac{\left| \{(a_i, b_i) \mid \text{dist}(H(a_i), b_i) < \varepsilon\} \right|}{\max(|a_i|, |b_i|)} \]
Scale adaptation

Scale change between two images

\[
I_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = I_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = I_2 \begin{pmatrix} sx_1 \\ sy_1 \end{pmatrix}
\]

Scale adapted derivative calculation
Scale adaptation

Scale change between two images

\[I_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = I_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = I_2 \begin{pmatrix} sx_1 \\ sy_1 \end{pmatrix} \]

Scale adapted derivative calculation

\[I_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \otimes G_{i_1\ldots i_n}(\sigma) = s^n I_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \otimes G_{i_1\ldots i_n}(s\sigma) \]
Scale adaptation

\[G(\tilde{\sigma}) \otimes \begin{bmatrix} L_x^2(\sigma) & L_xL_y(\sigma) \\ L_xL_y(\sigma) & L_y^2(\sigma) \end{bmatrix} \]

where \(L_i(\sigma) \) are the derivatives with Gaussian convolution
Scale adaptation

\[G(\tilde{\sigma}) \otimes \begin{bmatrix} L^2_x(\sigma) & L_x L_y(\sigma) \\ L_x L_y(\sigma) & L^2_y(\sigma) \end{bmatrix} \]

where \(L_i(\sigma) \) are the derivatives with Gaussian convolution

Scale adapted auto-correlation matrix

\[s^2G(s\tilde{\sigma}) \otimes \begin{bmatrix} L^2_x(s\sigma) & L_x L_y(s\sigma) \\ L_x L_y(s\sigma) & L^2_y(s\sigma) \end{bmatrix} \]
Harris detector – adaptation to scale

![Graph showing repeatability rate vs scale factor with adapted and standard curves.](image)

![Images of mountain landscapes with Harris detector points marked.](image)
Multi-scale matching algorithm

$s = 1$

$s = 3$

$s = 5$
Multi-scale matching algorithm

$s = 1$
8 matches
Multi-scale matching algorithm

Robust estimation of a global affine transformation

$s = 1$
3 matches
Multi-scale matching algorithm
Multi-scale matching algorithm

- Correct scale
- Highest number of matches

$s = 1$
3 matches

$s = 3$
4 matches

$s = 5$
16 matches
Matching results

Scale change of 5.7
Matching results

100% correct matches (13 matches)
Scale selection

• We want to find the characteristic scale by convolving it with, for example, Laplacians at several scales and looking for the maximum response.

• However, Laplacian response decays as scale increases:

Why does this happen?
Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

\[\frac{1}{\sigma\sqrt{2\pi}} \]
Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
• To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
• Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2
Effect of scale normalization

Original signal

Unnormalized Laplacian response

Scale-normalized Laplacian response

maximum
Blob detection in 2D

- Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Blob detection in 2D

- Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[
\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)
\]
Scale selection

- The 2D Laplacian is given by
 \[(x^2 + y^2 - 2\sigma^2) e^{-(x^2+y^2)/2\sigma^2} \] (up to scale)

- For a binary circle of radius \(r \), the Laplacian achieves a maximum at

\[\sigma = \frac{r}{\sqrt{2}} \]
We define the characteristic scale as the scale that produces peak of Laplacian response.
Scale selection

- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale s^* at the maximum \rightarrow characteristic scale
- Exp. results show that the Laplacian gives best results
Scale selection

- Scale invariance of the characteristic scale

\[
\text{norm. Lap.} \quad \text{scale}
\]
Scale selection

• Scale invariance of the characteristic scale

• Relation between characteristic scales $s \cdot s_1^* = s_2^*$
Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid’01)
- Laplacian detector (Lindeberg’98)
- Difference of Gaussian (Lowe’99)
Harris-Laplace

multi-scale Harris points

selection of points at maximum of Laplacian

⇒ invariant points + associated regions [Mikolajczyk & Schmid’01]
Matching results

213 / 190 detected interest points
Matching results

58 points are initially matched
Matching results

32 points are matched after verification – all correct
LOG detector

Convolve image with scale-normalized Laplacian at several scales

$LOG = s^2(G_{xx}(\sigma) + G_{yy}(\sigma))$

Detection of maxima and minima of Laplacian in scale space
Efficient implementation

- Difference of Gaussian (DOG) approximates the Laplacian \(DOG = G(k\sigma) - G(\sigma) \)

- Error due to the approximation
DOG detector

- Fast computation, scale space processed one octave at a time

Local features - overview

- Scale invariant interest points
- *Affine invariant interest points*
- Evaluation of interest points
- Descriptors and their evaluation
Affine invariant regions - Motivation

• Scale invariance is not sufficient for large baseline changes

 detected scale invariant region

projected regions, viewpoint changes can locally be approximated by an affine transformation A
Affine invariant regions - Motivation
Affine invariant regions - Example
Harris/Hessian/Laplacian-Affine

- Initialize with scale-invariant Harris/Hessian/Laplacian points

- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg’94]

- Apply affine neighbourhood estimation to the scale-invariant interest points [Mikolajczyk & Schmid’02, Schaffalitzky & Zisserman’02]

- Excellent results in a recent comparison
Affine invariant regions

- Based on the second moment matrix (Lindeberg'94)

\[M = \mu(x, \sigma_x, \sigma_y) = \sigma_d^2 G(\sigma_i) \otimes \begin{bmatrix} L_x^2(x, \sigma_d) & L_x L_y(x, \sigma_d) \\ L_x L_y(x, \sigma_d) & L_y^2(x, \sigma_d) \end{bmatrix} \]

- Normalization with eigenvalues/eigenvectors

\[x' = \frac{1}{M^2} x \]
Affine invariant regions

\[x'_L = M^2_L x_L \]

\[x'_R = M^2_R x_R \]

Isotropic neighborhoods related by image rotation
Affine invariant regions - Estimation

- Iterative estimation – initial points
Affine invariant regions - Estimation

- Iterative estimation – iteration #1
Affine invariant regions - Estimation

- Iterative estimation – iteration #2
Affine invariant regions - Estimation

- Iterative estimation – iteration #3, #4
Harris-Affine versus Harris-Laplace

Harris-Affine

Harris-Laplace
Harris/Hessian-Affine

Harris-Affine

Hessian-Affine
Harris-Affine
Hessian-Affine
Matches

22 correct matches
Matches

33 correct matches
Maximally stable extremal regions (MSER) [Matas’02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)

- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold

- Excellent results in a recent comparison
Maximally stable extremal regions (MSER)

Examples of thresholded images

- High threshold
- Low threshold
MSER
Overview

• Harris interest points

• Comparing interest points (SSD, ZNCC, SIFT)

• Scale & affine invariant interest points

• Evaluation and comparison of different detectors

• Region descriptors and their performance
Evaluation of interest points

• Quantitative evaluation of interest point/region detectors
 – points / regions at the same relative location and area

• Repeatability rate: percentage of corresponding points

• Two points/regions are corresponding if
 – location error small
 – area intersection large

Evaluation criterion

\[\text{repeatability} = \frac{\text{# corresponding regions}}{\text{# detected regions}} \cdot 100\% \]
Evaluation criterion

\[\text{repeatability} = \frac{\# \text{corresponding regions}}{\# \text{detected regions}} \cdot 100\% \]

\[\text{overlap error} = (1 - \frac{\text{intersection}}{\text{union}}) \cdot 100\% \]
Dataset

• Different types of transformation
 – Viewpoint change
 – Scale change
 – Image blur
 – JPEG compression
 – Light change

• Two scene types
 – Structured
 – Textured

• Transformations within the sequence (homographies)
 – Independent estimation
Viewpoint change (0-60 degrees)

structured scene

textured scene
Zoom + rotation (zoom of 1-4)

structured scene

textured scene
Blur, compression, illumination

blur - structured scene
blur - textured scene
light change - structured scene
jpeg compression - structured scene
Comparison of affine invariant detectors

Viewpoint change - structured scene

![Graphs showing repeatability and number of correspondences](image)

Reference image: 20, 40, 60
Comparison of affine invariant detectors

Scale change

repeatability %

Comparison of affine invariant detectors

repeatability %

null

reference image

2.8

reference image

4
Conclusion - detectors

- Good performance for large viewpoint and scale changes

- Results depend on transformation and scene type, no one best detector

- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes

- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian, LoG and DOG)

- Scale-invariant detector sufficient up to 40 degrees of viewpoint change
Overview

- Harris interest points
- Comparing interest points (SSD, ZNCC, SIFT)
- Scale & affine invariant interest points
- Evaluation and comparison of different detectors
- Region descriptors and their performance
Region descriptors

- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations
Descriptors

- Regions invariant to geometric transformations except rotation
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - normalization with mean and standard deviation of the image patch
Descriptors

Extract affine regions → Normalize regions → Eliminate rotational + illumination → Compute appearance descriptors

SIFT (Lowe ’04)
Descriptors

- Gaussian derivative-based descriptors
 - Differential invariants (*Koenderink and van Doorn’87*)
 - Steerable filters (*Freeman and Adelson’91*)
- Moment invariants [Van Gool et al.’96]
- SIFT (*Lowe’99*)
- Shape context [Belongie et al.’02]
- SIFT with PCA dimensionality reduction
- Gradient PCA [Ke and Sukthankar’04]
- SURF descriptor [Bay et al.’08]
- DAISY descriptor [Tola et al.’08, Windler et al’09]
Comparison criterion

• Descriptors should be
 – Distinctive
 – Robust to changes on viewing conditions as well as to errors of the detector

• Detection rate (recall)
 – #correct matches / #correspondences

• False positive rate
 – #false matches / #all matches

• Variation of the distance threshold
 – distance \((d1, d2) < \text{threshold}\)

[K. Mikolajczyk & C. Schmid, PAMI’05]
Viewpoint change (60 degrees)
Scale change (factor 2.8)
Conclusion - descriptors

- SIFT based descriptors perform best

- Significant difference between SIFT and low dimension descriptors as well as cross-correlation

- Robust region descriptors better than point-wise descriptors

- Performance of the descriptor is relatively independent of the detector
Available on the internet

http://lear.inrialpes.fr/software

- Binaries for detectors and descriptors
 - *Building blocks for recognition systems*

- Carefully designed test setup
 - Dataset with transformations
 - Evaluation code in matlab
 - *Benchmark for new detectors and descriptors*