

Ecole Normale Supérieure Lyon Winter School Vision and Machine Learning January 24-28, 2011

Motion and Human Actions

Ivan Laptev

ivan.laptev@*inria.fr* INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Ivan Laptev, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Deva Ramanan, Bernt Schiele, Jamie Shotton, Andrea Vedaldi and Andrew Zisserman

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances

Appearance-based methods

Motion history images Active shape models Tracking and motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Motivation I: Artistic Representation

Early studies were motivated by human representations in Arts

Da Vinci: "it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion"

"I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on *b* and on *c*. Note the vertical line below the center of mass of this man."

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

Motivation II: Biomechanics

Giovanni Alfonso Borelli (1608–1679)

- The emergence of *biomechanics*
- Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei
- He was the first to understand that bones serve as levers and muscles function according to mathematical principles
- His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

Motivation III: Motion perception

Etienne-Jules Marey: (1830–1904) made Chronophotographic experiments influential for the emerging field of *cinematography*

Eadweard Muybridge (1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies

MORSE'S Galary, 4/3 Miningtowary 54, 54 MORSE'S Galary, 4/3 Miningtowary 54, 54 THE HORSE IN NOTION. MUY BRIDDE: *SALLIE GARDNER, ormed by LELAND STANYORK and July Bridden and Andre Treek, 1981, July 1981,

Motivation III: Motion perception

Gunnar Johansson [1973] pioneered studies on the use of image

• sequences for a programmed human motion analysis

"Moving Light Displays" (LED) enable identification of familiar people

• and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973

Human actions: Historic overview

Modern applications: Motion capture and animation

Modern applications: Motion capture and animation

Leonardo da Vinci (1452–1519)

Avatar (2009)

Space-Time Video Completion Y. Wexler, E. Shechtman and M. Irani, **CVPR** 2004

Space-Time Video Completion Y. Wexler, E. Shechtman and M. Irani, **CVPR** 2004

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Applications: Unusual Activity Detection

e.g. for surveillance

Detecting Irregularities in Images and in Video Boiman & Irani, **ICCV** 2005

Why automatic video understanding?

• Huge amount of video is available and growing

B B C Motion Gallery

TV-channels recorded since 60's

>34K hours of video upload every day

~30M surveillance cameras in US => ~700K video hours/day

Why automatic video understanding?

 Video indexing and search is useful in TV production, entertainment, education, social studies, security,...

TV & Web: e.g. *"Fight in a* parlament"

Home videos: e.g. *"My* daughter climbing"

Sociology research:

Manually analyzed smoking actions in 900 movies

Surveillance: e.g. *"Woman throws cat into wheelie bin"* 260K views in 7 days

• ... how much is it about people?

How many person-pixels are there?

Movies

ΤV

YouTube

How many person-pixels are there?

Movies

ΤV

YouTube

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

How to recognize actions?

Action understanding: Key components

Prior knowledge Image measurements Foreground Deformable contour segmentation models Image Association gradients قراق <u>م</u>ر 3 \bigcirc 0 2D/3D body models **Optical flow** Local spacetime features Motion priors Background models Learning Automatic Action labels associations from inference . . . strong / weak supervision

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Objective and motivation

Determine human body pose (layout)

Why? To recognize poses, gestures, actions

Activities characterized by a pose

Activities characterized by a pose

Activities characterized by a pose

Challenges: articulations and deformations

Challenges: of (almost) unconstrained images

varying illumination and low contrast; moving camera and background; multiple people; scale changes; extensive clutter; any clothing

Pictorial Structures

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

From last lecture: objects

Mixture of deformable part-based models

• One component per "aspect" e.g. front/side view Each component has global template + deformable parts Discriminative training from bounding boxes alone

Localize multi-part objects at arbitrary locations in an image

- Generic object models such as person or car
- Allow for articulated objects
- Simultaneous use of appearance and spatial information
- Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both

- Appearance: how well each part matches at given location
- Configuration: degree to which parts match 2D spatial layout

Long tradition of using pictorial structures for humans

Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Felzenszwalb & Huttenlocher

NB: requires background subtraction

Variety of Poses

Variety of Poses

Objective: detect human and determine upper body pose (layout)

Model as a graph labelling problem

- Vertices ${\mathcal V}$ are parts, $a_i, i=1,\cdots,n$
- Edges ${\mathcal E}$ are pairwise linkages between parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- Label each part by its pose: $f: \mathcal{V} \longrightarrow \{1, \cdots, h\}$, i.e. part a takes pose $\mathbf{p}_{f(a)}$.

Pictorial structure model – CRF

• Each labelling has an energy (cost):

- Features for unary:
- colour
- HOG
- for limbs/torso
- Fit model (inference) as labelling with lowest energy

Unary term: appearance feature I - colour

colour posteriors

Unary term: appearance feature II - HOG

Dalal & Triggs, CVPR 2005

Histogram of oriented gradients (HOG)

Pairwise terms: kinematic layout

Pictorial structure model – CRF

• Each labelling has an energy (cost):

- Features for unary:
- colour
- HOG
- for limbs/torso
- Fit model (inference) as labelling with lowest energy

Complexity

- n parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- There are h^n possible labellings
- Problem: any reasonable discretization (e.g. 12 scales and 36 angles for upper and lower arm, etc) gives a number of configurations 10¹² – 10¹⁴
- \rightarrow Brute force search not feasible

Are trees the answer?

- With n parts and h possible discrete locations per part, O(hⁿ)
- For a tree, using dynamic programming this reduces to O(nh²)
- If model is a tree and has certain edge costs, then complexity reduces to O(nh) using a distance transform [Felzenszwalb & Huttenlocher, 2000, 2005]

Problems with tree structured pictorial structures

• Layout model defines the foreground, i.e. it chooses the pixels to "explain"

• ignores skin and strong edge in background

• "double counting"

Generative model of foreground only

Kinematic structure vs graphical (independence) structure

Some recent results

- Detect hands and arms of person signing British Sign Language
- Hour long sequences

• Strong but minimal supervision

[Buehler, Everingham, Zisserman CVPR09]

Search space reduction by upper body human detection

(1) detect human; (2) reduce search from hⁿ

Idea

get approximate location and scale with a detector generic over pose and appearance

Building an upper-body detector

- based on Dalal and Triggs CVPR 2005
- train = 96 frames X 12 perturbations

Test

detected

enlarged

Benefits for pose estimation

- + fixes scale of body parts
- + sets bounds on x,y locations
- + detects also back views
- + fast
- little info about pose (arms)

Upper body detector – using HOGs

average training data

Search space reduction by foreground highlighting

initialization

output

Idea

exploit knowledge about structure of search area to initialize Grabcut

Initialization

- learn fg/bg models from regions where person likely present/absent
- clamp central strip to fg
- don't clamp bg (arms can be anywhere)

Benefits for pose estimation

- + further reduce clutter
- + conservative (no loss 95.5% times)
- + needs no knowledge of background
- + allows for moving background

Search space reduction by foreground highlighting

Idea

exploit knowledge about structure of search area to initialize Grabcut

Initialization

- learn fg/bg models from regions where person likely present/absent
- clamp central strip to fg
- don't clamp bg (arms can be anywhere)

Benefits for pose estimation

- + further reduce clutter
- + conservative (no loss 95.5% times)
- + needs no knowledge of background
- + allows for moving background

Pose estimation by image parsing - Ramanan NIPS 06

edge parse

appearance

parse

Goal

estimate posterior of part configuration

$$E(f) = \sum_{a \in \mathcal{V}} \theta_{a;f(a)} + \sum_{(a,b) \in \mathcal{E}} \theta_{ab;f(a)f(b)}$$

unary terms (edges/colour) pairwise terms (configuration)

Algorithm

- 1. inference with edges unary
- 2. learn appearance models of body parts and background
- 3. inference with edges + colour unary

Advantages of space reduction + much more robust + much faster (10x-100x)

Failure of direct pose estimation

Ramanan NIPS 2006 unaided

Results on Buffy frames

Results on PASCAL flickr images

What is missed?

What is missed?

truncation is not modelled

What is missed?

occlusion is not modelled

Application: Pose Search

Given user-selected query frame+person ...

query

... retrieve shots with persons in the same pose from video database

CVPR 2009

video database

Pose descriptors

- soft-segmentations of body parts
- distributions over orient+location for parts and pairs of parts

Similarity measures

- dot-product (= soft intersection)
- Batthacharrya / Chi-square

Processing

Off-line:

- Detect upper bodies in every frame
- Link (track) upper body detections
- Estimate upper body pose for each frame of track
- Compute descriptor (vector) for each upper body pose

Run-time:

• Rank each track by its similarity to the query pose

"hips pose"

"rest pose"

Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Action understanding: Key components

Foreground segmentation

Image differencing: a simple way to measure motion/change

Better Background / Foreground separation methods exist:

- Modeling of color variation at each pixel with Gaussian Mixture
- Dominant motion compensation for sequences with moving camera
- Motion layer separation for scenes with non-static backgrounds

Temporal Templates

$$D(x, y, t) \quad t = 1, \dots, T$$

Idea: summarize motion in video in a *Motion History Image (MHI)*:

1 1

D(

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max & (0, H_{\tau}(x, y, t - 1) - 1)\\ \text{otherwise} \end{cases}$$

 π

-1

Descriptor: Hu moments of different orders

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

[A.F. Bobick and J.W. Davis, PAMI 2001]

Aerobics dataset

Nearest Neighbor classifier: 66% accuracy

Temporal Templates: Summary

Pros:

- + Simple and fast
- + Works in controlled settings

Cons:

- Prone to errors of background subtraction

Variations in light, shadows, clothing...

Not all shapes are valid

of admissible silhouettes

Restrict the space

What is the background here?

- Does not capture *interior* motion and shape

Silhouette tells little about actions

Point Distribution Model

• Represent the shape of samples by a set of corresponding points or *landmarks*

$$\mathbf{x} = (x_1, \dots, x_n, y_1, \dots, y_n)^T$$

• Assume each shape can be represented by the linear combination of basis shapes

$$\mathbf{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$$

such that $\mathbf{x} pprox ar{\mathbf{x}} + \mathbf{\Phi} \mathbf{b}$

for mean shape
$$\ \, ar{\mathbf{x}} = rac{1}{s} \sum_{i=1}^s \mathbf{x}_i$$

and some parameters \boldsymbol{b}

• Basis shapes can be found as the main modes of variation of in the training data.

Principle Component Analysis (PCA):

Covariance matrix
$$\mathbf{S} = \frac{1}{s-1} \sum_{i=1}^{s} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Eigenvectors $\boldsymbol{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$ eigenvalues $\lambda_1, \dots, \lambda_t$

• Back-project from shape-space ${f b}$ to image space ${f x}={f x}+\Phi{f b}$

Distribution of eigenvalues: $\lambda_1, \lambda_2, \lambda_3, \dots$

A small fraction of basis shapes (eigenvecors) accounts for the most of shape variation (=> landmarks are redundant)

Φ is orthonormal basis, therefore Φ⁻¹ = Φ[⊤]
 ⇒ Given estimate of x we can recover shape parameters b

$$\mathbf{b} = \Phi^{\top}(\mathbf{x} - \bar{\mathbf{x}})$$

• Projection onto the shape-space serves as a regularization

$$\mathbf{x} \implies \mathbf{b} = \Phi^{\top}(\mathbf{x} - \bar{\mathbf{x}}) \implies \mathbf{x}_{\text{reg}} = \bar{\mathbf{x}} + \Phi \mathbf{b}$$

How to use Active Shape Models for shape estimation?

• Given initial guess of model points \mathbf{x} estimate new positions \mathbf{x}' using local image search, e.g. locate the closest edge point

• Re-estimate shape parameters

$$\mathbf{b}' = \Phi^{\top}(\mathbf{x}' - \bar{\mathbf{x}})$$

• To handle translation, scale and rotation, it is useful to normalize \mathbf{x} prior to shape estimation:

$$\mathbf{x} = \mathbf{T}(\bar{\mathbf{x}} + \Phi \mathbf{b})$$

using similarity transformation

$$\mathbf{T}(\mathbf{x}_{\text{norm}}) = \begin{pmatrix} a & c \\ -c & a \end{pmatrix} \mathbf{x} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

A simple way to estimate T is to assign (t_x, t_y) and a to the mean position and the standard deviation of points in X respectively and set c = 0. For more sophisticated normalization techniques see:

http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

Note: model parameters $\bar{\mathbf{x}}$, Φ have to be computed using *normalized* image point coordinates $\mathbf{x}_{norm} = T^{-1}(\mathbf{x})$

- Iterative ASM alignment algorithm
 - 1. Initialize with the reasonable guess of ${\bf T}$ and ${\bf b}={\bf 0}^{\top}$
 - 2. Estimate \mathbf{x}' from image measurements
 - 3. Re-estimate T, b
 - 4. Unless T, b converged, repeat from step 2

Example: face alignment

Illustration of face shape space

Mode 3

Active Shape Models: Their Training and Application T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, **CVIU** 1995

Active Shape Model tracking

Aim: to track ASM of time-varying shapes, e.g. human silhouettes

• Impose time-continuity constraint on model parameters. For example, for shape parameters b :

$$b_i^{(k)} = b_i(k-1) + w_i^{k-1}$$

 $w_i \sim \mathcal{N}(0, \mu \lambda_i)$ Gaussian noise

For similarity transformation $\ensuremath{\mathbf{T}}$

$$a^{(k)} = a^{(k-1)} + w_a^{k-1}, \quad w_a = \mathcal{N}(0, \sigma_a)$$

$$t_{x|y}^{(k)} = t_{x|y}^{(k-1)} + v_{x|y}^{(k-1)} + w_{x|y}^{k-1}, \quad w_{x|y} = \mathcal{N}(0, \sigma_{x|y})$$

More complex dynamical models possible

• Update model parameters at each time frame using e.g. Kalman filter

Person Tracking

Learning flexible models from image sequences A. Baumberg and D. Hogg, **ECCV** 1994

Person Tracking

Learning flexible models from image sequences A. Baumberg and D. Hogg, **ECCV** 1994

Active Shape Models: Summary

Pros:

- + Shape prior helps overcoming segmentation errors
- + Fast optimization
- + Can handle interior/exterior dynamics

Cons:

- Optimization gets trapped in local minima
- Re-initialization is problematic

Possible improvements:

 Learn and use motion priors, possibly specific to different actions

Motion priors

- Accurate motion models can be used both to:
 - ✤ Help accurate tracking
 - Recognize actions
- Goal: formulate motion models for different types of actions and use such models for action recognition

Example:

- Drawing with 3 action modes
 - line drawingscribblingidle

[M. Isard and A. Blake, ICCV 1998]

Incorporating motion priors

Bayesian Tracking

General framework: recognition by synthesis; generative models; finding best explanation of the data

Notation:

- \mathbf{Z}_i image data at time *i*
- X_i model parameters at time *i* (e.g. shape and its dynamics)
- $p(\mathbf{X}_i)$ prior density for \mathbf{X}_i
- $p(\mathbf{Z}_i|\mathbf{X}_i)$ likelihood of data for the given model configuration

We search posterior defined by the Bayes' rule

 $p(\mathbf{X}|\mathbf{Z}) \propto \mathbf{p}(\mathbf{Z}|\mathbf{X})\mathbf{p}(\mathbf{X})$

For tracking the Markov assumption gives the prior $p(\mathbf{X}_i|\mathbf{X}_{i-1})$

Temporal update rule: $p(\mathbf{X}_i | \mathbf{Z}_i) \propto p(\mathbf{Z}_i | \mathbf{X}_i) p(\mathbf{X}_i | \mathbf{X}_{i-1})$

Kalman Filtering

If all probability densities are uni-modal, specifically Gussians, the posterior can be evaluated in the closed form

Particle Filtering

In reality probability densities are almost always *multi-modal*

Particle Filtering

In reality probability densities are almost always *multi-modal*

Approximate distributions with weighted particles

Particle Filtering

Tracking examples:

X describes leave shape

${\bf X}\,$ describes head shape

CONDENSATION - conditional density propagation for visual tracking A. Blake and M. Isard IJCV 1998

Learning dynamic prior

• Dynamic model: 2nd order Auto-Regressive Process

State
$$\mathcal{X}_k = \left(egin{array}{c} \mathbf{X}_{k-1} \ \mathbf{X}_k \end{array}
ight)$$

Update rule: $\mathcal{X}_k - \overline{\mathcal{X}} = A(\mathcal{X}_{k-1} - \overline{\mathcal{X}}) + B\mathbf{w}_k$

Model parameters:
$$A = \begin{pmatrix} 0 & I \\ A_2 & A_1 \end{pmatrix}$$
, $\overline{\mathcal{X}} = \begin{pmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}} \end{pmatrix}$ and $B = \begin{pmatrix} 0 \\ B_0 \end{pmatrix}$

Learning scheme:

Learning dynamic prior

Statistical models of visual shape and motion A. Blake, B. Bascle, M. Isard and J. MacCormick, **Phil.Trans.R.Soc. 1998**

Learning dynamic prior

Random simulation of the learned gate dynamics

Dynamics with discrete states

Introduce "mixed" state $\mathcal{X}_k^+ = \begin{pmatrix} \mathcal{X}_k \\ y_k \end{pmatrix}$ Continuous state space (as before)

Discrete variable identifying dynamical model $y_k = 1, 2, ..., n$

Transition probability matrix

$$P(y_k = j | y_{k-1} = i) = T_{i,j},$$

or more generally $P(y_k = j | y_{k-1} = i, \mathcal{X}_{k-1}) = T_{i,j}(\mathcal{X}_{k-1})$

Incorporation of the mixed-state model into a particle filter is straightforward, simply use \mathcal{X}_k^+ instead of \mathcal{X}_k and the corresponding update rules

Dynamics with discrete states

Example: Drawing

		line	idle	scribbling	
Transition probability matrix	T =	$\begin{pmatrix} 0.9800 \\ 0.0850 \\ 0.0050 \end{pmatrix}$	$\begin{array}{c} 0.0015 \\ 0.9000 \\ 0.0150 \end{array}$	$\begin{pmatrix} 0.0185 \\ 0.0150 \\ 0.9800 \end{pmatrix}$	line idle scribbling

Result: simultaneously improved tracking and gesture recognition

A mixed-state Condensation tracker with automatic model-switching M. Isard and A. Blake, **ICCV** 1998

Dynamics with discrete states

Similar illustrated on gesture recognition in the context of a visual black-board interface

[M.J. Black and A.D. Jepson, ECCV 1998]

Motion priors & Trackimg: Summary

Pros:

- + more accurate tracking using specific motion models
- + Simultaneous tracking and motion recognition with discrete state dynamical models

Cons:

- Local minima is still an issue
- Re-initialization is still an issue

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances Datasets and challenges

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Class overview

Motivation

Historic review Modern applications

Human Pose Estimation

Pictorial structures Learning models from image data Recent advances Datasets and challenges

Appearance-based methods

Motion history images Active shape models Motion priors

Motion-based methods

Generic and parametric Optical Flow Motion templates

Shape and Appearance vs. Motion

• Shape and appearance in images depends on many factors: clothing, illumination contrast, image resolution, etc...

[Efros et al. 2003]

 Motion field (in theory) is invariant to shape and can be used directly to describe human actions

Motion estimation: Optical Flow

- Classic problem of computer vision [Gibson 1955]
- Goal: estimate motion field
 - How? We only have access to image pixels Estimate pixel-wise correspondence between frames = Optical Flow
- Brightness Change assumption: corresponding pixels preserve their intensity (color)

- Useful assumption in many cases
- Breaks at occlusions and illumination changes
- Physical and visual motion may be different

Generic Optical Flow

• Brightness Change Constraint Equation (BCCE)

 $(\nabla I)^{\top} \mathbf{v} + I_t = 0$ $\mathbf{v} = (v_x, v_y)^{\top}$ Optical flow $\nabla I = (I_x, I_y)^{\top}$ Image gradient

One equation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood and obtain a *Least Squares Solution* [Lucas & Kanade 1981]

$$< \nabla I (\nabla I)^{\top} > \mathbf{v} = - < \nabla I I_t >$$

Second-moment $\begin{pmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{pmatrix} \mathbf{v} = -\begin{pmatrix} \langle I_x I_t \rangle \\ \langle I_y I_t \rangle \end{pmatrix}$

Second-moment matrix, the same one used to compute Harris interest points!

 $<\cdot>$ Denotes integration over a spatial (or spatio-temporal) neighborhood of a point

Generic Optical Flow

- The solution of $\langle \nabla I(\nabla I)^{\top} \rangle \mathbf{v} = -\langle \nabla II_t \rangle$ assumes
 - 1. Brightness change constraint holds in $< \cdot >$
 - 2. Sufficient variation of image gradient in $< \cdot >$
 - 3. Approximately constant motion in $< \cdot >$

Motion estimation becomes *inaccurate* if any of assumptions 1-3 is violated.

- Solutions:
 - (2) Insufficient gradient variation known as *aperture problem*
 - ➡ Increase integration neighborhood

(3) Non-constant motion in $< \cdot >$

Use more sophisticated motion model

• Constant velocity model:
$$\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$

• Upgrade to affine motion model: $\mathbf{v} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \end{pmatrix}$

Now motion depends on the position $(x, y)^{\top}$ inside the neighborhood

Examples of Affine motion models for different parameters:

 Can be formulated as Least Squares approach to estimate v as before!

- Another extension of the constant motion model is to compute PCA basis flow fields from training examples
 - 1. Compute standard Optical Flow for many examples
 - 2. Put velocity components into one vector

$$\mathbf{w} = (v_x^1, v_y^1, v_x^2, v_y^2, ..., v_x^n, v_y^n)^\top$$

3. Do PCA on ${\bf w}$ and obtain most informative PCA flow basis vectors

Training samples

PCA flow bases

Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

- Use PCA flow bases to regularize solution of motion estimation
- Motion estimation for test samples can be computed *without* explicit computation of optical flow!

Solution formulation e.g. in terms of Least Squares

Direct flow recovery:

Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

 Estimated coefficients of PCA flow bases can be used as action descriptors

M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997

 Estimated coefficients of PCA flow bases can be used as action descriptors

Frame numbers

Optical flow seems to be an interesting descriptor for motion/action recognition

Spatial Motion Descriptor

Spatio-Temporal Motion Descriptor

Football Actions: matching

Input Sequence

Matched Frames

input matched

Football Actions: classification

10 actions; 4500 total frames; 13-frame motion descriptor

Classifying Ballet Actions

16 Actions; 24800 total frames; 51-frame motion descriptor. Men used to classify women and vice versa.

Classifying Tennis Actions

6 actions; 4600 frames; 7-frame motion descriptor Woman player used as training, man as testing.

Where are we so far ?

Temporal templates:
+ simple, fast

- sensitive to segmentation errors

Motion-based recognition:

- generic descriptors; less depends on appearance
- sensitive to localization/tracking errors

Active shape models:

- + shape regularization
- sensitive to initialization and tracking failures

Tracking with motion priors:

- + improved tracking and simultaneous action recognition
- sensitive to initialization and tracking failures

Motivation

Goal: Interpreting complex dynamic scenes

 \Rightarrow No global assumptions about the scene

No global assumptions \Rightarrow

Consider local spatio-temporal neighborhoods

hand waving

boxing

Actions == Space-time objects?

Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-time local features

Space-Time Interest Points: Detection

What neighborhoods to consider?

Distinctive neighborhoods	High image ⇒ variation in space = and time	Look at the ⇒ distribution of the gradient		
Definitions:				
$f \colon \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$	Original image sequence			
$g(x,y,t; \Sigma)$ Space-time Gaussian with covariance $\Sigma \in SPSD(3)$				
$L_{\xi}(\cdot; \Sigma) = f(\cdot) * g_{\xi}(\cdot; \Sigma)$ Gaussian derivative of f				
$\nabla L = (L_x, L_y, L_t)^T$ Space-time gradient				
$\mu(\cdot; \Sigma) = \nabla L(\cdot;$	$(\nabla L(\cdot; \Sigma))^T * g(\cdot; s\Sigma)$	$= \left(\begin{array}{cc} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \end{array} \right)$		
Second-moment matrix $\langle \mu_{xt} \ \mu_{yt} \ \mu_{tt} \rangle$				

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ rank(μ) = 1 \Rightarrow 1D space-time variation of f e.g. moving bar rank(μ) = 2 \Rightarrow 2D space-time variation of f e.g. moving ball rank(μ) = 3 \Rightarrow 3D space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1}\lambda_{2}\lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

(similar to Harris operator [Harris and Stephens, 1988])

Space-Time interest points

Space-Time Interest Points: Examples

Motion event detection

Spatio-temporal scale

What if the spatial and/or temporal resolution changes?

$$\begin{array}{ll} \text{point} \\ \text{transformation} \end{array} & p = S^{-1}p', \ S = \begin{pmatrix} s_{\sigma} & 0 \\ 0 & s_{\sigma} & 0 \\ 0 & 0 & s_{\tau} \end{pmatrix}, \ p = \begin{pmatrix} x \\ y \\ t \end{pmatrix}$$
$$\begin{array}{l} \text{covariance} \\ \text{transformation} \end{array} & \Sigma = pp^T = S^{-2}\Sigma' = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \tau^2 \end{pmatrix}$$

$$\begin{array}{l} \text{point} \\ \text{transformation} \end{array} \quad p = S^{-1}p', \ S = \begin{pmatrix} s_{\sigma} & 0 \\ 0 & s_{\sigma} & 0 \\ 0 & 0 & s_{\tau} \end{pmatrix}, \ p = \begin{pmatrix} x \\ y \\ t \end{pmatrix}$$
$$\begin{array}{l} \text{covariance} \\ \text{transformation} \end{array} \quad \Sigma = pp^T = S^{-2}\Sigma' = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \tau^2 \end{pmatrix}$$

To be invariant to scale transformations we need to change filter covariance:

$$L_{\xi}(\cdot; \Sigma) = f(\cdot) * g_{\xi}(\cdot; \Sigma)$$

= $f'(\cdot) * g_{\xi}(\cdot; \Sigma')$

Q: how to estimate the right filer size Σ ?

Scale selection problem

The normalized spatio-temporal Laplacian operator

$$\nabla_{norm}^2 L = \sigma^2 \tau^{1/2} (L_{xx} + L_{yy}) + \sigma \tau^{3/2} L_{tt}$$

assumes scale-extrema values at the scale parameters of a spatio-temporal of a Gaussian blob

Space-Time interest points

H depends on μ and, hence, on Σ and scale transformation S

- \Rightarrow Adapt interest points by iteratively computing:
- Interest point detection $H(p; \Sigma) = det(\mu(p; \Sigma)) + ktrace^3(\mu(p; \Sigma))$ (*)
- Scale estimation $(\sigma_0, \tau_0) = \operatorname{argmax}_{\sigma, \tau} (\nabla_{norm}^2 L(p; \Sigma))^2$ (**)

1. Fix ∑

- 2. For each detected interest point p_i (*)
- 3. Estimate scale $S(\sigma, \tau)$ (**)
- 4. Update covariance $\Sigma' = S^2$
- 5. Re-detect p_i using Σ'
- 6. Iterate 3-6 until convergence of σ, τ and p_i

Stability to size changes, e.g. camera zoom

Selection of temporal scales captures the frequency of events

Relative camera motion

Space-time signal and its derivatives will change when if camera moves

Adapted interest points

Local features for human actions

Local features for human actions

Local space-time descriptor: HOG/HOF

Multi-scale space-time patches

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Local Space-time features: Matching

Find similar events in pairs of video sequences

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action recognition in KTH dataset

Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

Classification results on KTH dataset

Confusion matrix for KTH actions

What about 3D?

Local motion and appearance features are not invariant to view changes

Multi-view action recognition

Difficult to apply standard multi-view methods:

 Do not want to search for multiview point correspondence ----Non-rigid motion, clothing changes, ... --> It's Hard!

- Do not want to identify body parts. Current methods are not reliable enough.
- Yet, want to learn actions from one view and recognize actions in very different views

Temporal self-similarities

Idea:

- Cross-view matching is hard but cross-time matching (tracking) is relatively easy.
- Measure self-(dis)similarities across time: $\mathcal{D}(t_1, t_2), t_1, t_2 \in (1, ..., T)$

Example: $\mathcal{D}(t_1, t_2) = ||P_1 - P_2||_2$

Distance matrix / self-similarity matrix (SSM):

Temporal self-similarities: Multi-views

Intuition: 1. Distance between similar poses is low in any view

2. Distance among different poses is likely to be large in most views

Temporal self-similarities: MoCap

Self-similarities can be measured from Motion Capture (MoCap) data

Temporal self-similarities: Video

Self-similarities can be measured directly from video: HOG or Optical Flow descriptors in image frames

Self-similarity descriptor

Goal:

define a quantitative measure to compare selfsimilarity matrices

- Define a local histogram descriptor h_i for each point *i* on the diagonal.
- Sequence alignment: Dynamic Programming for two sequences of descriptors {*h_i*}, {*h_j*}

- Action recognition:
 - Visual vocabulary for *h*
 - BoF representation of {*h_i*}
 - SVM

Multi-view alignment

Multi-view action recognition: Video

SSM-based recognition

Alternative view-dependent method (STIP)

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects + Scenes

Action recognition in realistic settings

Actions "In the Wild":

Action Dataset and Annotation

Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

> "*Drinking*": 159 annotated samples "*Smoking*": 149 annotated samples

Temporal annotation

Spatial annotation

head rectangle

torso rectangle

"Drinking" action samples

training samples

test samples

Action representation

Action learning

Key-frame action classifier

 n_t

Histogram features

[Laptev, Pérez 2007]

Keyframe priming

Action detection

Test set:

- 25min from "Coffee and Cigarettes" with GT 38 drinking actions
- No overlap with the training set in subjects or scenes

Detection:

• search over all space-time locations and spatio-temporal extents

Action Detection (ICCV 2007)

Test episodes from the movie "Coffee and cigarettes"

Video available at http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html

20 most confident detections

Learning Actions from Movies

- Realistic variation of human actions
- Many classes and many examples per class

Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Script-based action annotation

– On the good side:

- Realistic variation of actions: subjects, views, etc...
- Many examples per class, many classes
- No extra overhead for new classes
- Actions, objects, scenes and their combinations
- Character names may be used to resolve "who is doing what?"

- Problems:

- No spatial localization
- Temporal localization may be poor
- Missing actions: e.g. scripts do not always follow the movie
- Annotation is incomplete, not suitable as ground truth for testing action detection
- Large within-class variability of action classes *in text*

Script alignment: Evaluation

- Annotate action samples *in text*
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies

Example of a "visual false positive"

A black car pulls up, two army officers get out.

Text-based action retrieval

• Large variation of action expressions in text:

=> Supervised text classification approach

Automatically annotated action samples

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Hollywood-2 actions dataset

Actions			
	Training subset (clean)	Training subset (automatic)	Test subset (clean)
AnswerPhone	66	59	64
DriveCar	85	90	102
Eat	40	44	33
FightPerson	54	33	70
GetOutCar	51	40	57
HandShake	32	38	45
HugPerson	64	27	66
Kiss	114	125	103
Run	135	187	141
SitDown	104	87	108
SitUp	24	26	37
StandUp	132	133	146
All Samples	823	810	884

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Actions in Context (CVPR 2009)

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

Eating -- kitchen

Eating -- cafe

Running -- road

Running -- street

Mining scene captions

Mining scene captions

INT. TRENDY RESTAURANT - NIGHT INT. MARSELLUS WALLACE'S DINING ROOM MORNING EXT. STREETS BY DORA'S HOUSE - DAY. INT. MELVIN'S APARTMENT, BATHROOM – NIGHT EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT – DAY INT. CRAIG AND LOTTE'S BATHROOM - DAY

- Maximize word frequency street, living room, bedroom, car
- Merge words with similar senses using WordNet:

```
taxi -> car, cafe -> restaurant
```

- · Measure correlation of words with actions (in scripts) and
- Re-sort words by the entropy $S = -k \sum P_i \ln P_i$ for P = p(action | word)

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in text vs. video

Automatic gathering of relevant scene classes and visual samples

			1	
	Auto-Train-Actions	Clean-Test-Actions		
AnswerPhone	59	64]	
DriveCar	90	102		
Eat	44	33]	EXT-house
FightPerson	33	70		EXT-road
GetOutCar	40	57		INT-bedroom
HandShake	38	45	1	INT-car
HugPerson	27	66	1	INT-hotel
Kiss	125	103		INT-kitchen
Run	187	141		INT-living-room
SitDown	87	108	1	INT-office
SitUp	26	37		INT-restaurant
StandUp	133	146]	INT-shop
All Samples	810	884]	All Samples

Source: 69 movies aligned with the scripts

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

(a) Actions

(b) Scenes

Auto-Train-Scenes

Clean-Test-Scenes

Results: actions and scenes (separately)

EXT.House	0.503	0.363	0.491
EXT.Road	0.498	0.372	0.389
INT.Bedroom	0.445	0.362	0.462
INT.Car	0.444	0.759	0.773
INT.Hotel	0.141	0.220	0.250
INT.Kitchen	0.081	0.050	0.070
INT.LivingRoom	0.109	0.128	0.152
INT.Office	0.602	0.453	0.574
INT.Restaurant	0.112	0.103	0.108
INT.Shop	0.257	0.149	0.244
Scene average	0.319	0.296	0.351
Total average	0.259	0.310	0.339

			SIFT
		HoG	HoG
	SIFT	HoF	HoF
AnswerPhone	0.105	0.088	0.107
DriveCar	0.313	0.749	0.750
Eat	0.082	0.263	0.286
FightPerson	0.081	0.675	0.571
GetOutCar	0.191	0.090	0.116
HandShake	0.123	0.116	0.141
HugPerson	0.129	0.135	0.138
Kiss	0.348	0.496	0.556
Run	0.458	0.537	0.565
SitDown	0.161	0.316	0.278
SitUp	0.142	0.072	0.078
StandUp	0.262	0.350	0.325
Action average	0.200	0.324	0.326

Classification with the help of context

$$a'_i(\boldsymbol{x}) = a_i(\boldsymbol{x}) + \tau \sum_{j \in S} w_{ij} s_j(\boldsymbol{x})$$

- $a_i(x)$ Action classification score
- $s_j(\boldsymbol{x})$ Scene classification score
 - w_{ij} Weight, estimated from text: p(Scene|Action)
 - $a_i'(\boldsymbol{x})$ New action score

Results: actions and scenes (jointly)

Weakly-Supervised Temporal Action Annotation

• Answer questions: *WHAT actions and WHEN they happened*?

• Train visual action detectors and annotate actions with the minimal manual supervision

WHAT actions?

- Automatic discovery of action classes in text (movie scripts)
 - -- Text processing:

Part of Speech (POS) tagging; Named Entity Recognition (NER); WordNet pruning; Visual Noun filtering

-- Search action patterns

Person+Verb

3725 /PERSON .* is 2644 /PERSON .* looks 1300 /PERSON .* turns
916 /PERSON .* takes
840 /PERSON .* sits
829 /PERSON .* has
807 /PERSON .* walks
701 /PERSON .* stands
622 /PERSON .* goes
591 /PERSON .* starts
585 /PERSON .* does
569 /PERSON .* gets
552 /PERSON .* pulls
503 /PERSON .* comes
493 /PERSON .* sees
462 /PERSON .* are/VBP

Person+Verb+Prep.

989 /PERSON .* looks .* at 384 /PERSON .* is .* in 363 /PERSON .* looks .* up 234 /PERSON .* is .* on 215 /PERSON .* picks .* up 196 /PERSON .* is .* at 139 /PERSON .* sits .* in 138 /PERSON .* is .* with 134 /PERSON .* stares .* at 129 /PERSON .* is .* by 126 /PERSON .* looks .* down 124 /PERSON .* sits .* on 122 /PERSON .* is .* of 114 /PERSON .* gets .* up 109 /PERSON .* sits .* at 107 /PERSON .* sits .* down

Person+Verb+Prep+Vis.Noun

41	/PERSON	.* sits .* in .* chair
37	/PERSON	.* sits .* at .* table
31	/PERSON	.* sits .* on .* bed
29	/PERSON	.* sits .* at .* desk
26	/PERSON	.* picks .* up .* phone
23	/PERSON	.* gets .* out .* car
23	/PERSON	.* looks .* out .* window
21	/PERSON	.* looks .* around .* room
18	/PERSON	.* is .* at .* desk
17	/PERSON	.* hangs .* up .* phone
17	/PERSON	.* is .* on .* phone
17	/PERSON	.* looks .* at .* watch
16	/PERSON	.* sits .* on .* couch
15	/PERSON	.* opens .* of .* door
15	/PERSON	.* walks .* into .* room
14	/PERSON	.* goes .* into .* room

WHEN: Video Data and Annotation

- Want to target realistic video data
- Want to avoid manual video annotation for training

Use movies + scripts for automatic annotation of training samples

Overview

Input:

- Action type, e.g. Person Opens Door
- Videos + aligned scripts

Automatic collection of training clips

- ... Jane jumps up and opens the door Carolyn opens the front door ...
- ... Jane opens her bedroom door ...

Output:

Slidingwindow-style temporal action localization

Training classifier

Clustering of positive segments

[Lihi Zelnik-Manor and Michal Irani CVPR 2001]

Spectral clustering

Complex data:

Standard clustering methods do not work on this data

Our view at the problem

Feature space

Video space

Negative samples!

Random video samples: lots of them, very low chance to be positives

Formulation [Xu et al. NIPS'04] [Bach & Harchaoui NIPS'07] discriminative cost Feature space $U(f, w, b) = C_{+} \sum_{i=1}^{M} \max\{0, 1 - w^{\top} \Phi(c_{i}[f_{i}]) - b\} + C_{+}$ Loss on positive samples $+C_{-}\sum_{i=1}^{n}\max\{0,1+w^{\top}\Phi(x_{i}^{-})+b\}+\|w\|^{2}$ Loss on negative samples $x_i^$ negative samples $c_i[f_i]$ parameterized positive samples c_i Optimization SVM solution for w, bCoordinate descent on f_i

Clustering results

Drinking actions in Coffee and Cigarettes

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection results

"Sit Down" and "Open Door" actions in ~5 hours of movies

Automatic Annotation of Human Actions in Video

ICCV 2009 DEMO

O.Duchenne, I.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of The Graduate, The Crying Game, Living in Oblivion

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion