
Projet ANR-Blanc STIC :

EVA-Flo : Évaluation et Validation Automatique pour le calcul Flottant
New Automatic Tools for Validated Floating-point Computations

Demanding quality for numerical computations
using floating-point arithmetic
When a mathematical formula is translated into a numerical computation,
it is hoped that computed results are close to the corresponding exact
values. However, computers usually employ floating-point arithmetic: the
representation of numbers has a finite fixed size. Consequently, rounding
errors are made. The first goal of the EVA-Flo project is to evaluate nu-
merically a formula in a fast and accurate way. The quality of the result
can be specified, such as a relative or absolute error between the exact
value and the computed result, or the guarantee that no overflow occurs
(numbers too large to be represented and converted into ∞). . . The sec-
ond goal of the EVA-Flo project is that this quality can be quantified (for
instance “the relative error is < 10−14”) and certified. The last goal is that
this process of evaluation and validation is automated.
The target mathematical formulas of the EVA-Flo project are expressed
using arithmetic or algebraic operations and mathematical functions (exp,
sinh, arctan. . .), and they can contain few conditional branches and loops.
Typically, the focus is on small critical portions of large numerical codes.

higher−quality implementationstraightforward implementationmathematical formula

6= (x + 1) ∗ (x + 1)

((x ∗ x) + (2 ∗ x)) + 1

Implementation
Specification

x2 + 2x + 1 = (x + 1)2 = . . .

The mathematical model, as illustrated here by the function on the
left, can correspond to an implementation (center) that poorly approx-
imates it. The goal is to obtain a better implementation, such as the
one on the right, and as automatically as possible.

Floating-point representation
Real numbers are represented on a computer, at the hardware level,
as floating-point numbers. Such a representation comprises a signifi-
cand, with a finite and fixed number of digits, multiplied by a power of
the computing radix and by a sign (±1). For instance, in radix 10 and
with 3 digits, the number 125 000 can be represented as 125 × 103, or
12.5 × 104, or also 1.25 × 105, hence the terminology of floating point.
The main advantage of this representation is to be able to represent
values that have very different orders of magnitude and still to use a
very limited amount of memory. For the double precision, the repre-
sentable numbers vary between 2.25 × 10−308 and 1.798 × 10308. The
main drawback of this representation, as of any fixed-size representa-
tion, is that most real numbers, including the results of operations on
floating-point numbers, cannot be represented and must be rounded.

Taming roundoff errors. . .
as well as other numerical errors made by your computer

Automate, automate, automate the accumulated expertise

code generation

tool (hardware)

code generation

tool (software)

generated code

(CRlibm/...)

input code/
expression,

constraints

(range, error bounds...).

* numerical properties

* mathematical expressions;

represented in LEMA:

Data concerning

the computation tree

sequence

multiple−precision libraries

(MPFR/...)

formal proof

error analysis

(Gappa/...)

generator of polynomial

evaluation schemes
(e.g. polynomials)

generator of best approximants

automatic differentiation

(Tapenade)

rewriting/...

symbolic differentiation/

code generation

tool (Coq proof)

generated code generated code

of commands

LEMA (un Langage pour les Expressions Math-
ématiques Annotées) is a representation lan-
guage that encodes not only a program, but
also extra knowledge about the link between
exact and floating-point values, about proper-
ties of some operations. . . It will serve both as a
common representation format between various
software tools and as a track of the various steps
performed during the automated generation of
code (either more accurate, or better suited to a
specific architecture such as an embedded pro-
cessor or a GPU, or . . .).

Numerous problems have been handled in a pen and paper manner in the
past. The current step consists in automating, at each level, the exper-
tise gained through the handling of these problems. The first level is to
specify precisely the desired mathematical result and to determine good
approximants (e.g., with a small relative error) that are well-suited to an im-
plementation on a computer. Typically, these approximants are polynomials
with floating-point coefficients. The second level is to determine evaluation
schemes that are both fast and accurate, using exhaustive search. The ar-
chitecture of the target processor plays a key role here. Another level is the
choice of the technique employed to reach the required accuracy: double-
double arithmetic, compensated evaluation schemes. . . . Both method er-
ror and implementation error are then bounded and certified. Usually, the
method error is estimated but not bounded, whereas the implementation
error is rarely handled. Such proofs on the quality of the computed result
use a fine knowledge of the properties of the floating-point arithmetic, they
are also based on computations using interval arithmetic and extended-
precision arithmetic. Then, a proof is reworked and written so that a proof
checker can check it; we use the Coq proof checker. Indeed, a typical proof
includes many peculiar cases and is thus error-prone when it is performed
by a human. This explains why it is essential to check it automatically.

Fluctuat is a static analyzer, intended to
cope with real industrial problems.
Its designers contribute to EVA-Flo
through their expertise in automated
validation of floating-point codes.

Most significant outcomes
Software production
Reaching full automation becomes closer with the development of software pieces:

• Sollya: determination of a good polynomial approximation, including a guaranteed approximation error;
• Gappa (mainly developed prior to EVA-Flo): bounds on evaluation errors, that can be checked by the proof checker Coq;
• CRlibm (mainly developed prior to EVA-Flo): correctly rounded mathematical functions; this proof of concept library resulted in the

recommendation, in the IEEE 754-2008 standard, that elementary functions should be correctly rounded; large parts of its current code
are automatically generated by an experimental code generation tool, metalibm.
• FloPoCo: a VHDL code generator for Floating-Point Cores on FPGAs, with application-specific optimizations for non-standard operators;
• FLIP: software emulation of IEEE-754 floating-point arithmetic on some embedded media processors;
• CGPE: Code Generation for Polynomial Evaluation, taking into account architectural features;
• Fluctuat (developed independently and prior to EVA-Flo): analysis of the numerical quality of scientific codes;
• Tapenade (developed independently and prior to EVA-Flo): automatic differentiation of codes;
• Sardanes project: analysis and rewriting of mathematical expressions to achieve better accuracy.

Scientific production
Apart from the software developments already mentioned, 6 PhD the-
ses, related to these topics, have been defended. Around 15 arti-
cles in scientific journals and 20 presentations at international confer-
ences have been produced. Eventually, the expertise of the group on
floating-point arithmetic has given rise to a collective book, The Hand-
book of Floating-Point Arithmetic, published by Birkhäuser in Novem-
ber 2009. Let us also mention the activity in standardization com-
mittees: participation to IEEE 754-2008 for floating-point arithmetic,
chair of the IEEE 1788 for interval arithmetic.

The EVA-Flo project: Évaluation et Validation Automatique pour le calcul Flottant - New Automatic Tools for Validated Floating-point Computations is an ANR Blanc-STIC research project. It is
headed by Arénaire (LIP, ENS Lyon). It associates Dali (Eliaus, U. Perpignan), MeASI (LIST, CEA Saclay) and Tropics (INRIA Sophia Antipolis - Méditerranée). The project started in November
2006 and its duration is 48 months. It is subsidized by ANR: 130 ke and the global cost is 1.5 Me.
Contact: Nathalie REVOL Nathalie.Revol@ens-lyon.fr - http://www.ens-lyon.fr/LIP/Arenaire/EVA-Flo/

http://www-list.cea.fr/ http://www.cnrs.fr/ http://webdali.univ-perp.fr/ http://eliaus.univ-perp.fr/ http://www.ens-lyon.fr/ http://www.inria.fr/ http://www.ens-lyon.fr/LIP http://www.univ-lyon1.fr/ http://www.univ-perp.fr/ http://www.universite-lyon.fr/

Nathalie.Revol@ens-lyon.fr
http://www.ens-lyon.fr/LIP/Arenaire/EVA-Flo/
http://www-list.cea.fr/
http://www.cnrs.fr/
http://webdali.univ-perp.fr/
http://eliaus.univ-perp.fr/
http://www.ens-lyon.fr/
http://www.inria.fr/
http://www.ens-lyon.fr/LIP
http://www.univ-lyon1.fr/
http://www.univ-perp.fr/
http://www.universite-lyon.fr/

