Large scale object/scene recognition

- Each image described by approximately 2000 descriptors
 - 2×10^9 descriptors to index!

- Database representation in RAM:
 - Raw size of descriptors: 1 TB, search+memory intractable
State-of-the-art: **Bag-of-words** [Sivic & Zisserman'03]

Two issues:
- Matching approximation by visual words
- Still limited number of images

[Image of diagram with flowchart and flow of information from query image to ranked image short-list through various processing steps including Hessian-Affine regions + SIFT descriptors, Bag-of-features processing + tf-idf weighting, centroids (visual words), Inverted file, querying, Re-ranked list, and Geometric verification.]

[Nister & al 04, Chum & al 07]

sparse frequency vector
Bag-of-features as an ANN search algorithm

- Matching function of descriptors: \(k \)-nearest neighbors

\[
f_{k-\text{NN}}(x, y) = \begin{cases} 1 & \text{if } x \text{ is a } k\text{-NN of } y \\ 0 & \text{otherwise} \end{cases}
\]

- Bag-of-features matching function \(f_q(x, y) = \delta_{q(x), q(y)} \)

where \(q(x) \) is a quantizer, i.e., assignment to visual word and \(\delta_{a,b} \) is the Kronecker operator (\(\delta_{a,b} = 1 \) iff \(a=b \))
Approximate nearest neighbor search evaluation

• ANN algorithms usually returns a short-list of nearest neighbors
 • this short-list is supposed to contain the NN with high probability
 • exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between
 • **Accuracy**: **NN recall** = probability that *the* NN is in this list

 against

 • **Ambiguity removal** = proportion of vectors in the short-list
 • the lower this proportion, the more information we have about the vector
 • the lower this proportion, the lower the complexity if we perform exact search on the short-list

• ANN search algorithms usually have some parameters to handle this trade-off
ANN evaluation of bag-of-features

ANN algorithms return a list of potential neighbors.

Accuracy: NN recall

= probability that the NN is in this list.

Ambiguity removal:

= proportion of vectors in the short-list.

In BOF, this trade-off is managed by the number of clusters k.

Graph:

- X-axis: Rate of points retrieved
- Y-axis: NN recall
- Points: $(k, NN\text{ recall})$ for each k value
- Line: BOW
Problem with bag-of-features

- The intrinsic matching scheme performed by BOF is weak
 - for a “small” visual dictionary: too many false matches
 - for a “large” visual dictionary: many true matches are missed

- No good trade-off between “small” and “large”!
 - either the Voronoi cells are too big
 - or these cells can’t absorb the descriptor noise
 → intrinsic approximate nearest neighbor search of BOF is not sufficient
20K visual word: false matches
200K visual word: good matches missed
Hamming Embedding

- Representation of a descriptor x
 - Vector-quantized to $q(x)$ as in standard BOF
 - short binary vector $b(x)$ for an additional localization in the Voronoi cell

- Two descriptors x and y match iif
 \[q(x) = q(y) \text{ and } h(b(x), b(y)) \leq h_t \]
 where $h(a, b)$ is the Hamming distance

- Nearest neighbors for Hamming distance \approx the ones for Euclidean distance

- Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: $3\times$ faster than BOF with same dictionary size!
Hamming Embedding

Off-line (given a quantizer)
- draw an orthogonal projection matrix P of size $d_b \times d$
 - this defines d_b random projection directions
- for each Voronoi cell and projection direction, compute the median value from a learning set

On-line: compute the binary signature $b(x)$ of a given descriptor
- project x onto the projection directions as $z(x) = (z_1, \ldots z_{db})$
- $b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ICJV’10]
Hamming and Euclidean neighborhood

- trade-off between memory usage and accuracy
 → more bits yield higher accuracy

We used 64 bits (8 bytes)
Hamming Embedding provides a much better trade-off between recall and ambiguity removal compared to BOW: at least 10 times less points in the short-list for the same level of accuracy.
Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!
Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one
Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!
Weak geometry consistency

- Re-ranking based on full geometric verification [Lowe 04, Chum & al 2007]
 - works very well
 - but performed on a short-list only (typically, 100 images)
 → for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!

![Graph showing the rate of relevant images short-listed vs dataset size for different short-list sizes: 20 images, 100 images, and 1000 images.](image-url)
Weak geometry consistency

- Weak geometric information used for all images (not only the short-list)

- Each invariant interest region detection has a scale and rotation angle associated, here characteristic scale and dominant gradient orientation.

 ![Scale change 2](image)
 Rotation angle ca. 20 degrees

- Each matching pair results in a scale and angle difference

- For the global image scale and rotation changes are roughly consistent
WGC: orientation consistency

Max = rotation angle between images
WGC: scale consistency
Weak geometry consistency

- Integrate the geometric verification into the BOF representation
 - votes for an image projected onto two quantized subspaces, that is vote for an image at a given angle & scale
 - these subspace are show to be independent
 - a score s_j for all quantized angle and scale differences for each image
 - final score: filtering for each parameter (angle and scale) and min selection

- Only matches that do agree with the main difference of orientation and scale will be taken into account in the final score

- Re-ranking using full geometric transformation still adds information in a final stage
Experimental results

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed

- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve
Holiday dataset – example queries
Dataset: Venice Channel

Query

Base 1

Base 2

Base 3

Base 4
Dataset: San Marco square

Query

Base 1

Base 2

Base 3

Base 4

Base 5

Base 6

Base 7

Base 8

Base 9
Example distractors - Flickr
Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)
Results – Venice Channel

Query

Base 1

Flickr

Base 4

Flickr
Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)
Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)
Comparison with the state of the art

<table>
<thead>
<tr>
<th>dataset</th>
<th>Oxford</th>
<th>Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 100K</td>
<td>0 1M</td>
</tr>
<tr>
<td>soft assignment [14]</td>
<td>0.493 0.343</td>
<td></td>
</tr>
<tr>
<td>ours</td>
<td>0.615 0.516</td>
<td></td>
</tr>
<tr>
<td>soft + geometrical re-ranking [14]</td>
<td>0.598 0.480</td>
<td></td>
</tr>
<tr>
<td>ours + geometrical re-ranking</td>
<td>0.667 0.591</td>
<td></td>
</tr>
<tr>
<td>soft + query expansion [14]</td>
<td>0.718 0.605</td>
<td></td>
</tr>
<tr>
<td>ours + query expansion</td>
<td>0.747 0.687</td>
<td></td>
</tr>
<tr>
<td>ours</td>
<td></td>
<td>3.42 3.10</td>
</tr>
<tr>
<td>ours + geometrical re-ranking</td>
<td></td>
<td>3.55 3.40</td>
</tr>
</tbody>
</table>

Demo at http://bigimbaz.inrialpes.fr
Extension to videos: video copy detection

- Recognized “attacked” videos (distortion, blur, editing, mix up,...)
 - a few seconds

- Video = image sequence: use image indexing
 - index frames / keyframes of video, query frames of video query
 - verify temporal consistency

- Several tradeoffs in search quality vs. database size

• 1000 of hours
Temporal consistency

- Store a subset of the frames of the video to be indexed in a database
- Each frame of the query video is compared to the frames in the dataset of frames

→ Output: a set of matching frames and associated scores \((t_q, b, t_b, s)\) where
- \(t_q\) temporal position in the query video
- \(b\) number of the video in the dataset
- \(t_b\) temporal position in the database video
- \(s\) matching score for the two frames
Temporal consistency

- Estimate a function between t_q and t_b

- Possible models:
 - simple (temporal shift): $t_q = t_b + \Delta t$
 - global speed changes (acceleration, slow-motion): $t_q = a^* t_b + \Delta t$
 - complex with varying shifts: $t_q = t_b + \text{shift}[t_q]$
Temporal consistency

- Estimate a function between t_q and t_b

- Possible models:
 - simple (temporal shift): $t_q = t_b + \Delta t$
 - global speed changes (acceleration, slow-motion): $t_q = a^* t_b + \Delta t$
 - complex with varying shifts: $t_q = t_b + \text{shift } [t_q]$

- Possible method for estimation:
 - Hough transform
TrecVid’08 copyright detection competition

Precision-recall: combined transformation (10)
Sample result
Sample result
Towards larger databases?

- BOF can handle up to ~10 M d’images
 - with a limited number of descriptors per image
 - 40 GB of RAM
 - search = 2 s

- Web-scale = billions of images
 - With 100 M per machine
 - search = 20 s, RAM = 400 GB
 - not tractable!
State-of-the-art: Bag-of-words [Sivic & Zisserman’03]

- Query image
- Hessian-Affine regions + SIFT descriptors
- Set of SIFT descriptors
- Bag-of-features processing + tf-idf weighting
- Centroids (visual words)
- Inverted file
- Querying
- Ranked image short-list
- Re-ranked list
- Geometric verification

- “visual words”:
 - 1 “word” (index) per local descriptor
 - only images ids in inverted file

[Nister & al 04, Chum & al 07] sparse frequency vector
[Mikolajczyk & Schmid 04]
[Lowe 04]
[Lowe 04, Chum & al 2007]
Recent approaches for very large scale indexing

Query image

Hessian-Affine regions + SIFT descriptors

Set of SIFT descriptors

Bag-of-features processing + tf-idf weighting

Sparse frequency vector

Centroids (visual words)

Vector compression

Vector search

Re-ranked list

Geometric verification

Ranked image short-list
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
- require hundreds of bytes are required to obtain a “reasonable quality”

- GIST descriptors with Spectral Hashing [Weiss et al.’08]
- very limited invariance to scale/rotation/crop
Global scene context – GIST descriptor

- The “gist” of a scene: Oliva & Torralba (2001)

- 5 frequency bands and 6 orientations for each image location
- PCA or tiling of the image (windowing) to reduce the dimension
GIST descriptor + spectral hashing

- The position of the descriptor in the image is encoded in the representation

• Gist

• Torralba et al. (2003)

- Spectral hashing produces binary codes similar to spectral clusters
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 → require hundreds of bytes are required to obtain a “reasonable quality”

- GIST descriptors with Spectral Hashing [Weiss et al.’08]
 → very limited invariance to scale/rotation/crop

- Aggregating local descriptors into a compact image representation [Jegou et al. ’10]

- Efficient object category recognition using classemes [Torresani et al.’10]
Aggregating local descriptors into a compact image representation

- **Aim:** improving the tradeoff between
 - search speed
 - memory usage
 - search quality

- **Approach:** joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

![Diagram of image representation process](image)

- Image representation: VLAD
- PCA + PQ codes
- (Non) – exhaustive search
Aggregation of local descriptors

- Problem: represent an image by a single fixed-size vector:
 \[\text{set of } n \text{ local descriptors} \rightarrow 1 \text{ vector} \]

- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
 \[\rightarrow \text{high dimensionality reduction/compression introduces loss} \]

- Alternative: vector of locally aggregated descriptors (VLAD)
 - non sparse vector
 - excellent results with a small vector dimensionality
VLAD: vector of locally aggregated descriptors

- Learning: a vector quantifier (k-means)
 - output: k centroids (visual words): $c_1, \ldots, c_i, \ldots c_k$
 - centroid c_i has dimension d

- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 \[v_i := v_i + (x - c_i) \]

- VLAD (dimension $D = k \times d$)

- The vector is L2-normalized
VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

- good coincidence of energy & orientations
VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP, %)
- Dimension is reduced to from D to D’ dimensions with PCA (principal component analyses)

<table>
<thead>
<tr>
<th>Aggregator</th>
<th>k</th>
<th>D</th>
<th>D’=D (no reduction)</th>
<th>D’=128</th>
<th>D’=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF</td>
<td>1,000</td>
<td>1,000</td>
<td>41.4</td>
<td>44.4</td>
<td>43.4</td>
</tr>
<tr>
<td>BoF</td>
<td>20,000</td>
<td>20,000</td>
<td>44.6</td>
<td>45.2</td>
<td>44.5</td>
</tr>
<tr>
<td>BoF</td>
<td>200,000</td>
<td>200,000</td>
<td>54.9</td>
<td>43.2</td>
<td>41.6</td>
</tr>
<tr>
<td>VLAD</td>
<td>16</td>
<td>2,048</td>
<td>49.6</td>
<td>49.5</td>
<td>49.4</td>
</tr>
<tr>
<td>VLAD</td>
<td>64</td>
<td>8,192</td>
<td>52.6</td>
<td>51.0</td>
<td>47.7</td>
</tr>
<tr>
<td>VLAD</td>
<td>256</td>
<td>32,768</td>
<td>57.5</td>
<td>50.8</td>
<td>47.6</td>
</tr>
</tbody>
</table>

- Observations:
 - VLAD better than BoF for a given descriptor size
 - Choose a small D if output dimension D’ is small
Compact image representation

- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

- Dimensionality reduction with
 - Principal component analysis (PCA)
 - Compact encoding: product quantizer
 - → very compact descriptor, fast nearest neighbor search, little storage requirements
Product quantization

- Vector split into m subvectors: $y \rightarrow [y_1 \mid \ldots \mid y_m]$

- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1) \mid \ldots \mid q_m(y_m)]$
 where each q_i is learned by k-means with a limited number of centroids

- Example: $y = 128$-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids \rightarrow 8 bit
 - very large codebook $256^8 \sim 1.8 \times 10^{19}$

\[\begin{array}{cccccccc}
\text{y}_1 & \text{y}_2 & \text{y}_3 & \text{y}_4 & \text{y}_5 & \text{y}_6 & \text{y}_7 & \text{y}_8 \\
q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8
\end{array}\]

- 256 centroids
- 16 components
- 8 subvectors \times 8 bits $= 64$-bit quantization index
Product quantizer: distance computation

- Asymmetric distance computation (ADC)

- Sum of square distances with quantization centroids
Product quantizer: asymmetric distance computation (ADC)

- Compute the square distance approximation in the compressed domain

\[d(x, y)^2 \approx \sum_{i=1}^{m} d(x_i, q_i(y_i))^2 \]

- To compute distance between query \(x \) and many codes
 - compute \(d(x_i, c_{i,j})^2 \) for each subvector \(x_i \) and all possible centroids
 → stored in look-up tables
 - for each database code: sum the elementary square distances

- Each 8x8=64-bits code requires only \(m=8 \) additions per distance!
Optimizing the dimension reduction and quantization together

- VLAD vectors suffer two approximations
 - mean square error from PCA projection: $e_p(D')$
 - mean square error from quantization: $e_q(D')$

- Given k and bytes/image, choose D' minimizing their sum

<table>
<thead>
<tr>
<th>Ex, k=16, 16B:</th>
<th>D'</th>
<th>$e_p(D')$</th>
<th>$e_q(D')$</th>
<th>$e_p(D')+e_q(D')$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>0.0632</td>
<td>0.0164</td>
<td>0.0796</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.0508</td>
<td>0.0248</td>
<td>0.0757</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>0.0434</td>
<td>0.0321</td>
<td>0.0755</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.0386</td>
<td>0.0458</td>
<td>0.0844</td>
</tr>
</tbody>
</table>
Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - The larger k, the better the raw search performance
 - But large k produce large vectors, that are harder to index

- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - Only k has to be set

 ➔ end-to-end parameter optimization
Results on the Holidays dataset with various quantization parameters

![Graph showing mAP vs. number of bytes for different ADC parameters and quantization techniques.](image)
Results on standard datasets

- Datasets
 - University of Kentucky benchmark
 - score: nb relevant images, max: 4
 - INRIA Holidays dataset
 - score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>bytes</th>
<th>UKB</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF, k=20,000</td>
<td>10K</td>
<td>2.92</td>
<td>44.6</td>
</tr>
<tr>
<td>BoF, k=200,000</td>
<td>12K</td>
<td>3.06</td>
<td>54.9</td>
</tr>
<tr>
<td>miniBOF</td>
<td>20</td>
<td>2.07</td>
<td>25.5</td>
</tr>
<tr>
<td>miniBOF</td>
<td>160</td>
<td>2.72</td>
<td>40.3</td>
</tr>
<tr>
<td>VLAD k=16, ADC 16 x 8</td>
<td>16</td>
<td>2.88</td>
<td>46.0</td>
</tr>
<tr>
<td>VLAD k=64, ADC 32 x10</td>
<td>40</td>
<td>3.10</td>
<td>49.5</td>
</tr>
</tbody>
</table>

\(D' = 64\) for \(k=16\) and \(D' = 96\) for \(k=64\)

ADC (subvectors) x (bits to encode each subvector)

miniBOF: “Packing Bag-of-Features”, ICCV’09
Comparison BOF / VLAD + ADC

- Datasets
 - INRIA Holidays dataset, score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOF, k=2048, D’= 64, ADC 16x8</td>
<td>42.5</td>
</tr>
<tr>
<td>VLAD k=16, D=2048, D’ = 64, ADC 16 x 8</td>
<td>46.0</td>
</tr>
<tr>
<td>BOF, k=8192, D’= 128, AD16x8</td>
<td>41.9</td>
</tr>
<tr>
<td>VLAD k=64, D= 8192, D’=128, ADC 16X8</td>
<td>45.8</td>
</tr>
</tbody>
</table>

- VLAD improves results over BOF
- Product quantizer gives excellent results for BOF!
Compact image representation

- Approach: joint optimization of three stages
- Non-exhaustive search
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

Image representation → VLAD → PCA + PQ codes → (Non) – exhaustive search

- Non-exhaustive search
 - Combination with an inverted file to avoid exhaustive search
Large scale experiments (10 million images)

- Exhaustive search of VLADs, D' = 64
 - 4.77s

- With the product quantizer
 - Exhaustive search with ADC: 0.29s
 - Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file
Large scale experiments (10 million images)

Database size: Holidays+images from Flickr

- BOF D=200k
- VLAD k=64
- VLAD k=64, D'=96
- VLAD k=64, ADC 16 bytes
- VLAD+Spectral Hashing, 16 bytes

Timings:
- ADC: 0.286s
- IVFADC: 0.014s
- SH ≈ 0.267s

Note: 4.768s
Searching with quantization: comparison with spectral Hashing

GIST, 64-bit codes

- SDC
- ADC
- IVFADC w=1
- IVFADC w=8
- IVFADC w=64
- spectral hashing

recall@R vs R
VLAD + PQ codes

- Excellent search accuracy and speed in 10 million of images
- Each image is represented by very few bytes (20 – 40 bytes)
- Tested on up to 220 million video frame
 - extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

- On-line available:
 - Matlab source code of ADC

- Alternative: using Fisher vectors instead of VLAD descriptors [Perronnin’10]