Compensated Algorithms

Philippe Langlois, Nicolas Louvet

Equipe DALI, Université de Perpignan
http://webdali.univ-perp.fr
Motivation

- Results computed in floating point arithmetic are possibly corrupted by rounding errors.

- Compensated algorithms = algorithms that correct the rounding errors generated during the computation:
 If \hat{r} is a computed result, how to find a correcting term \hat{c} such that $\bar{r} = \hat{r} \oplus \hat{c}$ is more accurate than \hat{r}?

- Aim of this presentation is:
 - to recall the principle of so-called compensated algorithms,
 - to present some details about the compensated Horner algorithm.

- Context: IEEE-754 fp arithmetique, rounding to the nearest, no underflow.

Outline

1 Introduction

2 Principle of Compensated Algorithms

3 Sketch of proof for the compensated Horner algorithm

4 Conclusion

5 More slides
 - Faithful rounding with the CHS
 - Practical efficiency
Introduction

Why do we need compensated algorithms?
Backward stable algorithms vs. condition number

Backward stable algorithms:

- The accuracy of the computed solution satisfies

\[\text{accuracy} \lesssim \text{condition number} \times u, \]

where

- \(u \) is the computing precision:
 - IEEE-754 double, 53-bits mantissa, rounding to the nearest \(\Rightarrow u = 2^{-53} \).

- the condition number quantify the difficulty to solve the problem accurately.

Examples: summation, dot product, Horner algorithm, substitution for triangular system solving.
Accuracy of the Horner scheme

We consider the polynomial

\[p(x) = \sum_{i=0}^{n} a_i x^i, \]

with \(a_i \in \mathbb{F}, x \in \mathbb{F} \)

Algorithm (Horner scheme)

function \(\hat{r}_0 = \text{Horner}(p, x) \)
\(\hat{r}_n = a_n \)
for \(i = n - 1 : -1 : 0 \)
\(\hat{r}_i = \hat{r}_{i+1} \otimes x \oplus a_i \)
end

Relative accuracy of the evaluation with the Horner scheme:

\[|\text{Horner}(p, x) - p(x)| \leq \gamma 2^n \approx 2^n u \]

\(u \) is the computing precision
\(\text{cond}(p, x) \) denotes the condition number of the evaluation:

\[\text{cond}(p, x) = \sum \left| a_i x^i \right| / \left| p(x) \right| \geq 1. \]

Compensated Algorithms – N. Louvet
April 18, 2007 6 / 33
Accuracy of the Horner scheme

We consider the polynomial

\[p(x) = \sum_{i=0}^{n} a_i x^i, \]

with \(a_i \in \mathbb{F}, \, x \in \mathbb{F} \)

Relative accuracy of the evaluation with the Horner scheme:

\[
\frac{|\text{Horner} (p, x) - p(x)|}{|p(x)|} \leq \gamma_{2n} \text{cond}(p, x) \approx 2nu
\]

- \(u \) is the computing precision
- \(\text{cond}(p, x) \) denotes the condition number of the evaluation:

\[
\text{cond}(p, x) = \frac{\sum |a_i x^i|}{|p(x)|} \geq 1
\]
Accuracy \lesssim condition number of the problem $\times u$

How to manage ill-conditioned cases?
Compensated algorithms

Algorithms that correct the generated rounding errors

- Many examples:
 - Compensated summation: Neumaier (74), Sum2 in Ogita-Rump-Oishi (05)
 - Compensated Horner algorithm
 - Compensated substitution for triangular system solving

- Accuracy as if computed in twice the working precision:

\[
\text{accuracy} \lesssim u + \text{condition number} \times u^2
\]

- More efficient than fixed length expansion libraries (double-double)
- Not considered here: Kahan's compensated summation (65), Priest’s doubly compensated summation (92)
Accuracy of the result $\lesssim u + \text{condition number} \times u^2$.

How is computed the compensated result?
Principle of compensated Algorithms

The compensated result is $\tilde{r} = \hat{r} \oplus \hat{c}$. The correcting term \hat{c} is

- an approximate of the forward error in \hat{r},
- computed thanks to “Error-Free Transformations”.
Compensated result

\[\text{Input space } \mathcal{D} \quad x \rightarrow G \quad \text{Output space } \mathcal{R} \quad r = G(x) \]

\[\hat{G} : \hat{r} = \hat{G}(x) \]

- Forward error analysis
Compensated result

Forward error analysis
Backward error analysis

Identify \hat{r} as the exact solution of a perturbed problem:

$\hat{r} = \hat{G}(x + \Delta x)$
Compensated result

How to improve the quality of the computed result \hat{r}?

- First, compute an approximate \hat{c} of the forward error $c = r - \hat{r}$. \hat{c} is a correcting term for \hat{r}.
- Then, a compensated result $\bar{r} = \hat{r} \oplus \hat{c}$.
How to compute the correcting term \hat{c}?

\hat{c} is an approximate of the forward error $c = r - \hat{r}$

- **Classical error analysis:**

 Let $p(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial with floating point coefficient.

 - **Backward error result:** Horner algorithm computes

 $\text{Horner}(p, x) = \sum_{i=0}^{n} (1 + \delta_i) a_i x^i,$

 with $|\delta_i| \leq \gamma 2^n \approx 2n u$

 - **Forward error result:**

 $c = p(x) - \text{Horner}(p, x) = -\sum_{i=0}^{n} \delta_i a_i x^i \Rightarrow |c| \leq \gamma 2^n \sum_{i=0}^{n} |a_i||x|^i.$

 As the δ_i are unknown, classical error analysis does not solve our problem.

 But we can do better thanks to Error-Free Transformations!
Error-free transformations

Error-Free Transformations (EFT) are **properties** and **algorithms** to compute the rounding errors **at the current working precision**.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Formula</th>
<th>Flops</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Addition | \((x, y) = 2\text{Sum}(a, b)\)
\[a + b = x + y \text{ and } x = a \oplus b\] | 6 | Knuth | (74) |
| Multiplication | \((x, y) = 2\text{Prod}(a, b)\)
\[a \times b = x + y \text{ and } x = a \otimes b\] | 17 | Veltkamp | |

with \(a, b, x, y \in \mathbb{F}\).
How to compute the correcting term \hat{c} thanks to EFT?

Algorithm (Horner scheme)

function $\hat{r}_0 = \text{Horner}(p, x)$

$$\hat{r}_n = a_n$$

for $i = n - 1 : -1 : 0$

$$\hat{p}_i = \hat{r}_{i+1} \otimes x \ % \ \text{rounding error } \pi_i \in \mathbb{F} \Rightarrow \hat{p}_i = \hat{r}_{i+1}x - \pi_i$$

$$\hat{r}_i = \hat{p}_i \oplus a_i \ % \ \text{rounding error } \sigma_i \in \mathbb{F} \Rightarrow \hat{r}_i = \hat{p}_i + a_i - \sigma_i$$

For $i = n - 1 : -1 : 0$,

$$\hat{r}_i = \hat{r}_{i+1}x + a_i - \pi_i - \sigma_i.$$

Since $\hat{r}_n = a_n$,

$$\text{Horner}(p, x) = \sum_{i=0}^{n} (a_i - \pi_i - \sigma_i)x^i, \quad \text{with} \quad \pi_n = \sigma_n = 0.$$
How to compute the correcting term \hat{c} thanks to EFT?

\hat{c} is an approximate of the forward error $c = r - \hat{r}$

- Express \hat{r} w.r.t. the data and the elementary rounding errors:

 Horner algorithm computes

 $\text{Horner}(p, x) = \sum_{i=0}^{n} (a_i - \pi_i - \sigma_i)x^i$, \quad with \quad $\pi_n = \sigma_n = 0$.

- Deduce an expression for the forward error $c = r - \hat{r}$:

 $c = p(x) - \text{Horner}(p, x) = \sum_{i=0}^{n-1} (\pi_i + \sigma_i)x^i$.

- If we manage to find a closed form formula for c w.r.t

 - the data,

 - the elementary rounding errors (exactly computable thanks to EFT),

 we can easily compute a correcting term \hat{c}.

An EFT for the Horner Algorithm

We have

\[
c = \sum_{i=0}^{n-1} (\pi_i + \sigma_i)x^i = (p_\pi + p_\sigma)(x),
\]

with \(p_\pi(x) = \sum \pi_i x^i \) and \(p_\sigma(x) = \sum \sigma_i x^i \).

Algorithm (EFT for Horner)

function \([\hat{r}_0, p_\pi, p_\sigma] = \text{EFTHorner}(p, x)\)

\(\hat{r}_n = a_n \)

for \(i = n - 1 : -1 : 0 \)

\[
[\hat{p}_i, \pi_i] = 2\text{Prod}(\hat{r}_{i+1}, x)
\]

\[
[\hat{r}_i, \sigma_i] = 2\text{Sum}(\hat{p}_i, a_i)
\]

\(p_\pi[i] = \pi_i; \ p_\sigma[i] = \sigma_i \)

This algorithm is an EFT for the Horner algorithm since

\[
p(x) = \text{Horner}(p, x) + (p_\pi + p_\sigma)(x) = c.
\]
Compensated Horner Algorithm

Since $c = (p_\pi + p_\sigma)(x)$, we compute \hat{c} as Horner $(p_\pi \oplus p_\sigma, x)$.

Algorithm (Compensated Horner scheme)

```plaintext
function $\bar{r} = \text{CompHorner} (p, x)$

[$\hat{r}, p_\pi, p_\sigma] = \text{EFTHorner} (p, x) \quad \% \quad \hat{r} = \text{Horner} (p, x)$

$\hat{c} = \text{Horner} (p_\pi \oplus p_\sigma, x)$

$\bar{r} = \hat{r} \oplus \hat{c}$
```

Next question: how to prove something about the accuracy of \bar{r}?

(Accuracy of the result $\lesssim u + \text{condition number} \times u^2$)

Difficult to answer in a general manner...
Sketch of proof for the compensated Horner algorithm

The key “ingredient” here is the EFT for the Horner algorithm,

\[p(x) = \text{Horner}(p, x) + (p_\pi + p_\sigma)(x). \]

\[= c \]
Sketch of proof for the compensated Horner algorithm

We recall:

- \(\hat{r} = \text{Horner}(p, x) \),
- \(c = (p_\pi + p_\sigma)(x) \) is the forward error in \(\hat{r} \),
- \(\hat{c} = \text{Horner}(p_\pi \oplus p_\sigma, x) \) is the computed correcting term,
- \(\bar{r} = \hat{r} \oplus \hat{c} \) is the compensated result.

Since the compensated result is \(\bar{r} = \hat{r} \oplus \hat{c} \),

\[
|p(x) - \bar{r}| = |p(x) - (1 + \varepsilon)(\hat{r} + \hat{c})|, \quad \text{with} \quad |\varepsilon| \leq u.
\]

Using the EFT for the Horner scheme, \(\hat{r} = p(x) - c \),

\[
|p(x) - \bar{r}| = |p(x) - (1 + \varepsilon)(p(x) + \hat{c} - c)| \\
\leq u|p(x)| + (1 + u)|\hat{c} - c|
\]

How can we bound \(|c - \hat{c}| \)?
Sketch of proof for the compensated Horner algorithm

$|c - \hat{c}|$ is the forward error in $\hat{c} = \text{Horner}(p_\pi \oplus p_\sigma, x)$. Then

$$|c - \hat{c}| \leq \gamma_{2n-1}(\widetilde{p_\pi + p_\sigma})(x),$$

with $(\widetilde{p_\pi + p_\sigma})(x) = \sum_{i=0}^{n-1} |p_\pi + p_\sigma||x^i|$. We bound “largely” this term as follows,

$$(\widetilde{p_\pi + p_\sigma})(x) \leq \gamma_{2n} \tilde{p}(x),$$

with $\tilde{p}(x) = \sum_{i=0}^{n} |a_i||x^i|$. Therefore,

$$|c - \hat{c}| \leq \gamma_{2n-1}\gamma_{2n} \tilde{p}(x).$$

Nota:

$$\gamma_k = \frac{ku}{1 - ku} = ku + \mathcal{O}u^2.$$
Sketch of proof for the compensated Horner algorithm

Then,

\[|p(x) - \tilde{r}| \leq u |p(x)| + (1 + u) \gamma_{2n-1} \gamma_{2n} \tilde{p}(x), \]
\[\leq u |p(x)| + \gamma_{2n}^2 \tilde{p}(x). \]

Now we turn to relative accuracy, and we obtain the following theorem.

Theorem

Given \(p \) *a polynomial with floating point coefficients, and* \(x \) *a floating point value, let* \(\tilde{r} \) *be the compensated evaluation of* \(p(x) \) *computed with CompHorner. Then,*

\[\frac{|p(x) - \tilde{r}|}{|p(x)|} \leq u + \gamma_{2n}^2 \text{cond}(p, x). \]

Again, \(\gamma_{2n}^2 \approx 4n^2u^2. \)
Accuracy of the result $\lesssim u + \text{condition number} \times u^2$.
Conclusion

- We have recall how to define a correcting term: correcting term = approximate of the forward error.
- Compensating the Horner algorithm improves the accuracy:
 - the accuracy of the compensated result is the same as if the result was computed in doubled working precision.
 - Remark: this is also true for compensated summation or compensated triangular system solving.
Faithful rounding with the CHS
Faithful rounding

Definition

A floating point number \(\hat{x} \) is said to be a faithful rounding of a real number \(x \) if

- either \(\hat{x} = x \),
- or \(\hat{x} \) is one of the two floating point neighbours of \(x \).

The error bound

\[
\frac{|\text{CompHorner}(p, x) - p(x)|}{|p(x)|} \leq u + \gamma_{2n}^2 \text{cond}(p, x)
\]

\[\leq 2n^2 u^2 \]

is too large for reasoning about faithful rounding.
An *a posteriori* test

We recall:
- \(\bar{r} = \text{CompHorner}(p, x) \) is the compensated result,
- \(c = (p_\pi + p_\sigma)(x) \) is the exact (real) correcting term for \(\bar{r} \),
- \(\hat{c} = \text{Horner}(p_\pi \oplus p_\sigma, x) \) is the computed (floating point) correcting term.

The following error bound on the computed correcting term holds:

\[
|c - \hat{c}| \leq \text{fl} \left(\frac{\hat{\gamma}_{2n-1} \text{Horner}(|p_\pi| \oplus |p_\sigma|, |x|)}{1 - 2(n + 1)u} \right) =: \hat{\beta}.
\]

Then, we can perform a dynamic test for faithful rounding:

Theorem

\[
\hat{\beta} < \frac{u}{2} |\bar{r}| \Rightarrow |c - \hat{c}| < \frac{u}{2} |\bar{r}| \Rightarrow \bar{r} \text{ is a faithful rounding of } p(x).
\]
An *a posteriori* test

Accuracy of polynomial evaluation with the compensated Horner scheme [n=50]

$$\frac{(1-u)/(2+u)u\gamma_{2n}^{-2}}{1/u}$$

$$u + \gamma_{2n}^{-2} \text{ cond}$$
Practical efficiency
Overhead to obtain more accuracy

- Theoretical ratios (flops):

\[
\frac{\text{CompHorner}}{\text{Horner}} \sim 10.5 \quad \frac{\text{CompHornerIsFaith}}{\text{Horner}} \sim 13 \quad \frac{\text{DDHorner}}{\text{Horner}} \sim 14
\]

- Some practical ratios (running times \(^2\)):

<table>
<thead>
<tr>
<th></th>
<th>CompHorner Horner</th>
<th>CompHornerIsFaith Horner</th>
<th>DDHorner Horner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium 4, 3.00 GHz</td>
<td>3.77</td>
<td>5.52</td>
<td>10.00</td>
</tr>
<tr>
<td>GCC 3.3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC 9.1</td>
<td>3.06</td>
<td>5.31</td>
<td>8.88</td>
</tr>
<tr>
<td>Athlon 64, 2.00 GHz</td>
<td>3.89</td>
<td>4.43</td>
<td>10.48</td>
</tr>
<tr>
<td>GCC 4.0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itanium 2, 1.4 GHz</td>
<td>3.64</td>
<td>4.59</td>
<td>5.50</td>
</tr>
<tr>
<td>GCC 3.4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC 9.1</td>
<td>1.87</td>
<td>2.30</td>
<td>8.78</td>
</tr>
</tbody>
</table>

\(~2 – 4\) \quad \sim \quad \sim

\(^2\)Average ratios for polynomials of degree 5 to 200.
Some comparisons

How does the more accurate algorithms compare to each other?

<table>
<thead>
<tr>
<th></th>
<th>CompHornerIsFaith CompHorner</th>
<th>DDHorner CompHorner</th>
<th>DDHorner CompHornerIsFaith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium 4, 3.00 GHz GCC 3.3.5</td>
<td>1.46</td>
<td>2.66</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>ICC 9.1</td>
<td>1.71</td>
<td>2.92</td>
</tr>
<tr>
<td>Athlon 64, 2.00 GHz GCC 4.0.1</td>
<td>1.14</td>
<td>2.70</td>
<td>2.38</td>
</tr>
<tr>
<td>Itanium 2, 1.4 GHz GCC 3.4.6</td>
<td>1.27</td>
<td>1.51</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>ICC 9.1</td>
<td>1.24</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>(\leq 2)</td>
<td>(\sim 2) – 5</td>
<td>(\sim 2) – 5</td>
</tr>
</tbody>
</table>
What is Instruction-Level Parallelism?

- All processors since about 1985, including those in the embedded space, use pipelining to overlap the execution of instructions and improve performance. This potential overlap among instruction is called instruction-level parallelism (ILP) since the instruction can be evaluated in parallel. (Hennessy & Patterson)

- A wide range of techniques have been developed to exploit the parallelism available among instructions (pipelining, superscalar architectures...)

- Amount of ILP available in a code:
 - if two instructions are parallel they can execute simultaneously in a pipeline,
 - if two instructions are dependent they must be executed in order.

How to determine whether an instruction is dependent on another?
Dependences between instructions

- Three different types of dependences:
 - control dependences,
 - name dependences,
 - data dependences (or true dependences).

- A control dependence determines the ordering of an instruction with respect to a branch instruction.

- A name dependence occurs when two instructions use the same register or memory location (name), but there is in fact no flow of data between instructions associated with that name.

- But here we are mainly interested by data dependences.
Data dependences

- An instruction i is data dependent on an instruction j if either
 - instruction j produces a result that may be used by instruction i,
 - there exists a chain of dependences of the first type between i and j.

- If two instructions are data dependent, they cannot execute simultaneously.
- Dependences are properties of programs: the presence of a data dependence in an instruction sequence reflects a data dependence in the source code.
- What about the dependences in CompHorner and DDHorner?
Difference between DDHorner and CompHorner

function $r = \text{CompHorner}(P, x)$
\[
\begin{align*}
 s_n &= a_i; \quad c_n = 0 \\
 \text{for} \ i = n - 1 : -1 : 0 \\
 [p_i, \pi_i] &= 2\text{Prod}(s_{i+1}, x) \\
 [s_i, \sigma_i] &= 2\text{Sum}(p_i, a_i) \\
 c_i &= c_{i+1} \otimes x \oplus (\pi_i \oplus \sigma_i)
\end{align*}
\]
end
\[
r = s_0 \oplus c_0
\]

function $r = \text{DDHorner}(P, x)$
\[
\begin{align*}
 sh_n &= a_i; \quad sl_n = 0 \\
 \text{for} \ i = n - 1 : -1 : 0 \\
 [ph_i, pl_i] &= [sh_{i+1}, sl_{i+1}] \otimes x \\
 [th, tl] &= 2\text{Prod}(sh_{i+1}, x) \\
 tl &= sl_{i+1} \otimes x \oplus tl \\
 [ph_i, pl_i] &= \text{Fast2Sum}(th, tl) \\
 [sh_i, sl_i] &= [ph_i, pl_i] \oplus a_i \\
 [th, tl] &= 2\text{Sum}(ph_i, a_i) \\
 tl &= tl \oplus pl_i \\
 [sh_i, sl_i] &= \text{Fast2Sum}(th, tl)
\end{align*}
\]
end
\[
r = sh_0
\]
Difference between DDHorner and CompHorner

function $r = \text{CompHorner}'(P, x)$
\begin{align*}
 s_n &= a_i; \quad c_n = 0 \\
 \text{for } i &= n - 1 : -1 : 0 \\
 [p_i, \pi_i] &= 2\text{Prod}(s_{i+1}, x) \\
 t_i &= c_{i+1} \otimes x \oplus \pi_i \\
 [s_i, \sigma_i] &= 2\text{Sum}(p_i, a_i) \\
 c_i &= t_i \oplus \sigma_i \\
\end{align*}
end

$r = s_0 \oplus c_0$

function $r = \text{DDHorner}(P, x)$
\begin{align*}
 s_h &= a_i; \quad s_l = 0 \\
 \text{for } i &= n - 1 : -1 : 0 \\
 &\% [p_h, p_l] = [s_{h+1}, s_{l+1}] \otimes x \\
 [t_h, t_l] &= 2\text{Prod}(s_{h+1}, x) \\
 t_l &= s_{l+1} \otimes x \oplus tl \\
 [p_h, p_l] &= \text{Fast2Sum}(t_h, t_l) \\
 \% [s_h, s_l] = [p_h, p_l] \oplus a_i \\
 [t_h, t_l] &= 2\text{Sum}(p_h, a_i) \\
 t_l &= t_l \oplus pl_i \\
 [s_h, s_l] &= \text{Fast2Sum}(t_h, t_l) \\
\end{align*}
end

$r = s_h_0$
We represent all data dependences in the inner loop of each algorithm.

More parallelism among floating point operations in CompHorner than in DDHorner.

Thus more potential ILP, and greater practical performance!