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Motivation I. Artistic Representation

Early studies were motivated by human representations in Arts

Da Vinci: st s indispensable for a painter, to become totally familiar with the
anatomy of nerves, bones, muscles, and sinews, such that he understands
for their various motions and stresses, which sinews or which muscle
causes a particular motion”

“| ask for the weight [pressure] of this man for every segment of motion
when climbing those stairs, and for the weight he places on b and on c.
Note the vertical line below the center of mass of this man.”
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Leonardo da Vinci (1452-1519): A man going upstairs, 'or up a ladder.



Motivation |l: Biomechanics

e The emergence of biomechanics

e Borelli applied to biology the
analytical and geometrical methods,
developed by Galileo Galilei

e He was the first to understand that
bones serve as levers and muscles
function according to mathematical
principles

e His physiological studies included
muscle analysis and a mathematical
discussion of movements, such as
running or jumping

Giovanni Alfonso Borelli (1608-1679)



Motivation Ill: Motion perception

Etienne-Jules Marey:
(1830-1904) made amce.. N 9200022292 00000220220

Chronophotographic ¥, \}}m :
\ "\

experiments influential

for the emerging field of H_‘—

cinematography
%

Eadweard Muybridge
(1830-1904) invented a
machine for displaying
the recorded series of
iImages. He pioneered
motion pictures and
applied his technique to
movement studies




Motivation Ill: Motion perception

Gunnar Johansson [1973] pioneered studies on the use of image
sequences for a programmed human motion analysis

“Moving Light Displays” (LED) enable identification of familiar people
and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973



Human actions: Historic overview

15t century ¢

studies of
anatomy
T 17" century
emergence of
biomechanics
19" century ¢

emergence of

cinematography
! {
studies of human

motion perception

Modern computer vision
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Modern applications: Motion capture
and animation

Avatar (2009)




Modern applications: Motion capture
and animation

Leonardo da Vinci (1452-1519) Avatar (2009)




Modern applications: Video editing
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Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004
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Modern applications: Video editing

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004
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Modern applications: Video editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003
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Modern applications: Video editing
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Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003
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Applications:

Unusual Activity Detection

e.g. for surveillance

Detecting Irregularities in
Images and in Video
Boiman & Irani, ICCV 2005
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Why automatic video understanding?
e Huge amount of video is available and growing

3 1:1[® Motion Gallery

TV-channels recorded
since 60’s

>34K hours of video
upload every day

CCTV SURVEILLANCE CAMERA

FREE NATIONWIDE DELIVERY

~30M surveillance cameras in US
= § 5] => ~700K video hours/day

Dhand
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Why automatic video understanding?

* Video indexing and search is useful in TV production, entertainment,
education, social studies, security,...

£ 3 : “ “ : Home
B #a ¢ ‘ U “ videos: e.g.
TV & Web: . ;=:E:--. My
e.g. 1= Sl daughter
“Fightin a . : - climbing”
parlament”
Sociology research: Surveillance:
e.g.
Manually : “Woman throws
anquze_d smoking b cat into wheelie
actions in bin”
900 movies

- 260K views in 7
days

e ... how much is it about people?



How many person-pixels are there?

Movies TV

YouTube
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How many person-pixels are there?

Movies TV

YouTube
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How to recognize actions?
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Action understanding: Key components

Image measurements

Foreground
segmentation

Image

» gradients

Optlcal flow

———— e .

- Local space-
~ . time features

Prior knowledge

Association

1 v

Learning Automatic
associations from inference

strong / weak
supervision

Deformable contour
models

2D/3D body models

Ll
¥ e

Motion priors
Background models

Action labels
o000
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Objective and motivation

Determine human body pose (layout)

Why? To recognize poses, gestures, actions

23



Activities characterized by a pose

fotolia

fotalia

fotalia

fatolia

fatolia
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Activities characterized by a pose
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Activities characterized by a pose
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Challenges: articulations and deformations

27



Challenges: of (almost) unconstrained images

varying illumination and low contrast; moving camera and background,;
multiple people; scale changes, extensive clutter; any clothing

28






Pictorial Structures

Intuitive model of an object

Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)
Dates back to Fischler & Elschlager 1973

MOUTH
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From last lecture: objects

Mixture of deformable part-based models

* One component per “aspect” e.g. front/side view
Each component has global template + deformable parts
Discriminative training from bounding boxes alone
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Localize multi-part objects at arbitrary locations in an image
» Generic object models such as person or car
» Allow for articulated objects
« Simultaneous use of appearance and spatial information
* Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both
« Appearance: how well each part matches at given location
» Configuration: degree to which parts match 2D spatial layout

32



Long tradition of using pictorial structures for humans

Finding People by Sampling
loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition
Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People
Ronfard, Schmid & Triggs, ECCV 2002
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Felzenszwalb & Huttenlocher

NB: requires background subtraction



Variety of Poses
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Variety of Poses
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Objective: detect human and determine upper body pose (layout)

Model as a graph labelling problem

e Vertices V are parts, a;,2=1,---.n
e Edges & are pairwise linkages between parts
e For each part there are h possible poses p; = (z;,y;, ¢;, 5;)

e Label each part by its pose: f:V — {1, . -,h,}, i.e. part a takes pose Pf(a):

37



Pictorial structure model — CRF

e Each labelling has an energy (cost): Features for unary:
E(N) =2 baur@ T 2 bavirro) color
acV (a,b)e€ * HOG
—— \ v / for limbs/torso
unary terms pairwise terms
(appearance) (configuration)

e Fit model (inference) as labelling with lowest energy

38



Unary term: appearance feature | - colour

input image skin c;‘kground
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colour posteriors
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Unary term: appearance feature Il - HOG

Dalal & Triggs, CVPR 2005

Histogram of oriented gradients (HOG)

HOG of image

HOG of lower
arm template
(learned)

L2 Distance

0.9
0.8

F 0.7
F 0.6
F 0.5

L 04

0.3
0.2
0.1
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Pairwise terms: kinematic layout
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Pictorial structure model — CRF

e Each labelling has an energy (cost): Features for unary:
E(f) = > bar@+ 2 babif(a)r ) colour
acV (a,b)EE * HOG
—— \ v / for limbs/torso
unary terms pairwise terms
(appearance) (configuration)

e Fit model (inference) as labelling with lowest energy



Complexity

| |!|[lll1'L“ :‘ill !, :I L B
v -

qu l--_ ]

e n parts

e For each part there are h possible poses p; = (z,Y5,Pj,5;5)
e There are h" possible labellings

Problem: any reasonable discretization (e.g. 12 scales and 36 angles for upper
and lower arm, etc) gives a number of configurations 1012 — 1074

- Brute force search not feasible

43



Are trees the answer?

left right

With n parts and h possible discrete locations per part, O(h")
For a tree, using dynamic programming this reduces to O(nhz)

If model is a tree and has certain edge costs, then complexity

reduces to O(nh) using a distance transform [Felzenszwalb &
Huttenlocher, 2000, 2005]



Problems with tree structured pictorial structures
- Layout model defines the foreground,
l.e. it chooses the pixels to “explain”

e ignores skin and strong edge
In background

* “double counting”

Generative model of foreground only

45



Kinematic structure vs graphical (independence) structure

Graph G = (V,E) E

left right  |eft right

Requires more
connections than a tree

46



Some recent results

* Detect hands and arms of person signing British Sign Language

* Hour long sequences

« Strong but minimal supervision

[Buehler, Everingham, Zisserman CVPR09]
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Search space reduction by upper body human detection

(1) detect human; (2) reduce search from h"

|dea
get approximate location and scale with a
detector generic over pose and appearance

Building an upper-body detector
- based on Dala and Triggs CVPR 2005

- train = 96 frames X 12 perturbations

B Benefits for pose estimation

¥ + fixes scale of body parts

+ sets bounds on x,y locations

+ detects also back views

+ fast

detected enlar ged - little info about pose (arms)

48



Upper body detector — using HOGs

average training data
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Search space reduction by foreground highlighting

ol ] 7 |dea
y = exploit knowledge about structure of
search areato initialize Grabcut

Initialization
- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’'t clamp bg (arms can be anywhere)

Benefits for pose estimation

+ further reduce clutter

+ conservative (no loss 95.5% times)

+ needs no knowledge of background
+ allows for moving background

50



Search space reduction by foreground highlighting

|dea
exploit knowledge about structure of
search areato initialize Grabcut

Initialization
- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’'t clamp bg (arms can be anywhere)

Benefits for pose estimation
+ further reduce clutter
+ conservative (no loss 95.5% times)

+ needs no knowledge of background

+ allows for moving background
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Pose estimation by image parsing - Ramanan NIPS 06

Goal
estimate posterior of part configuration

E(f) = Xacv s £(a) T Z(ap)ee Oab: £(a) £(b)

N J
N v J Ve
unary terms pairwise terms
(edges/colour) (configuration)
Algorithm

1. inference with edges unary

2. learn appearance models of
body parts and background

3. inference with edges + colour unary

edge
parse parse

appearance edge+col  Advantages of space reduction
+ much more robust
+ much faster (10x-100x)
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Failure of direct pose estimation

Ramanan NIPS 2006 unaided

—

b—
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Results on Buffy frames




Results on PASCAL flickr images
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What is missed?

truncation is not modelled

S7



What is missed?

occlusion is not modelled
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Application: Pose Search

Given user-selected
guery frame+person ...

... retrieve shots with persons
in the same pose from video database

CVPR 2009

query

video database
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Pose Search

Pose descriptors

- soft-segmentations of body parts

- distributions over orient+location
for parts and pairs of parts

Smilarity measures
- dot-product (= soft intersection)

- Batthacharrya/ Chi-square

60



Processing

Off-line:
* Detect upper bodies in every frame
» Link (track) upper body detections
» Estimate upper body pose for each frame of track
« Compute descriptor (vector) for each upper body pose

Run-time:
* Rank each track by its similarity to the query pose

61



Pose Search

“hips pose”

62



Pose Search

“rest pose”

63



Pose Search

“rest pose”



Other poses — query interesting pose

Hollywood movies — Query on Gandhi, Search Hugh Grant opus
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Other poses — query interesting pose

Hollywood movies — Query on Gandhi, Search Hugh Grant opus
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Action understanding: Key components

Image measurements

Foreground
segmentation

Image

» gradients

Optlcal flow

———— e s

s _ . Local space-
__F &~ time features
o

Association

1 v

Learning Automatic

associations from inference

strong / weak
supervision

Prior knowledge

Deformable contour
models

2D/3D body models

et
P

Motion priors
Background models

Action labels
o000
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Foreground segmentation

Image differencing: a simple way to measure motion/change

= > Const |:>

Better Background / Foreground separation methods exist:

* Modeling of color variation at each pixel with Gaussian Mixture

¢ Dominant motion compensation for sequences with moving camera

®* Motion layer separation for scenes with non-static backgrounds
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Temporal Templates

Idea: summarize motion in video in a
Motion History Image (MHI):

T if D(x, y,t)—l
H-(x,y,t) :{ max (0, H,(z,y,t —1)—1)

otherw1se

Descriptor: Hu moments of different orders

Npg = / / 2Pyl p(x, y)dedy

[A.F. Bobick and J.W. Davis, PAMI 2001]
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Aerobics dataset

Nearest Neighbor classifier: 66% accuracy
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Temporal Templates: Summary

Pros:
+ Simple and fast

_ _ Not all shapes are valid
+ Works in controlled settings

==) Restrict the space
of admissible silhouettes

Cons:
- Prone to errors of background sub

Variations in light, shadows, clothing...

- Does not capture interior
motion and shape

Silhouette
tells little
about actions

80



Active Shape Models of Cootes et al.

Point Distribution Model

e Represent the shape of samples by a set
of corresponding points or landmarks

X =(T1,o T Ylseestn)

®* Assume each shape can be represented
by the linear combination of basis shapes

D = (d1|p2] ... |P1)

suchthat x ~ x+ ®b

1 S
for mean shape X = < E x?
7 i=1

and some parameters b

81



Active Shape Models of Cootes et al.

e Basis shapes can be found as the main modes of variation of
in the training data.

2D
Example:

(each point can be
thought as a
shape in N-Dim
space)

Principle Component Analysis (PCA):
1 S

P > (x —x)(x; —x)"

1—1

Covariance matrix § —

Eigenvectors ® = (¢1|pa] ... |¢¢) eigenvalues Aq, ..., \s
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Active Shape Models of Cootes et al.

e Back-project from shape-space b toimage space x = X + ®b

=> Three main modes of lips-shape variation:

b = (uA1,0,0,..)" b = (0, uA2,0,0,. ) b = (0,0,443,0,0,. )T
o _ . — o
i S \

|
I
%

:—3 150153

Dlstrlbutlon of elgenvalues Al, Ao, A3, ...
|

A small fraction of basis
shapes (eigenvecors)

accounts for the most of shape
I - variation (=> landmarks are

redundant)
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Active Shape Models of Cootes et al.

e & is orthonormal basis, therefore —1 — T

==)> Given estimate of X we can recover shape parameters b
b=&'(x—-X%)
¢ Projection onto the shape-space serves as a regularization

X = b=®'(x—%) =) Xreg = X+ Pb




Active Shape Models of Cootes et al.

How to use Active Shape Models for shape estimation?

® Given initial guess of model points X estimate new positions x/
using local image search, e.g. locate the closest edge point

Normal to Model
Boundary Nearest Edge
| | on Normal (X" Y7)

Model Pomnt (X.Y)

Model Boundary

g Image Object

e Re-estimate shape parameters
b=&'(x —x

85



Active Shape Models of Cootes et al.

e To handle translation, scale and rotation, it is useful to normalize x
prior to shape estimation:

x = T(x + ®b)

using similarity transformation

_ a c tx
T(Xnorm) - ( —c a )X‘I‘ ( ty )
A simple way to estimate T is to assign (tz,ty) and a to the
mean position and the standard deviation of points in X

respectively and set ¢ = 0. For more sophisticated
normalization techniques see:

http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

Note: model parameters X, ® have to be computed using
normalized image point coordinates xporm = 71 (x)



Active Shape Models of Cootes et al.

* [terative ASM alignment algorithm

1. Initialize with the reasonable guessof T and b=0T
2. Estimate x’ from image measurements

3. Re-estimate 7 1,

4. Unless T,b converged, repeat from step 2

Example: face alignment lllustration of face shape space

s = 55 o

Mode 1 I@j |§j %ﬁ/ﬁ
= == | =

Mode 2 % |%£j 'éyl

| @ l:b

. YIRS
s Y

Active Shape Models: Their Training and Application
T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, CVIU 1995
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Active Shape Model tracking

Aim: to track ASM of time-varying shapes, e.g. human silhouettes

e Impose time-continuity constraint on model parameters.
For example, for shape parameters b :

k .
b = b;(k — 1) + wf !
w; ~ N(Oa H»/\?j) Gaussian noise

For similarity transformation T
a(k) = g(k=1) 1 wfg_l, wq = N(0,04)

(k) _ ,(k=1) ,  (k-1) k—1 _
taly = taly +'Ua»’ly Ty, Waly = N(0,0,)

More complex dynamical models possible

e Update model parameters at each time frame using e.g.
Kalman filter



Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994
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Person Tracking
i

N s L [t
.~
i

=i
e LS
= e .

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994
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Active Shape Models: Summary

Pros:
+ Shape prior helps overcoming segmentation errors
+ Fast optimization
+ Can handle interior/exterior dynamics

Cons:
- Optimization gets trapped in local minima

- Re-initialization is problematic

Possible improvements:

e Learn and use motion priors, possibly specific to
different actions
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Motion priors

e Accurate motion models can be used bhoth to:
*» Help accurate tracking
% Recognize actions

® Goal: formulate motion models for different types of actions
and use such models for action recognition

Example:

Drawing with 3 action
modes

= |ine drawing

scribbling

— dle

[M. Isard and A. Blake, ICCV 1998]
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Incorporating motion priors

Image measurements

Foreground
segmentation

Image gradient
Optical Flow

Data Association

Prior knowledge

Particle filters

Learning motion
models for
different actions

N _~

93



Bayesian Tracking

General framework: recognition by synthesis;
generative models;
finding best explanation of the data

Notation:

Z; image data at time i
X; model parameters at time i (e.g. shape and its dynamics)

p(X;) prior density for X;
p(Z;|X;) likelihood of data for the given model configuration

We search posterior defined by the Bayes’ rule
p(X|Z) < p(Z|X)p(X)
For tracking the Markov assumption gives the prior p(X;[X;-1)

Temporal update rule: p(X;|Z;) x p(Z;|X;)p(X;]1X;-1)

94



Kalman Filtering

If all probability densities are uni-modal, specifically Gussians,
the posterior can be evaluated in the closed form

—

T deterministic drift —
P i,
P “Pf—"l’)

_ - Y

X X Y\
- - |
i
i

stochastic diffusion

I|
A : A,
) Bx) /

+
-
P
e reactive effect of measurement T
. \‘H..__ o

p(Xi|Z;) o< p(Z;| X)p(Xi|Xio1)




Particle Filtering

In reality probability densities are almost always multi-modal

p(Xi-1) " deterministic drift
4
YR pix)
X x \\
A 'I'-
.II
stochastic diffusion
|
- 1 I|
pix) - pix)

‘\““-H_ reactive effect of measurement 7
e e
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Particle Filtering

In reality probability densities are almost always multi-modal

==) Approximate distributions with weighted particles
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Particle Filtering

Tracking examples:

X describes leave shape X describes head shape

CONDENSATION - conditional density propagation for visual tracking
A. Blake and M. Isard IJCV 1998
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Learning dynamic prior

e Dynamic model: 2" order Auto-Regressive Process

State X, = ( §“-’ ! )
' k

Updaterule: X, — X = A(A, 1 — X) + Bwy

Y A VR |
Model parameters: A = ( A, A,

Learning scheme:

Shape Space

Hand-built dynamics

Training sequence
slow, clutter—free

IENE:

Fast test
sequences

T

Faster training
sequence

) and b’(

T

lterate

Infer dynamical

model

0
By

)
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Learning dynamic prior

Random simulation of the

Learning point sequence learned dynamical model
(C },
L g,
100 {__’%. 100 r"'f'
fq‘ & 5 .
o & . -.}_:*-_:Nj
‘ tﬁ”'{'\..:.:;;';':! ° “*\--__p:iéu o
i,,_,_,.-"{: f(ﬁ:"h L:;:w-
NS 4 - T
0 100 100 00 - 100 10

Statistical models of visual shape and motion
A. Blake, B. Bascle, M. Isard and J. MacCormick, Phil.Trans.R.Soc. 1998
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Learning dynamic prior

Random simulation of the learned gate dynamics

101



Dynamics with discrete states

sz
YL .

Continuous state

Introduce “mixed” state 2'[’; = (
" space (as before)

* Discrete variable
Transition probability matrix identifying dynamical
model y. = 1,2,....,n

Plyr = jlyp1 = 1) =15 5.

or more generally Py, = jlyg 1 =14, X 1) =15 ;(Xg 1)

Incorporation of the mixed-state model into a particle filter is
straightforward, simply use X,:r instead of A, and the
corresponding update rules
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Dynamics with discrete states

Example: Drawing

line idle scribbling
Transition 0.9800 0.0015 0.0185\ '
pfotb?‘b"'ty T = {0.0850 0.9000 0.0150 ] *
matx 0.0050 0.0150 0.9800/ "

Result: simultaneously
improved tracking and
gesture recognition

— line drawing

scribbling

A mixed-state Condensation tracker with automatic model-switching
M. Isard and A. Blake, ICCV 1998
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Dynamics with discrete states

. . . Slarlcut\‘
Similar illustrated on H—ise
gesture recognition in g / o \
Start Cut

the context of a visual Clear

black-board interface p S

Quit
Print Save

[M.J. Black and A.D. Jepson, ECCV 1998]
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Motion priors & Trackimg: Summary

Pros:
+ more accurate tracking using specific motion models
+ Simultaneous tracking and motion recognition with
discrete state dynamical models

cons:
- Local minima is still an issue

- Re-initialization is still an issue
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Shape and Appearance vs. Motion

e Shape and appearance in images depends on many factors:
clothing, illumination contrast, image resolution, etc...

——

[Efros et al. 2003]
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Motion estimation: Optical Flow

e Classic problem of computer vision [Gibson 1955]
e Goal: estimate motion field

How? We only have access to image pixels

' Estimate pixel-wise correspondence
between frames = Optical Flow

® Brightness Change assumption: corresponding pixels
preserve their intensity (color)

% Useful assumption in many cases

3-D scene ,,F-J - 3-D scene

+» Breaks at occlusions and 2
illumination changes

* Physical and visual
motion may be different

aptical flow field
optical flow field
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Generic Optical Flow

¢ Brightness Change Constraint Equation (BCCE)

v = (Um,fuy)T Optical flow

n’ I, =0
(VI)'v+ 1 VI = ([m’[y)T Image gradient

One equation, two unknowns => cannot be solved directly

==) Integrate several measurements in the local neighborhood
and obtain a Least Squares Solution [Lucas & Kanade 1981]

<VIVDT >v=—-<VII >

<IZ2> <Idy> o [ <Leli>
Second-moment Inly > < Ig > < Iyl >
matrix, the same

oneusedto , : : :
compute Harris < - > Denotes integration over a spatial (or spatio-temporal)

interest points! neighborhood of a point
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Generic Optical Flow

e The solution of < VI(VI)T > v =— < VII; > assumes
1. Brightness change constraint holds in < - >
2. Sufficient variation of image gradientin < - >

3. Approximately constant motionin < - >

Motion estimation becomes inaccurate if any of assumptions
1-3 is violated.

e Solutions:

(2) Insufficient gradient variation
known as aperture problem

=) Increase integration neighborhood

(3) Non-constant motionin < - >

==) Use more sophisticated motion model
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Parameterized Optical Flow

)

UV
Vy

(

e Constant velocity model: v

o~
)

S 3
N—
N
8 D
~—
VS
AN <
S 3
— M
S 3
~—

Vv

® Upgrade to affine motion model

Now motion depends on the position (z,y)' inside the neighborhood

Examples of Affine motion models for different parameters:
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e Can be formulated as Least Squares approach to estimate v
as before!
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Parameterized Optical Flow

¢ Another extension of the constant motion model is to compute
PCA basis flow fields from training examples

1. Compute standard Optical Flow for many examples
2. Put velocity components into one vector

— 2,2 T
w = (v%,v;,vx,vy, coes Uyt Ug))

3. Do PCA on w and obtain most informative PCA flow basis vectors
Training samples

PCA flow bases
........... LR T T O A A B R B B & & @ @ 4 & & T E R
........... LT T e, I
........... (LT T I T B e “aay rE P =
PRI treee s aasees '*“.Hi'!"‘ DN B I B T
s B et P T
.”HH““ ,,,,,,,,,,, B
1 2 3 4
. B e 1 e T R fee s :
,,,,,, e .. .
e F il N A R S
C 0 o BRSSO e ] Il lLa Ll vl b DoZZZIZLl),
[ - - L e o

7
Learning Parameterized Models of Image Motion
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997
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Parameterized Optical Flow

e Use PCA flow bases to regularize solution of motion estimation

e Motion estimation for test samples can be computed without
explicit computation of optical flow!

Solution formulation e.g. in terms of Least Squares

Direct flow recovery:

AAd

P v R EmERE LR S d R L I R T T TR L R I I I R I I R R ) e tor e s ma o
Bk b o ey B s aa s B T T T e I L] sarrammmy L A R T Y VI R
S 4 % mmim A P P E s Iy ———— “aaa mmn b A Trrr e e, P A m m 44 s e ap g s hoaEoam o
e A L T o o -
E T T e T et T T
. m e, S e e e e e T P VL P
R L B mm—— 4 e e a s 4 A - N troaa
N m g, = —— i e - —_— ————— e -
ey § et B - - - -—— ——— o -
.. ity o e e —— s e = ———
iy N jf’ - F—— e r—— i e J——
; ]I % | e 5 /ﬁ""ﬂ""'_‘ —_— -—— —— = —_—

- T, - e, [ — = —
i I £ ] z ——n JS—— ——— TR e —
b e ——— P e i . —— ———— - ———
PR J—— P P — - - R - m—— P ——

Learning Parameterized Models of Image Motion
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997
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Parameterized Optical Flow

e Estimated coefficients of PCA flow bases can be used as action

descriptors N |
Training Smile
40 vﬁ}\' g — R, i
20 = “‘Jxﬂ;“;,%%\m’“*u“'.e.':'l-'fh.s-’___-F‘L,ﬁa‘.»)%x’}‘m';":"J e =T T A
T N e = RPN A Vg e = - W .
0 RV N M\{ coefficients
b~
220 Y al
a2 —=—-—-
Test Smile a3 ——----
40
. ad —-—--
20 - — ——
) SN EPAS TRy T /O"\ ﬂﬂzh‘
= WE-'-—P"\; -
-20 k,»
Frame numbers 0 80 frame
.o
:::::::::::: :::;'.'.:‘,::'_: :;::;;i:‘.':: ::.'::::.';:: _____________ Wi
:',{"“‘;‘_::: :rr]|11 ------------ __: ................ ::: ............
|||||| IR -
LR - LA AR ° 1 L I 1ihl it
4 7 10 35 61 63 63 81

Frame numbers

Learning Parameterized Models of Image Motion
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997
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Parameterized Optical Flow

e Estimated coefficients of PCA flow bases can be used as action

descriptors
speech coefficient al speech coefficient a4 speech coefficent a5 speech coefficient ad
J S 20
20— N R 7/ P PN A N ST N
100 \ N e '?;‘;\ VA [ h,,m N |
= w&w*—*——--— ol v L’v’ 2 ¥ oS ‘%\
o 15 fame
...........................................................................................
1 """"" R R, '.;"'"---:: :.':hu; PR i i Tz
\ ....... IR RERE ) 1 B 7o — 7 l‘.'l 1 —_—
Hil-- 1\':||.I.'I ——— g Il ————— i;ﬁli ................ )l.-\-.- —
== | | =y = ‘ ——
0 2 G 8 10 12 14

Frame numbers

==)> Optical flow seems to be an interesting descriptor for
motion/action recognition
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Spatial Motion Descriptor

o r -
| ¥ - ‘
s : -
) L _-,.r - i '-
Fo RO R LR blurred F ", F", F ,F/
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Spatio-Temporal Motion Descriptor

Temporal extent E

Sequence A

| Sequence B

> A

|

.
LY \
B
frame-to-frame motion-to-motion
similarity matrix blurry | similarity matrix

&
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Football Actions: matching

F o
e,

Input
Sequence

Matched
Frames

matched

119



Football Actions: classification

1

run left 45
048

run left
0s

run left 135
07

walk left |
0k

walk infout -
as
run infout
04

walk right |

=03
run right 135+
—0.2
runright |

0.1
run right 45 |

i

"2‘;0 "&vo "'2;0 ‘ﬁg ‘b,;, ’Z:.va ‘:-;3 y ’b,? ’?J,? ’?f,.,
on for b s, fy K %
Roe ¥ %, ’4’ s o1, o5, %
L) Qg Oy o“’! b Tty 7, b o %

10 actions; 4500 total frames; 13-frame motion descriptor
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Classifying Ballet Actions

16 Actions; 24800 total frames; 51-frame motion descriptor. Men
used to classify women and vice versa.
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Classifying Tennis Actions

6 actions; 4600 frames; 7-frame motion descriptor
Woman player used as training, man as testing.

left+swing
left
stand

right

right+swing

swing
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Where are we so far ?

b b4

Temporal templates: Active shape models: Tracking with motion priors:
+ simple, fast + shape regularization + improved tracking and
_ sensitive to - _se_:r_13|_t|ve_ to smu_l;aneoqs_ qct_lon_recognltlon
. initialization and - sensitive to initialization and
segmentation errors : : ) :
tracking failures tracking failures

Motion-based recognition:
+ generic descriptors;
less depends on
appearance

N T L T
v e e BN RN
A e
e
A e —— = -

- sensitive to

localization/tracking
errors

8
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Motivation

Goal:
Interpreting
complex
dynamic scenes

Common methods:

Common problems:
- Segmentation 7 [€— « Complex & changing BG
« Tracking 2 — Changing appearance

= No global assumptions about the scene



Space-time

No global assumptions =

Consider local spatio-temporal neighborhoods

hand waving
boxing




Actions == Space-time objects?




Local approach Bag of Visual Words

Airplanes

Motorbikes |§%8]

Faces

W||d Cats

Leaves

People

Bikes




Space-time local features




Space-Time Interest Points: Detection

What neighborhoods to consider?

Distinct High image Look at the
. ﬁk;nchlve q = variation in space =  distribution of the
NEIGhBOrnoods and time gradient
Definitions:
f: R? xR — R Original image sequence
g(z,y,t; X) Space-time Gaussian with covariance > ¢ SPSD(3)

Le( ) = f() xge(+; &)  Gaussian derivative of f

VL = (Lg, Ly, L)1 Space-time gradient
Hrxx Hzy Hxt
p(; ) = VL(; DY(VL(; D)) g( sT) = | tay by Hye
Hxt  Hyt it

Second-moment matrix



Space-Time Interest Points: Detection

Properties of (-] )

,LL('; Z) defines second order approximation for the local
distribution of V/ L within neighborhood >

rank(p) =1 = 1D space-time variation of f e.g. moving bar
rank(p) = 2 —> 2D space-time variation of f e.g. moving ball
rank(pu) = 3 —> 3D space-time variation of f e.g. jumping ball

Large eigenvalues of u can be detected by the
local maxima of H over (x,y,t):
H(p; ¥) = det(u(p; X))+ ktrace®(u(p; X))
= AA2A3 — k(A1 + A2 + A3)°

(similar to Harris operator [Harris and Stephens, 1988])



Space-Time interest points

Velocity
changes

appearance/
disappearance

split/merge




Space-Time Interest Points: Examples

Motion event detection




Spatio-temporal scale

What if the spatial and/or temporal resolution changes?




Spatio-temporal scale selection

@)

& 10 \,\\/ 10 .
time 5 e time

point
transformation

p=S"1p, 5=

transformation

O

0
covariance 02 0 0
> =ppl =872 = 0 02 0
0 2



Spatio-temporal scale selection

. So X
point p=S"1p, S=| 0 s¢ 0 |, p=|y
0 t

transformation
0O sr

covariance o2 0 O

— ol — @2y — 2

transformation > =ppt =5 = 0O o O2
O O T

) To be invariant to scale transformations we need to
change filter covariance:

Q: how to estimate the

FC) * ge % right filer size > ?
)

F1() % ge (-
: Scale selection problem

Le(s X)



Spatio-temporal scale selection

The normalized spatio-temporal Laplacian operator
V2, oL =0272(Lyy + Lyy) + 073/2Ly

assumes scale-extrema values at the scale parameters of a
spatio-temporal of a Gaussian blob

Estimate scale by maximizing (V2,mL)? o, T

(Vl']%)f[ﬂ L)[’2

—

a

Fe il

g

5

a
o&%%ygﬁéﬁ

T T e T 2 o T T T T 1 2
15 : 00_1 "E = + 3 B 7 g o
S, T
|
T

G,
(similar to scale selection is space [Lindeberg, 1998])



Space-Time interest points

H depends on pn and, hence, on X and scale transformation S
— Adapt interest points by iteratively computing:

* Interest point 3
H(p, X) = det(u(p; X)) + ktrace>(u(p; X)) (*)

detection
« Scale .
estimation (0-077-0) — argmaxO',T(v’IQ?,O’l"mL(p; Z))Q ( )
1. Fix
2. For each detected interest point p; (*)
3. Estimate scale S(o,7) (**)
4. Update covariance >/ = §2
5. Re-detect p; using >’/
6. Iterate 3-6 until convergence of o, 7 and p;




Spatio-temporal scale selection

— -

Stability to size changes,
e.g. camera zoom




Spatio-temporal scale selection

Selection of
temporal scales
captures the
frequency of events




Relative camera motion

Space-time signal and its derivatives will change when if camera moves




Adapted interest points

Stabilized camera Stationary camera

Interest >0
points "L

A~
S 100

Velocity-adapted ",
interest points

//\100




| ocal features for human actions




| ocal features for human actions

boxing

hand waving




Local space-time descriptor: HOG/HOF

Multi-scale space-time patches

B
=
7
-
Histogram of Histogram f
oriented spatial of optical [«|[+|[—
grad. (HOG) 7% flow (HOF) —

Public code available at

www.irisa.fr/vista/actions I || bl || | I | |

3x3x2x4bins HOG 3x3x2x5bins HOF
descriptor descriptor




Visual Vocabulary: K-means clustering

= Group similar points in the space of image descriptors using
K-means clustering

= Select significant clusters

Clustering

\

/

Classification




Visual Vocabulary: K-means clustering

= Group similar points in the space of image descriptors using
K-means clustering

= Select significant clusters

Clustering

\
/

Classification




Local Space-time features: Matching

» Find similar events in pairs of video sequences




Action Classification: Overview

Bag of space-time features + multi-channel SVM
[Laptev’03, Schuldt’04, Niebles’06, Zhang’'07]

J HOG & HOF

> - — patch

‘ e -y descriptors

Collection of space-time patches

Histogram of visual words

—

L YR~ ‘;

—

Multi-channel
SVM
Classifier




Action recognition in KTH dataset

Walking  Jogging Running Boxing Waving  Clapping

- J i ..-.. = s
L e T
T "_"_#-l"- e
: | L N
[ ¢
!-':' r"‘

Sample frames from the KTH actions sequences, all six classes
(columns) and scenarios (rows) are presented




Classification results on KTH dataset

@(‘% @(\éo Q('{\'C‘% _P.(\ ;},\(\% Q\p‘jo

@’b \Déo Qé} Q?g $® 0@
Walking .00
Jogging .00
Running .00
Boxing .03
Waving . .09
Clapping 05 .00

Confusion matrix for KTH actions



What about 3D?

Local motion and appearance features are not invariant to view changes

camera 4

camera 3 -

f i D .
"

“check watch ™ action

camera S

camera 3

camera 3
camera 4

“pick up” action

camera 1 camera 2




Multi-view action recognition

Difficult to apply standard multi-view methods:

e Do not want to search for multi-
view point correspondence ---
Non-rigid motion, clothing
changes, ... --> It's Hard!

e Do notwantt

VGCAL TG

parts. Current metho
not reliable enough.

(@)
Q
¢)
»)
=
O
O
G 8

Q.

S are

o Yet, want to learn
from one view
and recognize acti
different views




Temporal self-similarities

ldea:
e Cross-view matching is hard but cross-time matching (tracking) is

relatively easy.
e Measure self-(dis)similarities across time: D(¢1,t5), t1,to € (1,...,T)

Example: D(tl,tQ) — ||P1 — P2||2

Distance matrix / self-similarity matrix (SSM):

time

time



Temporal self-similarities: Multi-views

Side view Top view
Appear
very
o similar o
£ despite . £
' the view
Q change!

time time

Intuition: 1. Distance between similar poses is low in any view
2. Distance among different poses is likely to be large in most views



Temporal self-similarities: MoCap

Self-similarities
can be measured
from Motion
Capture (MoCap)
data

person 1

person 2

person 1

person 2

Time

Time

“bend” action

-k

“kick” action




similarities: Video

CoELy, LT, AL,

Furpuag sod-[\sg Ao - SS JO-INSS

Temporal self

Self-similarities

can be
measured
directly from
video:

HOG or
Optical Flow
descriptors in
image frames




Self-similarity descriptor

Goal:

define a quantitative
measure to compare self-
similarity matrices

\1 i hfil.]. |

-3

‘L

i }lhg i

time

~SIFT descriptor
computed on SSM

¢ Define a local histogram
descriptor h; for each point
| on the diagonal.

e Sequence alignment:

Dynamic Programming for
two sequences of
descriptors {hi}, {h;}

e Action recognition:
* Visual vocabulary for h
« BoF representation of {h;}
« SVM



Multi-view alignment

frame 1 frame 11 frame 21 frame 31 frame 41 frame 51 frame 61 frame 71

N g

frame 1 frame 11 frame 21 frame 31 frame 41 frame 46

Tlme




Multi-view action recognition: Video

camera 1

Train CamOQ

Train Cam1

Train Cam2

camera 4
camera 3 =

camera 2
=t K

camem 5

Train Cam3

Train Cam4

Train All

[T cross—=camera training/testing B same camera training/testing

SSM-based recognition

camers 1

L4

Train CamO

Train Cam1

Train Cam2

Train Cam3

Train Camé4

camera &

camera 2

zamera 2
camera 4

C |

“‘plc; up  action

Train All

[1 cross—camera training/testing B same camera training/testing

Alternative view-dependent method (STIP)



What are Human Actions?

Actions in recent
datasets:

- |s it just about kinematics?

Should actions be defined by the purpose?

Kinematics + Objects



What are Human Actions?

Actions in recent
datasets:

A s it just about kinematics?

Should actions be defined by the purpose?

Kinematics + Objects + Scenes






Action recognition in realistic settings

,' ' Standard
b - action

datasets

Actions “In the Wild”:




Action Dataset and Annotation

Manual annotation of drinking actions in movies:

», W«

“Coffee and Cigarettes”; “Sea of Love”

“Drinking”: 159 annotated samples

I .- Smoking”: 149 annotated samples
CIGARETTES

Temporal annotation

5 FHEATIN Wil ¥ ¥

First frame Last frame
Spatial annotation 8 | A
head rectangle \ o ’

torso rectangle



“Drinking” action samples

training Samples test samples




Action representation

" Hist. of Gradient

features: f1, fo, f3,--.
AT X . Hist. of Optic Flow

AY

X .: r | = __- : / B
Y - ’ Last farme
A X Key-frame

First frame
block-histogram f=H f=(H1,Hs) f= (Hq1,Ho,H3, Hy)
features:
I
t Plain Temp-2 Spat-4




Action learning

f1 il selected features
Foulndil

T
f sl boost|n9> H(z) = sgn( ar(If))
e 2,00

0 weak classifier

AdaBoost: Efficient discriminative classifier [Freund&Schapire’97]
ABOOSE . Good performance for face detection [Viola&Jones'01]

pre-aligned
samples

optimal threshold

A—
/\ i Fisher

o iy T '. .0 L . ° discriminant

' see [Laptev BMVC'06]

Histogram o
features Syl o o

for more details

[Laptev, Pérez 2007]




Key-frame action classifier

f11maly selected features

il 3
f3mualn boosting H(z) = sgn( arfr)(fe))
5 X )

O weak classifier
2D HOG features

« Efficient discriminative classifier [Freund&Schapire’97]

AdaBoost: Good performance for face detection [Viola&Jones'01]

pre-aligned

samples optimal threshold

—
/\ ° Fisher
I |15 T '. .0/00 .0 discriminant

Histogram o [|®
features hi/ o @

[Laptev, Pérez 2007]



Keyframe priming

Training False positiv& of static HOG action detector

Positive Negative
training training
sample samples

Test




Action detection

Test set:

« 25min from “Coffee and Cigarettes” with GT 38 drinking actions
* No overlap with the training set in subjects or scenes

Detection:
 search over all space-time locations and spatio-temporal
extents PR drinking
1 T T T T T T T
—— OF5Hist-KFtrained (ap:0.434)
i | —— OF Grad9Hist-KFtrained (ap:0.343) |
08 , — OFGrad9Hist (ap:0.179)
Y| | —OF5Hist (ap:0.048) |
priming c 08F j
Qo4+ 5 s
No 02|, ;
Keyframe ~
priming | |
0" ;

i I I I i i i
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
recall



Action Detection (Iccv 2007)

& Lar ]
T. \,-- :

|

= ‘-“% i
:11‘1

Test episodes from the movie “Coffee and cigarettes”

Video available at http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html




20 most confident detections




Learning Actions from Movies

® Realistic variation of human actions
® Many classes and many examples per class

Problems:
® Typically only a few class-samples per movie
® Manual annotation is very time consuming



Automatic video annotation
with scripts

* Scripts available for >500 movies (no time synchronization)

° Subtitles (with time info.) are available for the most of movies
° Can transfer time to scripts by text alignment

subtitles movie script
RICK
Why weren't you honest with me? Why weren't you honest with me? Why
Why'd you keep your marriage a secret: did you keep your marriage a secret?

C0120:20,640 > 01:20:23,598 >

Rick sits down with llsa.

It wasn't my secret, Richard. ILSA
Victor wanted it that way.

Oh, it wasn't my secret, Richard.

Victor wanted it that way. Not even
1174 :
_ our closest friends knew about our
marriage.

Not even our closest friends
knew about our marriage.



Script-based action annotation

On the good side:

« Realistic variation of actions: subjects, views, etc...

« Many examples per class, many classes

« No extra overhead for new classes

« Actions, objects, scenes and their combinations

« Character names may be used to resolve “who is doing what?”

Problems:

 No spatial localization

 Temporal localization may be poor

« Missing actions: e.g. scripts do not always follow the movie

« Annotation is incomplete, not suitable as ground truth for
testing action detection

« Large within-class variability of action classes in text



1

0.8

0.6

precision

02

Scr

® Annotate action samples in text

4")

|—I-

cf::

i*D

* Evaluatio

® Do automatic script-to-video alignment
® Check the correspondence of actions in scripts and movies

.........................

Evaluation of retrieved actions on visual ground truth

50 100

150 200

250

300

number of samples

350

400

a: quality of subtitle-script matching

Example of a “visual false positive”

A black car pulls up, two army
officers get out.



Text-based action retrieval

® Large variation of action expressions in text:

GetOutCar “... Will gets out of the Chevrolet. ...”
action: “... Erin exits her new truck...”

Potential false

positives: “...About to sit down, he freezes...”

® => Supervised text classification approach

i ; : Re ularlzed Perceptron actlon retrleval frorn scripts
1 ‘Key\nlfords' actl‘on rgtne\.fal frc?m sgupte:. 1 9 . ; p! . . P
P TS RS NN WO S SN WU SO | T St s S SO S )( )§
: ; ¥
07+ ; : : : > i B 2%@ 0.7
o o
@ g <AnswerPhone>| o P x ] Ig sl i\igd'ogs o
oY <GetOutCar> : _ g ionAnswerPhone
GEJ_ 0.4 <(H33n38f$;ke> x IS x i & gal <ActionGetOutCar>
<HuaP " ' ' ' <ActionHandShake>
03 {KiL;gS)erson 03 <ActionHugPerson>
L | % . ; : :. PPN % .: ok L {ACtIDnKISS>
o2r| 3¢ <SitDown> : : : x 2 <ActionSitDown>
sl § <SitUp> | N S S il <ActionSitUp>
<StandUp> ; ; - <Act|onStandUp>
DU 0.1 0.2 D 3 O.l4 0’5 075 U:? Dl.B DTQ 1 00 0.3 0 5 0_‘5 0_‘7 075 0:9 1

recall recall



Automatically annotated action samples

AnswerPhone GetOutCar HandShake HugPerson

Kiss StandUp

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Hollywood-2 actions dataset

IVIly vy iy 1Ul1 LO C
Training Training Test
subset subset subset o
(clean)  fautomatic)  (dean)  Training and test
AnswerPhone 66 59 64 samples are obtained
DriveCar 25 90 102 from 33 and 36 distinct
Eat a0 aa 33 movies respectively.
FightPerson 54 33 70
GetOutCar 51 40 57
HandShake 32 38 45
HugPerson g4 27 60
Kiss 114 125 103 HO”yWO_Od'2 _
con . . ™ dataset is .o.n-llne_.
_ http://www.irisa.fr/vista
SitDown 104 a7 108 .
/actions/hollywood?2
SitUp 24 26 37
standUp 132 133 146
All Samples 823 810 884

[Laptev, Marszatek, Schmid, Rozenfeld 2008]



Action Classification: Overview

Bag of space-time features + multi-channel SVM
[Laptev’03, Schuldt’04, Niebles’06, Zhang’'07]

J HOG & HOF

> - — patch

‘ e -y descriptors

Collection of space-time patches

Histogram of visual words

—

L YR~ ‘;

—

Multi-channel
SVM
Classifier




Action classification (CVPRO08)

Test episodes from movies “The Graduate”, “It's a Wonderful Life”,
“Indiana Jones and the Last Crusade”




Actions in Context (CVPR 2009)

e Human actions are frequently correlated with particular scene classes

Reasons: physical properties and particular purposes of scenes

Running -- road Ruhning -- street



Mining scene captions

ILSA
01:22:00 | wish | didn't love you so much.
01:22:03 She snuggles closer to Rick.

Laszlo and Carl make their way through the darkness toward a
side entrance of Rick's. They run inside the entryway.

The headlights of a speeding police car sweep toward them.
They flatten themselves against a wall to avoid detection.
The lights move past them.

CARL

01:22:15 | think we lost them.
01:22:17



Mining scene captions

INT. TRENDY RESTAURANT - NIGHT

INT. MARSELLUS WALLACE'S DINING ROOM MORNING
EXT. STREETS BY DORA'S HOUSE - DAY.

INT. MELVIN'S APARTMENT, BATHROOM — NIGHT

EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT — DAY
INT. CRAIG AND LOTTE'S BATHROOM - DAY

« Maximize word frequency mmm) street, living room, bedroom, car ....

» Merge words with similar senses using WordNet:

taxi -> car, cafe -> restaurant

« Measure correlation of words with actions (in scripts) and

« Re-sort words by the entropy § = —k Z P;In P,
for P = p(action | word)



0.

0.1

Co-occurrence of actions and scenes
INn scripts

.........................................................................................

8(1267) | 147 | Relative Frequency: "Interior — office, business office”
14 T T T |

2

0.1




Co-occurrence of actions and scenes
INn scripts

12671 | 151 | Relative Frequency: "Interior — bedroom, sleeping room, chamber, bedchan
0.25 T T T T 1 T T




Co-occurrence of actions and
In text vs. video

- TextMraining—set
VideolTest-set

StandUp

SitUp

SitDown

Run

Kiss

HugPerson

HandShake

GetOutCar
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AnswerPhone 59 64 E 3
DriveCar || 90 102 < | Y
Eat R 33 EXT-house 31 140
FightPerson 33 70 EXT-road 81 114
GetOutCar 40 57 INT-bedroom 67 €9
HandShake 38 45 INT-car +H 68
HugPerson 27 66 INT-hotel 59 37
Kiss || 125 103 INT-kitchen 38 24
Run 187 141 INT-living-room 30 51
SitDown 87 108 INT-office 114 | 110
SitUp 26 37 [NT-restaurant 44 36
StandUp 133 146 INT-shop 47 28
All Samples || 810 884 All Samples || 570 | 582

(a) Actions

(b) Scenes

Automatic gathering of relevant scene classes
and visual samples

Source:

69 movies
aligned with
the scripts

Hollywood-2

dataset is on-line:
http://www.irisa.fr/vista
/actions/hollywood?2



Average precision (AP)

Results: actions and scenes (separately)

08
0.8

e SIFT
- = HoG _

0.7 |- o HoF
06
05
0.4
031
02

SIFT

HoG HoG

EXT.House (.303 | 0.363 0.491 STET HoF HoF
EXT.Road 0.498 | 0372 (.389

INT.Hotel 0.141 | 0.220 || 0.250 Eat 0.082 | 0.263 | 0.286

INT.Kitchen 0.081 | 0.050 || 0.070 FightPerson 0.081 | L6755 || 0.571

INT.LivingRoom | 0.109 | 0.128 || 0.152 GetOutCar 0.191 | 0.090 || 0.116

INT.Office 0.602 | 0453 || 0574 HandShake (L123 | 0.116 || O0.141

INT.Restaurant || 0.112 | 0.103 || 0.108 HugPerson 01297 0.135 1) 0.138

INT.Shop 0.257 | 0.149 || 0.244 Kiss 0.348 | 0.496 || 0.556

Run 0.458 | 0.537 || 0L565

e Erage L 319 29 L35 .

S""”f"” el 0 i" 0.29 G_ ! SitDown 0.161 | 0.316 || 0.278

| Toral average | 0.259 ] 0310 ]| 6.359 | SitUp 0.142 | 0.072 || 0.078

StandUp 0.262 | 0.350 || 0.325

Action average 0.200 | 0.324 || 0.326




Classification with the help of context

aj(w) = a;(x) + 7Y wiys(@)

jES

a;(x)  Action classification score

sj(xz)  Scene classification score

- \Aainht
’U_:H VVCTIylit

a;(x)  New action score

t: p(Scene

Action)



Results: actions and scenes (jointly)

Actions
in the
context
of
Scenes

Scenes
in the
context
of
Actions

Gain in average precision (AP)

Gain in average precision (AP)
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Weakly-Supervised
Temporal Action Annotation

e Answer questions: WHAT actions and WHEN they happened ?

g

Ty - f _ W) g - | A N _ _ v e 44 v i
SslsnasEnnEnNnNNRnipnENNERERRERRERRRRRRRRRRRRRRRRRRRARRRNERRRRRRRNEERRRERD RERRRNRRRRRRRRRERRRRENDRRD

Knock on the door Fight Kiss

e Train visual action detectors and annotate actions with the
minimal manual supervision



WHAT actions?

e Automatic discovery of action classes in text (movie scripts)
-- Text processing:

Part of Speech (POS) tagging;
Named Entity Recognition (NER);
WordNet pruning; Visual Noun filtering

-- Search action patterns

Person+Verb Person+Verb+Prep. Person+Verb+Prep+Vis.Noun
3725 /PERSON .*is 989 /PERSON .* looks .* at 41 /PERSON .* sits .*in .* chair

2644 /PERSON .* looks 384 /PERSON .*is .*in 37 /PERSON .* sits .* at.* table

1300 /PERSON .* turns 363 /PERSON .* looks .* up 31 /PERSON .*sits .* on .* bed

916 /PERSON .* takes 234 /PERSON .*is .*on 29 /PERSON .* sits .* at .* desk

840 /PERSON .* sits 215 /PERSON .* picks .* up 26 /PERSON .* picks .* up .* phone
829 /PERSON .* has 196 /PERSON .*is .* at 23 /PERSON .* gets .* out .* car

807 /PERSON .* walks 139 /PERSON .*sits .*in 23 /PERSON .* looks .* out .* window
701 /PERSON .* stands 138 /PERSON .*is .* with 21 /PERSON .* looks .* around .* room
622 /PERSON .* goes 134 /PERSON .* stares .* at 18 /PERSON .*is .* at.* desk

591 /PERSON .* starts 129 /PERSON .*is .* by 17 /PERSON .* hangs .* up .* phone
585 /PERSON .* does 126 /PERSON .* looks .* down 17 /PERSON .*is .* on .* phone

569 /PERSON .* gets 124 /PERSON .*sits .* on 17 /PERSON .* looks .* at .* watch
552 /PERSON .* pulls 122 /PERSON .*is .* of 16 /PERSON .* sits .* on .* couch

503 /PERSON .* comes 114 /PERSON .* gets .* up 15 /PERSON .* opens .* of .* door
493 /PERSON .* sees 109 /PERSON .* sits .* at 15 /PERSON .* walks .* into .* room

462 /PERSON .* are/VBP 107 /PERSON .* sits .* down 14 /PERSON .* goes .* into .* room



WHEN: Video Data and Annotation

e Want to target realistic video data
e \Want to avoid manual video annotation for training

m=) Use movies + scripts for automatic annotation of training samples

Subtitles Script
Speech
00:24:22 —é 00:24:25 ; i > | Monsieur Laszlo. Right this way.

— Yes, Monsieur Laszlo. \ Scene description
Right this way.

As the headwaiter takes them to a
nd
the Sam,
with a conscious effort, keeps his

/ eyes on the keyboard as they go
past. The headwaiter seats llsa...

00:24:51 —; 00:24:53 Speech

Two Cointreaux, please. —+———— | Two cointreaux, please.




Overview

Input: Automatic collection of training clips

o : ... Jane jumps up and opens the door ...
Action type, €.g. ... Carolyn opens the front door ...
Person Opens Door =) .. Jane opens her bedroom door ...

 Videos + aligned scripts

Clustering of positive segments

Output: Training classifier
-
Sliding- X~ —
window-style —
temporal - " — am -
action — —
localization — — -




Action clustering

[Lihi Zelnik-Manor and Michal Irani CVPR 2001]

Descriptor space
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*  wave | | | | | Frame Number
4 run 1000 2000 3000 4000 A000 OO0
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Ground truth



Action clustering

Complex data:

Standard clustering
methods do not work on

this data




Action clustering

Our view at the problem

Feature space Video space

Negative samples!

3 ﬁ n
AE i ‘
Nearest neighbor i f

solution: Wrong! Random video samples: lots of them,
very low chance to be positives




Action clustering

Formulation [Xu et al. NIPS'04]

L [Bach & Harchaoui NIPS’07]
discriminative cost

Feature space /

M
— J(f,w,b) = Cy > max{0, 1—w' d(c;[fi])—b} |+
i=1 Loss on positive samples

P
+C> max{0,1+ wTCD(:cZ-_) + b}t [|w||?

=1 Loss on negative samples

z,  negative samples
c;[fil parameterized positive sampies
Ji
— I c;
Optimization

SVM solution for w, b
Coordinate descent on Jf;




Clustering results

Drinking actions in Coffee and Cigarettes
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Detection results

Drinking actions in Coffee and Cigarettes

e Training Bag-of-Features classifier
e Temporal sliding window classification
e Non-maximum suppression

0.8}

0.6

0.4

0.2}

Detection trained on simulated clusters

| | antev&Perez (AP:0.49)
| m—— GT+0 frames (AP:0.40) |
GT+200 frames (AP:0.30) :
| === T+ 400 frames (AP:0.19)
GT+800 frames (AP:0.07)

» 25min from “Coffee and
Cigarettes” with GT 38
drinking actions



Detection results

Drinking actions in Coffee and Cigarettes

e Training Bag-of-Features classifier
e Temporal sliding window classification
e Non-maximum suppression

Detection trained on automatic clusters
1r= - R S R
| == Automatic segmentation (AP:0.26) -

- |=-800 frames (AP:0.07) |
o8 | /| SRR R SR

Test set:
» 25min from “Coffee and
Cigarettes” with GT 38
drinking actions
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Detection results

“Sit Down” and “Open Door” actions in ~5 hours of movies
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Automatic Annotation of Human Actions in Video

ICCV 2009 DEMO

O.Duchenne, l.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of
The Graduate, The Crying Game, Living in Oblivion

Temporal detection of “Sit Down” and “Open Door” actions in movies:
The Graduate, The Crying Game, Living in Oblivion
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